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ABSTRACT 
The purpose of this paper is to present a common fixed theorem for compatible mapping of type (R) in complete metric 
space satisfying a generalized inequality. we also present a example that shows the applicability and validity of our 
result. 
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1.  INTRODUCTION AND PRELIMINARIES 
 
Initially Jungck in 1976 [2] proved a common fixed point theorem for commuting maps, this result was extended and 
generalized in various ways by many authors. Recently Jungck in 1986 [3] introduced the generalized concept of weak 
commutativity which is called compatibility. In 1994 Pathak, Chang and Cho [5] gave the idea of compatible mapping 
of type (P). Rohen, Singh and Shambu [9] in 2004 gave the idea of compatible mapping of type (R) by combining the 
definition of compatible mapping and compatible mapping type (P).  
 
The aim of this paper is to present a common fixed point theorem of compatible mapping type (R) in complete metric 
space by in view of four maps. This result revise the result of Bijendra and Chauhan [1] and others.  
 
Before starting our main result following definitions and propositions are required in the sequel.   
 
Definition 1.1: Let P and Q be self maps of a complete metric space (X, d) are said to be compatible on X if limn→∞d 
(PQxn, QPxn) = 0 when {xn} is a sequence in X  such that  limn→∞ Pxn = t = limn→∞ Qxn for some t ϵ  X . 
 
Definition 1.2: Let P and Q be self maps of a complete metric space (X, d) are said to be compatible of type (P) on X if 
limn→∞d (PPxn, QQxn) = 0 when when {xn} is a sequence in X such that  limn→∞ Px n = t = limn→∞ Qx n for some      
t ϵ X. 
 
Definition 1.3: Let P and Q be self maps of a complete metric space (X, d) are said to be compatible of type (R) on X if 
limn→∞d (PQxn, QPxn) = 0 when when {xn} is a sequence in X such that  limn→∞ Px n = t = limn→∞ Qx n for some      
t ϵ X.  
 
2. MAIN RESULT 
 
We need the following proposition for our main result. 
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Proposition 2.1: Let P and Q be self maps of a complete metric space (X, d). if a pair (P,Q) is compatible type R on X 
and Pt = Qt for t ϵ  X. then PQt =QPt = PPt = QQt . 
 
Proposition 2.2: P and Q be self maps of a complete metric space (X, d). if a pair (P,Q) is compatible type R on X and 
and limn→∞ Pxn = t = limn→∞ Qxn for some t ϵ  X. then  

(i) limn→∞ d (PQxn, Qt)=0 if Q is continuous 
(ii) limn→∞ d (QPxn, Pt)=0 if P is continuous 
(iii) PQt = QPt and Pt = Qt If P and Q are continuous at t. 

 
Theorem 2.3: Let  P, Q, R, S be self maps of a complete metric space (X, d) satisfying the following conditions . 
(1)P(X)⊆  S(X) and Q(X) ⊆ R(X) 
(2) [d(Px, Qy)]2≤ k1[d(Rx, Qy)d(Rx, Sy) + d(Rx, Sy)d(Px, Rx)] + k2[d(Px, Qy)d(Px, Rx) + d(Px, Qy)d(Px, Sy]  
     Where 0 ≤ k1+ 3k2 < 1 and k1,k 2≥ 0 
(3) One of P, Q, R, S is continuous  
(4) [P, R] and [Q, S] are compatible type (R) on X. 
Then P, Q, R, S have a unique common fixed point in X. 
 
