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ABSTRACT
A. Zygmund introduced trigonometric Fourier approximation where as L. Mcfadden [2] introduced Lipchitz class.
Dealing with degree of approximation of conjugate series of a Fourier series Padhy et al. have established some
theorems. In this paper, we have extended their result and established a theorem on the use of product mean (E,q)B in

the degree of Approximation of the conjugate series of Fourier series of a function of weighted Lipchitz
classw (LP, &(u)).
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1. INTRODUCTION

The sequence {un} of the B -mean of the sequence {sn} is given by

n
Up= Xbmisy n=12- (L)
A=0
is the sequence —to-sequence transformation, where B = (bmn )OOXOO be a oox oo matrix and Z bpy be a given infinite

series with the sequence of partial sums {s, | .

The series Y by is said to be B - summable to S if
Un —>Sas N—w, (1.2)

The regularity conditions for B -summability are:

e}
(i) sup Z|bmn|< L where L is an absolute constant.

m n=0
@) lim bmn=0
M—>o0
o0
iy lim > bmn =1
M= n=0
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The sequence {Vn} [1] of the (E, q) mean of the sequence {Sn} is given by

1 0 n )

Vn=—n2(,1)qn s; . (L3)
@+a)" 2=0

The series an is said to be (E, q) summable to S if

Vg —>Sas N> (1.4)
Clearly (E, q) method is regular [7].

Further, let Wn be the (E, q) transform of the B -transform of {Sn} defined by

1] _
Wn: —Z(E)qn kuk

(t+a) k=0
1 Dy ok K
- X (kj q 2bkasa (L5)
@+a)" k=0 Py
The series »_ by is said to be (E,q)B-summabIe to S if
Wn—>S aa N> (1.6)

Letg (U) be a Lebesgue integrable function with period 2x in (-n,x), The Fourier series of § at any point ‘x’ is given
by

CO o0 [0¢]
g(x) ~—+ Z(cn cosnx +dp, sin nx)z 2Gp(x) 17)
n=1 n=0
where CQ, Cpand dn are the Fourier coefficients and the conjugate series of the Fourier series (1.7) is
00 o0
> (cpcosnx—dp sinnx)= > Hp(x) (1.8)

Let S (g , X) be the n-th partial sum of (1.8).

Forafunctiong : R — R, the Lo -norm of is defined by

lo]l,, =sup{o(®)|: xR | (L9)

and the L,,-norm is defined by

27 v
||9||V: I|9(X)| vl (1.10)
0

The degree of approximation of a function g :R — R by a trigonometric polynomial Qn (X) of degree n under the
norm || . ”oo is defined by [6]

[@n - 9], =sup{Rn()-g(¥)|:xeR | (1.1)
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and the degree of approximation Ep(g) of a function g € L,, is given by [6]

En(g) =min|Qn - g, (1.12)
Cn

This method of approximation is called Trigonometric Fourier approximation.
Afunction J €LIp & if[2]

|g(x+u)—g(x)|:0(|u|a) O<a<l (1.13)

and §(X) € Lip (, 1), for 0<x<27 if[2]

1
2z r
j lg(x+u)- g(x)|rdx = O(|u|aj O<a<lr>1u>0. (1.14)
0
For a given positive increasing function §(u) the function g(X) € Lip(f(u ), r), if[2]
1
2r , r
[lg(x+u)—g([ dx| =0(£(u)),r=Lu>0 (1.15)
0

For a given positive increasing function f(u) and an integer p >1 the function g(X) belongs to W(Lp,éf(u)j,

if [2]
1

27
[ Jatx+u)-g(0lP sinx) PP ax |° =o(¢(w). g 20, (116)
0

We use the following notation throughout this paper:

v =2 lgx+0) - g(x-W)}

and

u 1
1 n N ek k cosz—cos(/ﬂzju
(1) S 2

Kp (u) =
r(1+9)" k=0 1=0 sin

(1.17)

N |

Further, the method (E, q)B is assumed to be regular and this case is supposed through out the paper.

2. KNOWN THEOREM

Dealing with the degree of approximation by the product (E, q) (C ,l)-mean of Fourier series, Nigam [3] proved the
following theorem:
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Theorem 2.1: If gis a 27 —Periodic function belonging to class Lip a, then its degree of approximation by

o0
(E,q) (c,1) summability mean on its Fourier series > Gp(x) is given by

n=0
\E

where EﬁC% represents the (E,q) transform of (C,1) transform of Sp (g; X).

ﬁc%,—g” =0 1t O<a<l
o0 (n+1)*

Padhy et al. [5] proved the following theorem using (E, q)B mean of the conjugate series of the Fourier series.

Theorem 2.2: Ifgis a2z — Periodic function of class Lip a, then degree of approximation by the product

(E,q)B summability means on its conjugate series of Fourier series (1.8) is given by

1
HWn - gHoo =0 W O0<a<l, where W, as defined in (1.5) .
n+

Recently, Padhy et al [4] proved the following theorem using (E, S)(N 'y Pn > qn) mean of the conjugate series of the

Fourier series of a function of class Lip(e, I) in the following form:

Theorem 2.3: Ifgis a 27 — Periodic function of class Lip(c,r), then degree of approximation by the product
(E, S)(N 'y Pn>s qn) summability means on its conjugate series of Fourier series (1.8) is given by

1
”Wn - g”oo =0 1| O<a<1r =1 where Wy as defined in (1.5) .

