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ABSTRACT 
The concept of weak and almost regularity defined Singal and Arya in 1969[5] in a topological space. In this paper 
weak and almost semi regularity are introduced in a space defined by A.D. Alexandroff and some of their properties 
are investigated. 
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1. INTRODUCTION  
 
Topological spaces have been generalized in several ways. For example Mashhour et al. [4] omitted the intersection 
condition and then Das and Samanta [3] investigated a space without any structural conditions. Perhaps the first to 
introduce such a generalization was Alexandroff [1], who weakened the union requirements of a topological space. 
Though every generalization has it’s own impact, the generalization by Alexandroff [1] occupies a prominent role in 
the literature. In this paper weak and almost semi regularity are introduced in a space defined by A.D.Alexandroff and 
some of their properties are investigated 
 
2. PRELIMINARIES 
 
Definit ion 1  [1]:  A set  X is  ca l led a  space i f  in  i t  i s  chosen a  sys tem of  subse ts F sa t i s fying the 
fo l lo wing axioms  

( i)  The inter sect ion o f a  countable number  o f sets  f rom F i s  a  se t  in  F.  
( i i )  The union of  a  f ini te  number  o f se ts  from F i s  a  se t  in F.  
( i i i )  The void se t  is  a  se t  in F.  
( iv)  The whole se t  X is  a  set  in F.  

 
Sets of F are called closed sets. Their complementary sets are called open. It is clear that instead of closed sets in the 
definition of a space, one may put open sets with subject to the conditions of countable summability, finite 
intersectability and the condition that X and the void set should be open. The collection of such open sets will 
sometimes be denoted by τ and the space by (X, τ). In general τ is not a topology. By a space we shall always mean an 
Alexandroff space.   
 
Definition 2 [1]: With every M ⊂ X we associate its closure cl(M)  the intersection of all closed sets containing M  and 
scl(M) the intersection of all semi closed sets containing M. 
 
Note that cl( M) and scl(M) is not necessarily closed and semi closed respectively. 
 
Definition 3[7]:  A set N, a subset of X is said to be a semi neighborhood of a point x of X if and only if there exist a 
semi open set O containing x such that O ⊂ N. 
 
Definition 4[7]: The semi interior of a set A in a space X is define as the union of all semi open sets contained in A and 
is denoted by s-int (A).  
 
3. WEEKLY SEMI REGULAR AND ALMOST SEMI REGULAR SPACE 
 
Definit ion 5:  Two sets  A,  B in X are  said  weakly semi separa ted i f  there are  two semi  open se ts  
U,V such tha t  A ⊂  U,B ⊂  V and A ∩ V=B ∩ U=Φ.  
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Definit ion 6:  A subse t  A of a  space X is  cal led  regular ly semi open i f  i t  i s  the semi inter ior  o f  
i t ’s  own closure .  A se t  A is  said  to  be regular ly  semi  c losed i f  i t  i s  the semi  c losure o f i t ’s  own 
inter ior .  
 
I t  i s  evident  that  a  se t  i s  regular ly semi  open i f f  i t ’s  complement i s  regular ly semi  c losed.  
 
Note 1:  In a  topological  space a  regular  semi open se t  must  be  semi open.  But this  i s  not  t rue in  
a  space as  sho wn by  
 
Exa mple  1:   Let X=R-Q andτ  ={X, ∅ , Gi} where  Gi  runs over all countable subsets of R-Q.  Then        

(X,  τ ) is a space but not a topological space .Clearly in this space for any α ϵX, cl{α}={α}.Let A be set of irrational 
numbers in [0,1]. Then A is uncountable and so A is not open that is not semi open. But s-int (cl(A))= s-in((A))= ∪
{{α}: α ϵ A}=A. So A is regularly semi open but not semi open. 
 
Definition 7: A space X is said to be weakly semi regular if for any weakly separated pair consisting of a regularly 
semi closed set A and a singleton {x}, there are semi open sets U, V such that A⊂U, x∈V, U∩V=Φ. 
 
Definition 8: A space X is said to be almost semi regular if for any x ϵX and any a regularly closed set A not 
containing x, there are semi open sets  U, V such that A⊂U, x∈V, U∩V=Φ. 
 
Theorem 1: A topological space  (X ,σ)  is  weakly semi  regular  i f  and only i f  for  any point  x ϵX and 
any regular ly semi open set  U such tha t  σ –cl({x}) ⊂U, there is a semi open set V such that xϵV⊂σ –cl(V)⊂ 
U. Since the semi closure of a set in a space is not necessarily semi closed set, the characterization of weakly semi 
regularity in a space is somewhat different. 
 
Theorem 2: A space X is weakly semi regular if and only if  for each x ϵX  and any regularly semi open set U such 
that x ϵ F⊂U, where F is semi closed set ,there is a semi open set V and a semi closed set F1,such that xϵV ⊂ F1⊂U. 
 
