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ABSTRACT

The concept of weak and almost regularity defined Singal and Arya in 1969[5] in a topological space. In this paper
weak and almost semi regularity are introduced in a space defined by A.D. Alexandroff and some of their properties
are investigated.
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1. INTRODUCTION

Topological spaces have been generalized in several ways. For example Mashhour et al. [4] omitted the intersection
condition and then Das and Samanta [3] investigated a space without any structural conditions. Perhaps the first to
introduce such a generalization was Alexandroff [1], who weakened the union requirements of a topological space.
Though every generalization has it’s own impact, the generalization by Alexandroff [1] occupies a prominent role in
the literature. In this paper weak and almost semi regularity are introduced in a space defined by A.D.Alexandroff and
some of their properties are investigated

2.PRELIMINARIES

Definition 1 [1]: A set X is called a space if in it is chosen a system of subsets F satisfying the
following axioms

(i) The intersection of a countable number of sets from F is a set in F.

(ii) The union of a finite number of sets from F is a set in F.

(iii) The void set is a setin F.

(iv) The whole set X is a set in F.

Sets of F are called closed sets. Their complementary sets are called open. It is clear that instead of closed sets in the
definition of a space, one may put open sets with subject to the conditions of countable summability, finite
intersectability and the condition that X and the void set should be open. The collection of such open sets will
sometimes be denoted by T and the space by (X, t). In general T is not a topology. By a space we shall always mean an
Alexandroff space.

Definition 2 [1]: With every M c X we associate its closure cl(M) the intersection of all closed sets containing M and
scl(M) the intersection of all semi closed sets containing M.

Note that cl( M) and scl(M) is not necessarily closed and semi closed respectively.

Definition 3[7]: A set N, a subset of X is said to be a semi neighborhood of a point x of X if and only if there exist a
semi open set O containing x such that O < N.

Definition 4[7]: The semi interior of a set A in a space X is define as the union of all semi open sets contained in A and
is denoted by s-int (A).

3. WEEKLY SEMI REGULAR AND ALMOST SEMI REGULAR SPACE

Definition 5: Two sets A, B in X are said weakly semi separated if there are two semi open sets
U,V such that A c U,B c V and A V=B N U=0D.
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Definition 6: A subset A of a space X is called regularly semi open if it is the semi interior of
it’s own closure. A set A is said to be regularly semi closed if it is the semi closure of it’s own
interior.

It is evident that a set is regularly semi open iff it’s complement is regularly semi closed.

Note 1: In a topological space a regular semi open set must be semi open. But this is not true in
a space as shown by

Example 1: Let X=R-Q and T ={X, &, G} where G; runs over all countable subsets of R-Q. Then

(X, T ) is a space but not a topological space .Clearly in this space for any o @X, cl{a}={a}.Let A be set of irrational
numbers in [0,1]. Then A is uncountable and so A is not open that is not semi open. But s-int (cl(A))= s-in((A))= U
{{a}: a @ A}=A. So A is regularly semi open but not semi open.

Definition 7: A space X is said to be weakly semi regular if for any weakly separated pair consisting of a regularly
semi closed set A and a singleton {x}, there are semi open sets U, V such that AcU, xeV, UnV=o.

Definition 8: A space X is said to be almost semi regular if for any x eX and any a regularly closed set A not
containing X, there are semi open sets U, V such that AcU, xeV, UnV=0,

Theorem 1: A topological space (X ,0) is weakly semi regular if and only if for any point x eX and

any regularly semi open set U such that g —|({x}) cU, there is a semi open set V such that X€V Cg —cl(V)c
U. Since the semi closure of a set in a space is not necessarily semi closed set, the characterization of weakly semi
regularity in a space is somewhat different.

Theorem 2: A space X is weakly semi regular if and only if for each x eX and any regularly semi open set U such
that x e F C U, where F is semi closed set ,there is a semi open set V and a semi closed set F;:such that XeV CF, C U.