(1P
3. MAIN THEOREM

In this paper, we have proved a theorem on degree of approximation by the product mean (E, q)B of Fourier series
(1.8).We prove

Theorem 3.1: Let §(u) be a positive increasing function and g be a 27— Periodic function of the class

W(Lp,éy(u)j, P>1,uU>0. Then degree of approximation by the product (E,q)B means of the conjugate

series of the Fourier series (1.8) is given by

1 1
Jwn = ], =0 (n ) ‘5(n+1j , r>1 3.1)
provided
1
1 r

n+l uv/(u)sinﬂu rdu :O(Lj
0 &(u)

n+1 3:2)
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and
1
T () | 5
{ | @ =O((n+1)j 3
n+l

11

hold uniformly in X with —+—==1, whered is an arbitrary number such that 8(1—5)—1>0 and Wp is as
r s

defined in (1.5).

4. Lemma: We require the following Lemma to prove the theorem.

Lemma -4.1[5]:

o), O<u<——
n+1

Kn)- o) Lcuen
u n+1

Where K_n(u) is as defined in (1.17).

5. PROOF OF THEOREM- 3.1:

Using Riemann —Lebesgue theorem, we have the n-th partial sum Sn (g, X) of the Fourier series (1.8) of J (X) ,

. x cos;—sin(n+;ju
5 (99 -909 = [w(u) - d u
0 Zsin()

The B — transform of Sp (g , X) [2] using (1.1) is given by

x ] cosz—sin(n+2) u
U, —9() == [ () b, du,
7o k=0 Zsin(uj
2

If Wy, be the (E, q)B transform of Sp (g;X) , then we have

5 T NNk k cosz—sin(n+2ju
Wn —gl=———Jy@ X [ ]a" | X bnk du
z@+)" o k=o(k) v=0 25in(;)
T _
= [y (u)Kn(u)du
0
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1
n+l 7 |
=1 [ + [ {Kn(u)du
o 1
n+1
= 1, +1,, say
Now
1 u o
2 n+1 n B k COSZ—Sln(n +2j u
=—2—| T v 3 (7)o" X oo 2l
z(+a)" | o k=0 y=0 2sin(2j
1
n+1
=| [y @Kp(u)du
0
1 1
1 (1 S
n+l B n+1| s e anl® 11
f uy@sin?ul | AW KN@] | here T4 221
0 &(u) 0 usin? u rs
(using Holder’s inequality)
1
1 s
— s
n+1
_ $(u) :
= [u1+ﬂJ du (Using lemma-4.1 and (3.2))
1
1 s
n+1
:o(g[ij du
n+1)) o NEY
1 —l+l+,6'
=0 —— 1O} (n+1) s
(g(nJrlJ [( ) j
1 ﬂJr1
=0 — |(n+1) r
o)
Next
k cos sin(n+l u
2 fl n _ 2 2
lo|=—2 [ v X ()" X bk 2 ldu
zA+a)7 |1 k=0 v=0 23in(j
n+1 2
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T JR—
= [w U)Ky (u)du
1
n+1
1 1
r r _ S >
) ’f\u‘%(u)sinﬂu\ EEAEOLHOIN
1 ‘ s(u) ‘ 1 |[u9 sin Ay
1 n+1
1
(Where F + E =1 , using Holder’s inequality)
1

= O((n +l)5) 7_‘{ ﬂ S du using Lemma-4.1 and (3.3)
1 \u 1+ -6 ’ ' '
n+l

1

) lal
n-+ -

_ 5 z daz
_o((m)j { R | 2|

e
1
B s 1 n+1 dy S 1
_O(n+1)1+ f(n—HD[ S(5—ﬂ—1)+2] ,Forsome;S5£n+1.
£

(Using second mean value theorem)
= o((n +1)"° (%Do( n+1 ﬁ”“s‘ij

:O((n +1 = [LJJ (5.3)

Then from (5.2) and (5.3), we have

1 1
|Wn—g|—0[(n+1)ﬁ+r g(nﬂn ,r>1
1

27 1 1\
wp—gl = [ O (n+2)P+, S| g dx| , r=1
r r n+1
0

[REN

Nll—‘

j/ —j is a positive increasing function as f(u) is a positive increasing function )
z
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-0 ((n +1)'”*% g(ﬁj}ﬁ dx]i
ofor'd )

This completes the proof of the theorem.

Remark: If we put £ =0and é(u):u“in the main theorem then the degree of approximation of a
function ¢ belonging to the class Lip(a, I’),0<a <1, r>1 is given by

1
[wn - g, =0| (n+2)7*"

and if we take I' — o0 then the degree of approximation of a function ( belonging to the class

Lip(a),o <a <1 isgivenby
fwn - gl =0( (n+1* ).
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