Proof:  let x0 ϵ  X  then by (1) Ǝ x1ϵ X such that Sx1 = Px0 and for x1 ϵ X Ǝ x2 ϵ X Such that Rx2 = Qx1 and so on. 
Continuing this way we can define a sequence {yn} in X such that 
Y2n+1  = Sx2n+1= Px2n and   y2n = Rx2n =Qx2n-1 
 d[(y2n+1,y2n)]2 = [d(Px2n, Qx2n-1)]2 ≤ K1[d(Rx2n, Qx2n-1)d (Rx2n, Sx2n-1) + d(Rx2n, Sx2n-1)d(Px2n, Rx2n)] 
                              + K2[d(Px2n, Qx2n-1)d (Px2n, Rx2n) + d(Px2n, Qx2n-1)d(Px2n, Sx2n-1)] 
                        = K1[d(y2n,y2n)d (y2n,y2n-1)+d(y2n,y2n-1)d(y2n+1,y2n)]        
                              + K2[d(y2n+1, y2n)d (y2n+1, y2n) + d(y2n+1, y2n)d(y2n+1, y2n-1)] 
                        = K1[d(y2n, y2n-1)d(y2n+1, y2n)] +K2[d(y2n+1, y2n)2 + d(y2n, y2n+1)d(y2n+1, y2n-1)] 
(1-k2)d[(y2n+1,y2n)]2 ≤ d[(y2n+1,y2n)] [ K1d(y2n,y2n-1)+K2d(y2n+1,y2n-1)] 
(1-k2)d[(y2n+1,y2n)] ≤  K1d(y2n,y2n-1)+K2d(y2n+1,y2n-1)] 
(1-k2)d[(y2n,y2n+1)] ≤  K1d(y2n,y2n-1)+K2d(y2n+1,y2n-1)] 
(1-k2)d[(y2n,y2n+1)] ≤  K1d(y2n,y2n-1)+K2[d(y2n+1,y2n) +d(y2n,y2n-1)] 
(1-2k2)d[(y2n,y2n+1)] ≤ ( K1+K2) d(y2n,y2n-1)] 
     d[(y2n,y2n+1)] ≤ Ƿd(y2n,y2n-1)] 

where Ƿ =
2

21

21 k
kk

−
+

< 1 

{yn} is a Cauchy sequence.  
 
Since {yn} is a Cauchy sequence and since X is a complete metric then Ǝ apoint z ϵ X such that lim yn = z as n→∞  
consequently subsequences Px2n, Rx2n, Qx2n-1 and Sx2n+1 converges to z . 
 
Let R be a continuous, since P and R are compatible type (R) on X, then by proposition (2.2) we have R2 x2n→Rz and 
PRx2n→Rz as n→∞. 
 
Now by condition (2) of theorem, we have  
 
 [d(PRx2n,Qx2n-1)]2 ≤ K1[d(R2x2n, Qx2n-1)d (R2x2n, Sx2n-1) + d(R2x2n, Sx2n-1)d(PRx2n, R2x2n)]        
                               +K2[d(PRx2n, Qx2n-1)d (PRx2n, R2x2n) + d(PRx2n, Bx2n-1)d(PRx2n, Sx2n-1)] 
as n→∞ we have 
 
[d(Rz, z)]2 ≤ K1[d(Rz, z)d (Rz, z) + d(Rz, z)d(Rz, Rz)] + K2[d(Rz, z)d(Rz, Rz) + d(Rz, z)d(Rz, z)] 
[d(Rz, z)]2 ≤ K1[d(Rz, z)2] + K2[d(Rz, z)2)] 
[d(Rz, z)]2 ≤ (K1+K2)[d(Rz, z)2)]  
This is a contradiction.  
Than d(Rz, z) = 0 
 hence Rz = z 
 
Now  
 [d(Pz,Qx2n-1)]2 ≤ K1[d(Rz, Qx2n-1)d (Rz, Sx2n-1) + d(Rz, Sx2n-1)d(Pz, Rz)] 
                               + K2[d(Pz,Qx2n-1)d (Pz, Rz) + d(Pz, Qx2n-1)d(Pz, Sx2n-1)] 
Taking limas n→∞ we have  
[d(Pz, z)]2 ≤ K1[d(z, z)d (z, z) + d(z,, z)d(Pz, z)] +K2[d(Pz, z)d (Pz, z) + d(Pz, z)d(Pz, z)] 
                 = 2k2[d(Pz, z)]2 
[d(Pz, z)]2 ≤ 2k2[ d(Pz, z)]2 
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Which is a contradiction.  
Then d(Pz, z) = 0 
Hence Pz = z 
 
Since by condition (1) zϵ S( X) also S is a self map of X so Ǝ a point uϵ X such that z = P(z) = S(u) more over by 
condition (2), we have  
[d(z, Qu)]2 = [d(Pz,  Qu)]2 ≤ K1[d(Rz, Qu)d (Rz, Su) + d(Rz,, Su)d(Pz, Rz)] + K2[d(Pz, Qu)d (Pz, Rz)  
                       + d(Pz, Qu)d(Pz, Su)] 
 