Proof: .Let X be weakly semi regular. Let x eX and U be a regularly semi open set such that x eF < U for some semi
closed set F. Since U is the semi interior of its closure. U is the union of some semi open sets. So there is a semi open
set V such that X €V C U, Also X-U < X-F, where X-F is semi open .Hence {x} and the regularly semi closed set X-U
are weakly semi separated . Then there are semi open sets U;,V; such that xeU;, X-U €V, UMV =,

Therefore x €U; X-V31=F; U, where F; is semi closed.

Conversely let the given condition hold. Let x eX and F be a regularly semi closed set such that {x} and F are weakly
semi separated. So there is a semi open set V; such that F <V, and x does not belongs to Vi, Therefore x eX-V1 & X-
F, where X-V, is semi closed and X-F is regularly semi open. Now by the given condition there is a semi open set U
and a semi closed set F; such that x eU © F; & X-F. Hence x e U, F < X-F;=V where U, V are semi open and UM V=
UM (X-Fy) = &.

Theorem 3: A weakly semi regular T, space is almost semi regular.
Proof is simple and so omitted.

Theorem 4: For a space (X, t) the following are equivalent.

(@) (X,t)is almost semi regular.

(b) For each point x eX and each regularly semi open set V containing x ,there is a regularly semi open set U and
a semi closed set F such that x eUcFcV,

(c) For each point x eX and each semi neighbourhood M of x, there is a regularly semi open neighbourhood V of
x and a semi closed set F such that x eVcFcs-int(cl(M)).

(d) For each point x eX and each semi neighbourhood M of x, there is a semi open neighbourhood V of x and a
semi closed set F such that x eVcFcs- int (cl (M))..

(e) For every regularly semi closed set F and each point x not belong to F, there exist semi open sets U, V and
semi closed sets F4, F, such that x eUcF;, FcVVcF, and F1N F2=CD_

Proof.

(a)=>(b): Let x € X and U be regularly semi open set containing x. Then USis regularly semi closed set not containing
x. Therefore there exist semi open sets U; U, such that xeU; U® cU,, U; U, = ®@. Then x €U, s-int (cl(Uy)). cl(Uy) Uy°
U. Take s-int(cl(Uy)).=V and U,°=F. Then V is regularly open, F is semi closed that x eV F U.
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(b)=>(c): The proof is obvious.
(c) =>(d): Since every regularly semi open set is the union of some semi open sets, the result follows.

(d) =>(e): Let F be regularly semi closed set and x does not belongs to F. Then F®is a semi neighborhood of x.

Therefore there is a semi open set V; and a semi closed set F’ such that x€V,CF,CFe. Again since V, 1S @150 @ semi
neighborhood of x, there is a semi open set U and a semi closed set F; such that xeUcF;< V; Take V:(Fl/)C and F,=V,°.
Then FcVc F, where V is semi open and F, is semi closed and F;NF, © V;NV=.

(e) =>(a): The proof is obvious.
Theorem 5: Every regularly semi open subspace of an almost semi regular space is almost semi regular.
Proof is simple.

Definition 9: A set A in a space X is said to be almost semi bi compact if every semi open cover of A has a finite sub
collection whose closures cover A.

Definition 10: Two sets A, B in X are said strongly semi separated if there are two semi open
sets U, V such that A c U, B cV and \\ U=0.

Theorem 6: In an almost semi regular space, every pair consisting of an almost semi bicompact set and a disjoined
regularly semi closed set can be strongly semi separated.

Proof: Let (X, 1) be an almost semi regular space. Let A be an almost semi bi compact subset of X and B be a regularly
semi closed set with ANB=®. Since X is almost semi regular, for each xe A, there are semi open sets Uy Vyand semi

closed sets E, Fx such that x e UyCEy, BV, c Fy, Ex N Fx = ®. Now {Uy N A: x € A} is a relatively semi open cover
of the almost semi bi compact set A and so there is a finite subfamily {U,; n A: | = 1, 2,....n} whose closures cover
A. Since the closures of U,; NA in A.

cl(U i N A) NAC cl( U )N Ac ¢l (U )CE i Hence Ac U{E i:i=1,2,..n} Let U= {MV:i=12,.n},V=X-{ N
Fyi=12.nk.ThenA C {Y E :i=1,2.n} c{Y(F)%i=12.n}=X{ NF,i=12.n}=V.andB CU.
Also U and V are semi open sets and UM V=,
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