WEAK ISOMORPHISM CONCEPT ON BIPOLAR NEIGHBOURHOOD FUZZY GRAPH # M. VIJAYA¹ AND V. MEKALA*2 Research Advisor¹, Research Scholar², P.G. and Research Department of Mathematics, Marudupandiyar College, Thanjavur, India. (Received On: 25-03-18; Revised & Accepted On: 07-05-18) #### **ABSTRACT** In this Paper for the given fuzzy graph G_B : (σ_B, μ_B) , Bipolar Neighbourhood fuzzy graph G_{Bn} : (σ_{Bn}, μ_{Bn}) of G_B is defined. Some of its properties under the specific nature of G is discussed. **Keywords:** Neighbourhood fuzzy graph, Bipolar neighbourhood fuzzy graph, Strong bipolar fuzzy graph, Weak isomorphism of bipolar neighbourhood fuzzy graph. ### 1. INTRODUCTION In 1965, Zadeh [1] introduced the notion of a fuzzy subset of a set. Since then, the theory of fuzzy sets has become a vigorous area of research in different disciplines including medical and life sciences, management sciences, social sciences, engineering, statistics, graph theory, artificial intelligence, expert systems, decision making and automata theory. In 1994, Zhang [2] initiated the concept of bipolar fuzzy sets as a generalization of fuzzy sets. A bipolar fuzzy set is an extension of Zadeh's fuzzy set theory whose membership degree range in [-1, 1]. In this paper bipolar neighbourhood fuzzy graph of G_B is defined. Some results related bipolar neighbourhood fuzzy graph is discussed. # 2. PRELIMINARIES In this section, we introduce some basic definitions that are required in the sequel. **Definition 2.1:** A fuzzy graph is a pair $G:(\sigma,\mu)$ with the underlying set V. The pair $G_n:(\sigma_n,\mu_n)$ is the same underlying set v, it is defined as follows: Two nodes are made as neighbors in G_n iff they have a common neighbours in G, where $\sigma_n(x) = \sigma(x)$ for all x in V.If x and y are made as neighbours in G_n , $$\begin{array}{ll} \mu_n(x,y) = \ \mu(x,y) \ \ if \ (x,y) \in \ \mu^* \\ = \ \mu^2(x,y) \ if \ (x,y) \not\in \ \mu^* \ , \\ \text{else} \quad \mu_n(u,v) = 0 \end{array}$$ From the above definition of μ_n , else $$\mu_n(x,y) \leq \sigma(x) \wedge \sigma(y) \text{ for all } (x,y) \in \mu_n^*,$$ = $\sigma_n(x) \wedge \sigma_n(y) \text{ for all } (x,y) \in \mu_n^*.$ Hence μ_n is a fuzzy relation on the fuzzy set σ_n and the pair G_n : (σ_n, μ_n) is a fuzzy graph, termed as neighbourhood fuzzy graph of G. **Definition 2.2:** A bipolar fuzzy graph is a pair G_B : (σ_B, μ_B) with the underlying set V. The pair G_{Bn} : (σ_{Bn}, μ_{Bn}) is the same underlying set V, it is defined as follows: Two nodes are made as neighbours in G_{Bn} iff they have a common neighbour in G_B , where $\sigma_{Bn}(x) = \sigma_B(x)$ for all x in V. If x and y are made as neighbours in G_{Bn} , where $$\sigma_{Bn}(x) = \sigma_B(x)$$ for all x in V. If x a $\mu_{Bn}^P(x,y) = \mu_B^P(x,y)$ if $(x,y) \in \mu_B^*$ $= \mu_B^2(x,y)$ if $(x,y) \notin \mu_B^*$ $\mu_{Bn}^N(x,y) = \mu_B^N(x,y)$ if $(x,y) \notin \mu_B^*$ $= \mu_B^2(x,y)$ if $(x,y) \notin \mu_B^*$ $\mu_{Bn}^P(x,y) = 0$ $\mu_{Bn}^P(x,y) = 0$ Corresponding Author: V. Mekala*2, Research Scholar2, 144 From the