Taking lim as n→∞.  
[d(z, Qu)]2 ≤  K1[d(z, Qu)d (z, z)+d(z, z)d(z, z)] +K2[d(z, Qu)d (z, z)+ d(z, Qu)d(z, z)] 
[d(z, Qu)]2 ≤  0 
[d(z, Qu)] = 0 
 
i.e Qu = z 
 
by condition (4) we have 
 
[d(SQu, QSu)] = 0 
 
Hence [ d(Sz, Qz)]= 0 
Sz = Qz 
 
Now, 
[d(z, Sz)]2 = [d(Pz, Sz)]2 ≤ K1[d(Rz,Qz)d (Rz,Sz) + d(Rz, Sz)d(Pz, Rz)] + K2[d(Pz, Qz)d (Pz, Rz) 
                       + d(Pz, Qz)d(Pz, z)] 
 
Taking lima sn→∞. 
 
[d(z, Sz)]2 = ≤  K1[d(z, Qz)d (z, z) + d(z, z)d(z, z)] +K2[d(z, Qz)d (z, z) + d(z, Qz)d(z, z)] 
 
[d(z, Sz)]2 ≤  0 
 
d (z, Sz) = 0 
z = Sz 
 
Hence Qz = Sz = z 
 
Hence z is a common fixed of P, Q, R, S. 
 
Uniqueness of z: let w is another common fixed point of P, Q, R, S, then we have  
 
[d(z, w)]2 = [d(Pz, Qw)]2 ≤  K1[d(Rz, Qw)d (Rz, Sw) + d(Rz,, Sw)d(Pz,Rz)] + K2[d(Pz, Qw)d (Pz, Rz) 
                         + d(Pz, Qw)d(Pz, Sw)] 
                ≤ K1[d(z, w)d (z, w) + d(z,, w)d(z, z)] + K2[d(z, w)d (z, z) + d(z, w)d(z, w)] 
                ≤ (k1+k2) [d(z, w)]2 
[d(z, w)]2 ≤ (k1+ k2) [d(z, w)]2 
Hence z = S(w) = w  
           z = w  
 
Example 2.4: Let X=[0,∞) be endowed with a complete metric space (X, d) with metric 

22
)(),( yxyxyxd −=−=  , define P, Q, R, S on X  by ( ) log 1

4
xP x  = + 

 
 , ( ) log 1

6
xQ x  = + 

 
 

1)( 3 −= xexR , 1)( 2 −= xexS . 
 
Obviously P(x) = Q(x) = R(X) = S(X) = [0, ∞) . 
 
We show that the pair (P, R) is compatible 
 
Let {xn} be a sequence in X such that for some tϵX lim n→∞ d (Pxn, t) =0 and tϵX   
sslim n→∞  d (Rxn, t) = 0 



Akash singhal1*, Dr. Rajesh kumar Sharma and Dr. anil Agrawal /  
Generalized Common Fixed Point Theorem of Compatible Mapping Of type (R) in Complete… / IJMA- 9(5), May-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       101  

 
i.e lim n→∞  tPxn − =0 , lim n→∞  tRxn − =0. Since P and R are continuous, we have  

lim n→∞  d(PRxn,  RPxn) =  lim n→∞  nn RPxPRx − 2= 
2RtPt − 00)1()

4
1log(

2
3 =⇔=−−+ tet t  

then (P, R) are compatible . 
 
Similarly {Q, S} are compatible. 
for each x, y ϵ X   

[d (Px, Qy)]2  = [(Px - Qy)2]2 = 

22

log 1 log 1
4 6
x y     + − +     

      
≤

22

4 6
x y  −  

   
≤ 22

4 ])23[(
)12(

1 yx −  

                       ≤ 2223
4 ])[

)12(
1 yx ee −  

                       = 2
4 )],([

)12(
1 SyRxd  

                       

5

5

10 [ ( , ) ( , ) ( , ) ( , )]
(12)

2 [ ( , ) ( , ) ( , ) ( , ]
(12)

d Rx Sy d Rx Sy d Rx Sy d Rx Rx

d Rx Sy d Rx Rx d Rx Sy d Rx Sy

≤ +

+ +
 

Where 0
)12(

10
51 ≥=k  and 0

)12(
2

52 ≥=k  and 1
)12(

23
)12(

103 5521 <+=+ kk  

Thus  P, Q, R, S satisfy all  condition of theorem (2.3) .moreover 0 is the unique common fixed point of P, Q, R, S. 
 
This complete the proof. 
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