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ABSTRACT 
A. Zygmund introduced trigonometric Fourier approximation where as L. Mcfadden [2] introduced Lipchitz class. 
Dealing with degree of approximation of conjugate series of a Fourier series Padhy et al. have established some 
theorems. In this paper, we have extended their result and established a theorem on the use of product mean ( )BqE, in 
the degree of Approximation of the conjugate series of Fourier series of a function of weighted Lipchitz 
class ))(,( upLW ξ . 
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1. INTRODUCTION 
 
 The sequence  { }nu  of the B  -mean of the sequence  { }ns  is given by 

,2,1,
0

=
=

= ∑ n
n

smbnu
λ

λλ                                (1.1) 

is the sequence –to-sequence transformation, where ( ) ∞×∞= mnbB be a ∞×∞ matrix and∑ nb be a given infinite 

series with the sequence of partial sums { }ns .  
 
The series ∑ nb  is said to be B - summable to s  if 

snu → as ∞→n ,                                (1.2) 
 
The regularity conditions for B -summability are:       

 (i) L
n
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<
∞

=
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sup where L is an absolute constant.  
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The sequence { }nv  [1] of the ( )qE,  mean of the sequence { }ns  is given by  
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The series ∑ nb  is said to be ( )qE,  summable to s  if 

snv →  as ∞→n                                 (1.4)   

Clearly ( )qE,  method is regular [7].  
 

Further, let nw  be the ( )qE,  transform of the B  -transform of { }ns   defined by  
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The series ∑ nb  is said to be ( )BqE, -summable to s  if  

snw →   as ∞→n                                 (1.6) 
 
Let )(ug  be a Lebesgue integrable function with period 2π in (-π,π), The Fourier series of g at any point ‘x’ is given 
by  

( ) ∑
∞

=
≡∑

∞

=
++

0
)(

1
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2
0~)(

n
xnG

n
nxndnxnc

c
xg                            (1.7) 

where 0c , nc and nd are the Fourier coefficients and the conjugate series of the Fourier series (1.7) is   
 

( ) ∑∑
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=
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=
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1
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n
xnH

n
nxndnxnc                             (1.8) 

 

Let ( )xgns ;  be the n-th partial sum of (1.8). 
 
For a function RRg →: , the ∞L -norm of  is defined by  

{ }Rxxgg ∈=∞ :)(sup                               (1.9) 

and the υL -norm is defined by  

( )
νπ

ν
ν

1
2

0













= ∫ xgg , 1≥ν .                            (1.10) 

 
The degree of approximation of a function RRg →:  by a trigonometric polynomial )(xnQ  of degree n under the 

norm  ∞.  is defined by [6] 

{ }RxxgxnQgnQ ∈−=∞− :)()(sup                           (1.11) 
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and the degree of approximation  )(gnE  of a function  νLg ∈  is given by [6]  

νgnQ
nQ

gnE −= min)(                              (1.12)

  
This method of approximation is called Trigonometric Fourier approximation. 

A function  αLipg∈   if [2] 

10,)()( ≤<




=−+ ααuOxguxg                                         (1.13) 

and ),()( rLipxg α∈ , for 0 2x π≤ ≤  ,if[2]  
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For a given positive increasing function ( )uξ , the function ( ) ( )( )ruLipxg ,ξ∈ , if[2]  
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For a given positive increasing function ( )uξ  and an integer 1>p  the function ( )xg belongs to 




 )(, upLW ζ ,  

if [2]   
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We use the following notation throughout this paper: 
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Further, the method ( )BqE,  is assumed to be regular and this case is supposed through out the paper. 
 
2. KNOWN THEOREM 
 
Dealing with the degree of approximation by the product ( ) ( )1,, CqE -mean of Fourier series, Nigam [3] proved the 
following theorem: 
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Theorem 2.1: If g is a −π2 Periodic function belonging to  class αLip , then its degree of approximation by 

( ) ( )1,, cqE  summability  mean  on its Fourier series ∑
∞

=0
)(

n
xnG  is given  by  

( )
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nE , 

where  1
ncq

nE    represents the  ( )qE,   transform of ( )1,C  transform of ( )xgns ; . 
 
Padhy et al. [5] proved the following theorem using ( )BqE,  mean of the conjugate series of the Fourier series.  
 
Theorem 2.2: If g is a −π2  Periodic function of class αLip , then degree of approximation by the product 

( )BqE,  summability  means on its conjugate series of Fourier series (1.8) is given by 
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Ognw  ,   where  nw  as defined in (1.5) .  

Recently, Padhy et al [4] proved the following theorem using ( ) ),,(, nqnpNsE  mean of the conjugate series of the 

Fourier series of a function of class ),( rLip α in the following form: 
 
Theorem 2.3: If g is a −π2 Periodic function of class ),( rLip α , then degree of approximation by the product 

( ) ),,(, nqnpNsE  summability  means on its conjugate series of Fourier series (1.8) is given by  
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,where nw as defined in (1.5) . 

 
3. MAIN THEOREM 
 
In this paper, we have proved a theorem on degree of approximation by the product mean ( )BqE,  of Fourier series 
(1.8).We prove  
 
Theorem 3.1: Let ( )uξ  be a positive increasing function and g be a −π2  Periodic function of the class 

0,1,)(, >>

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 upupLW ζ . Then degree of approximation by the product ( )BqE,  means of the conjugate 

series of the Fourier series (1.8) is given by   
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hold uniformly in x  with 
1 1 1
r s
+ = , whereδ  is an arbitrary number such that ( )1 1 0s δ− − >  and nw is as 

defined in (1.5). 
 
4. Lemma: We require the following Lemma to prove the theorem. 
 
Lemma -4.1[5]: 

,
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Where )(unK  is as defined in (1.17). 
 
5. PROOF OF THEOREM- 3.1: 

Using Riemann –Lebesgue theorem, we have the n-th partial sum ( )xgns ; of the Fourier series (1.8) of )(xg , 
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The −B transform of ( )xgns ;  [2] using (1.1) is given by  
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If nw be the ( )BqE,  transform of ( )xgns ;  , then we have  
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This completes the proof of the theorem.  
 

Remark: If we put 0β = and ( ) αξ uu = in the main theorem then the degree of approximation of a 

function g belonging to the class ( ), ,0 1, 1Lip r rα α< ≤ ≥ is given by 
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and if we take r →∞  then the degree of approximation of a function g  belonging to the class 

( ) ,0 1Lip α α< ≤ is given by 

( ) .1 




 −+=− αnOrgnw  
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