Proof: .Let X be weakly semi regular. Let x ϵX and U be a regularly semi open set such that x ϵF⊂U for some semi 
closed set F. Since U is the semi interior of its closure. U is the union of some semi open sets. So there is a semi open 
set V such that x ϵV ⊂U. Also X-U⊂X-F, where X-F is semi open .Hence {x} and the regularly semi closed set X-U 
are weakly semi separated .Then there are semi open sets U1,V1 such that xϵU1, X-U⊂V1 , U1∩V1=Φ. 
Therefore x ϵU1 X-V1= F1 U, where F1 is semi closed. 
 
Conversely let the given condition hold. Let x ϵX and F be a regularly semi closed set such that {x} and F are weakly 
semi separated. So there is a semi  open set V1 such that F⊂V1 and x does not belongs to V1, Therefore x ϵX-V1⊂X-
F, where X-V1 is semi closed and X-F is regularly semi open. Now by the given condition there is a semi  open set U 
and a semi closed set F1 such that x ϵU⊂ F1⊂X-F. Hence x ϵ U, F⊂X-F1=V where U, V are semi open and U∩V= 
U∩ (X-F1) = Φ. 
 
Theorem 3: A weakly semi regular T1 space is almost semi regular. 
 
Proof is simple and so omitted. 
 
Theorem 4: For a space (X, τ) the following are equivalent. 

(a) (X ,τ) is almost semi regular. 
(b) For each point x ϵX  and each regularly semi open set V containing x ,there is a regularly semi open set U  and 

a semi closed set F such that x ϵU⊂F⊂V, 
(c) For each point x ϵX and each semi neighbourhood M of x, there is a regularly semi open neighbourhood V of 

x and a semi closed set F such that x ϵV⊂F⊂s-int(cl(M)). 
(d) For each point x ϵX and each semi neighbourhood M of x, there is a semi open neighbourhood V of x and a 

semi closed set F such that x ϵV⊂F⊂s- int (cl (M)).. 
(e) For every regularly semi closed set F and each point x not belong to F, there exist semi open sets U, V and 

semi closed sets F1, F2 such that x ϵU⊂F1, F⊂V⊂F2 and F1⋂F2=Φ. 
 

Proof.   
(a)=>(b): Let x ϵ X and U be regularly semi open set containing x. Then UC is regularly semi closed set   not containing 
x. Therefore there exist semi open sets U1, U2 such that xϵU1, Uc ⊂U2, U1 U2 = Φ. Then  x ϵU1  s-int (cl(U1)). cl(U1)  U2

c 
U. Take s-int(cl(U1)).=V and  U2

c=F. Then V is regularly open, F is semi  closed that x ϵV F U. 
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(b)=>(c): The proof is obvious. 
 
(c) =>(d): Since every regularly semi open set is the union of some semi open sets,  the result follows. 
 
(d) =>(e): Let F be regularly semi closed set and x does not belongs to F. Then Fc is a semi neighborhood of x. 
Therefore there is a semi open set V1 and a semi closed set F1

/ such that x∈V1⊂F1⊂Fc. Again since V1
 is also a semi 

neighborhood of x, there is a semi open set U and a semi closed set F1 such that xϵU⊂F1⊂ V1.Take V=(F1
/)c and F2=V1

c. 
Then F⊂V⊂ F2 where V is semi open and F2  is semi  closed and F1∩F2 ⊂ V1∩V2=Φ. 
 
(e) =>(a): The proof is obvious. 
          
Theorem 5: Every regularly semi open subspace of an almost semi regular space is almost semi regular. 
            
Proof is simple. 
 
Definition 9: A set A in a space X is said to be almost semi bi compact if every semi open cover of A has a finite sub 
collection  whose closures cover A. 
 
Definit ion 10:  Two se ts  A,  B in X are said  st rongly semi separated i f  there are  two semi open 
se ts  U,  V such tha t  A ⊂  U,  B ⊂V and V ∩ U=Φ.  
  
Theorem 6: In an almost semi regular space, every pair consisting of an almost semi  bicompact set and a disjoined 
regularly semi closed set can be strongly semi separated. 
 
Proof: Let (X, τ) be an almost semi regular space. Let A be an almost semi bi compact subset of X and B be a regularly 
semi closed set with A∩B=Φ. Since X is almost semi regular, for each xϵ A, there are semi  open sets Ux, Vx and semi 
closed sets Ex, Fx  such that x ϵ Ux⊂Ex, B⊂Vx  ⊂ Fx, Ex ∩ Fx = Φ. Now {Ux ∩ A: x ϵ A} is a relatively semi open cover 
of the almost semi bi compact set A and so there is a finite subfamily {Uxi ∩ A: I = 1, 2,….n} whose closures cover     
A. Since the closures of Uxi ∩A in A.  
cl(U xi ∩ A) ∩A⊂ cl( U xi )∩ A⊂ cl (U xi)⊂E xi.  Hence  A⊂ U{E xi.: i = 1, 2,..n}. Let  U= {∩V xi :i=1,2,..n},V=X-{ ∩
F xi :i= 1,2,..n}. Then A ⊂  {∪  E xi.  :i=1,2,..n} ⊂ {∪ ( F xi )c: i = 1, 2,..n}= X-{ ∩ F xi: i= 1, 2,..n} = V. and B ⊂U. 
Also U and V are semi open sets and U∩V=Φ. 
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