above definition of μ_{Bn} $$\mu_{Bn}^{P}(x,y) \leq \sigma_{B}^{P}(x) \wedge \sigma_{B}^{P}(y) \text{ for all } (x,y) \in \mu_{Bn}^{*}$$ $$\leq \sigma_{Bn}^{P}(x) \wedge \sigma_{Bn}^{P}(y) \text{ for all } (x,y) \in \mu_{Bn}^{*}$$ $$\begin{array}{l} \mu_{Bn}^N(x,y) \leq \sigma_B^N(x) \vee \sigma_B^N(y) \ \ for \ all \ (x,y) \in \mu_{Bn}^* \\ = \sigma_{Bn}^N(x) \vee \sigma_{Bn}^N(y) \ for \ all \ (x,y) \in \mu_{Bn}^* \end{array}$$ Hence μ_{Bn} is a bipolar fuzzy relation on the bipolar fuzzy set σ_{Bn} and the pair G_{Bn} : (σ_{Bn}, μ_{Bn}) is a bipolar fuzzy graph, termed as bipolar neighbourhood fuzzy graph of G_R . **Definition 2.3:** Let G_1 and G_2 be the bipolar fuzzy graphs. A homomorphism f from G_1 to G_2 is a mapping $f: V_1 \to V_2$ which satisfies the following conditions. - a) $\mu_{A_1}^P(x_1) \le \mu_{A_2}^P(f(x_1), \ \mu_{A_1}^N(x_1) \ge \mu_{A_2}^N(f(x_1)) for \ all \ x_1 \in V_1$ - b) $\mu_{B_1}^p(x_1, y_1) \le \mu_{B_2}^p(f(x_1)f(y_1)), \ \mu_{B_1}^n(x_1, y_1)) \ge \mu_{A_2}^n(f(x_1)f(y_1))$ for all $x_1y_1 \in E_1$ **Definition 2.4:** Let G_1 and G_2 be bipolar fuzzy graphs. An isomorphism f from G_1 and G_2 is a bijective mapping $f: V_1 \to V_2 \text{ which satisfies the following conditions.}$ a) $\mu_{A_1}^P(x_1) = \mu_{A_2}^P(f(x_1)), \mu_{A_1}^N(x_1) = \mu_{A_2}^N(f(x_1)) \text{ for all } x_1 \in V_1$ b) $\mu_{B_1}^P(x_1y_1) = \mu_{B_2}^P(f(x_1)f(y_1)), \mu_{B_1}^N(x_1y_1) = \mu_{B_2}^N(f(x_1)f(y_1)) \text{ for all } x_1y_1 \in E_1$ We denote $G_1 \cong G_2$ if there is an isomorphism from G_1 to G_2 . **Definition 2.5:** Let G_1 and G_2 be the bipolar fuzzy graphs. Then a weak isomorphism f from G_1 to G_2 is a bijective mapping $f: V_1 \to V_2$ which satisfies the following conditions. - a) f is homomorphism. - b) $\mu_{A_1}^P(x_1) = \mu_{A_2}^P(f(x_1), \ \mu_{A_1}^N = \mu_{A_2}^N(f(x_1)) \ for \ all \ x_1 \in V_1$ **Definition 2.6:** A bipolar fuzzy graph G = (A,B) is called strong if $\mu_B^P(xy) = \min(\mu_A^P(x), \mu_A^P(y))$ and $\mu_B^N(xy) = \max(\mu_A^N(x), \mu_A^N(y))$ for all $xy \in E$ ## 3. PROPERTIES OF BIPOLAR NEIGHBOURHOOD FUZZY GRAPH **Theorem 3.1:** A Strong bipolar fuzzy graph G_B : (σ_B, μ_B) need not have its bipolar neighbourhood fuzzy graph G_{Bn} to be strong bipolar fuzzy graph. **Proof:** Consider G_{Rn} of the strong bipolar fuzzy graph G_R : (σ_R, μ_R) . Let $(x, y) \in \mu_{Rn}^*$ *i.e.* The nodes 'x' and 'y' have a common neighbour in G_B . Case-(i): If $$(x,y) \in \mu_B^*$$ then $\mu_{Bn}^P(x,y) = \mu_B^P(x,y) = \sigma_B^P(x) \wedge \sigma_B^P(y)$ and $\mu_{Bn}^N(x,y) = \mu_B^N(x,y) = \sigma_B^N(x) \sigma_B^N(y)$ (as G_B is a strong bipolar fuzzy graph). Hence by the definition of G_{Bn} , $\mu_{Bn}^P(x,y) = \sigma_{Bn}^P(x) \wedge \sigma_{Bn}^P(y)$ for all $(x,y) \mu_B^*$ and $\mu_{Bn}^N(x,y) = \sigma_{Bn}^N(x) \vee \sigma_{Bn}^N(y)$ for all $(x,y) \in \mu_B^*$. Case-(ii): If $(x,y) \in \mu_{Bn}^*$ but $(x,y) \notin \mu_B^*$, then $\mu_{Bn}^P(x,y) = \mu_B^{2^P}(x,y) = \text{Strength of the strongest path of length } 2$ between x and y in G_B . $\mu_{Bn}^N(x, y) = \mu_B^{2^N}(x, y) =$ Strength of the strongest path of length 2 between x and y in G_B . ie) $$\mu_{Bn}^P(x,y) = \sup\{\mu_B^P(x,y_i) \land \mu_B^P(y_i,y)/y_i \in Y, y_i \text{ are common neighbours of } x \& y \text{ in } G_B\}$$ $\mu_{Bn}^N(x,y) = \inf\{\mu_B^N(x,y_i) \lor \mu_B^N(y_i,y)/y_i \in Y, y_i \text{ are common neighbours of } x \& y \text{ in } G_B\}$ Since G_R is strong $$\int \mu_{Bn}^{P}(x,y) = \sup \{ \sigma_{B}^{P}(x) \land \sigma_{B}^{P}(y_{i}) \land \sigma_{B}^{P}(y) / y_{i} \in Y, \text{ are common neighbours of } x \text{ and } y \text{ in } G_{B} \}$$ $$\int \mu_{Bn}^{P}(x,y) = \inf \{ \sigma_{B}^{N}(x) \lor \sigma_{B}^{N}(y_{i}) \lor \sigma_{B}^{N}(y) / y_{i} \in Y, \text{ are common neighbours of } x \text{ and } y \text{ in } G_{B} \} \rightarrow (1)$$ Case-(ii) (a): If there is at least one common neighbor $y_i(\text{say})$ of x and y, whose weight is greater than $\sigma_{Bn}^P(x)\sigma_{Bn}^P(y)$ and less than $\sigma_{Bn}^N(x)\sigma_{Bn}^N(y)$ then the path connecting x and y through y_i is of strength $\sigma_{Bn}^P(x)\sigma_{Bn}^P(y)$, $\sigma_{Bn}^N(x)\sigma_{Bn}^N(y)$. All the other paths of length 2 between x and y have their strength $\leq (\sigma_{Bn}^P(x)\sigma_{Bn}^P(y))$ and their strength \geq $(\sigma_{Bn}^N(x)\sigma_{Bn}^N(y)).$ Using (1) $$\mu_{Bn}^P(x,y) = \sigma_{Bn}^P(x) \wedge \sigma_{Bn}^P(y)$$ $$\mu_{Bn}^N(x,y) = \sigma_{Bn}^N(x) \vee \sigma_{Bn}^N(y)$$ Case- (ii) (b): If every common neighbor of x and y have their weights less than $\sigma_{Rn}^P(x) \wedge \sigma_{Rn}^P(y)$ and their weights less than $\sigma_{Bn}^N(x) \vee \sigma_{Bn}^N(y)$, then by using (1), $\mu_{Bn}^{P}(x,y) = \sup\{\sigma_{B}(y_{i})/y_{i} \in Y, y_{i} \text{ are common neighbours of } x \& y \text{ in } G_{B}\}$ $\mu_{Bn}^{N}(x,y) = \inf\{\sigma_{B}(y_{i})/y_{i} \in Y, y_{i} \text{ are common neighbours of } x \& y \text{ in } G_{B}\}.\text{Hence}$ $\mu_{Bn}^{P}(x,y) \leq \sigma_{Bn}^{P}(x)\sigma_{Bn}^{P}(y) \text{ and}$ $\mu_{Bn}^N(x,y) \ge \sigma_{Bn}^N(x)\sigma_{Bn}^N(y).$ implies G_{Bn} is not a strong bipolar fuzzy graphs. **Theorem 3.2:** If $G_B:(\sigma_B,\mu_B)$ is a bipolar fuzzy graph with its underlying graph being complete then G_{Bn} is same as G_B . **Proof:** As the underlying bipolar fuzzy graph G_B^* : (σ_B^*, μ_B^*) being complete every pair of nodes in G_B^* have a common neighbour in G_B . So every pair of nodes are made as neighbours in G_{Bn} and by definition $$\mu_{Bn}^{P}(x,y) = \mu_{B}^{P}(x,y)$$ $\mu_{Bn}^{P}(x,y) = \mu_{B}^{P}(x,y)$ Hence G_{Bn} is same as G_B . **Theorem 3.3:** If $G_B:(\sigma_B,\mu_B)$ is a bipolar fuzzy graph with $\mu_B^P(x,y)=c$ (a constant) for all (x,y) in μ_B^* and $\mu_B^N(x,y) = c$ (a constant) for all (x,y) in μ_B^* then G_{Bn} is also a bipolar fuzzy graph with all its edge weight as c. **Proof:** Let $(x, y) \in \mu_{Bn}^*$ then x and y are made as neighbours in G_{Bn} . Case-(i): If $(x, y) \in \mu_B^*$ then $\mu_{Bn}^{P}(x,y) = \mu_{B}^{P}(x,y) = c$ $\mu_{Bn}^{N}(x,y) = \mu_{B}^{N}(x,y) = c$ Case-(ii): If $(x, y) \notin \mu_B^*$ then $$\mu_{Bn}^{P}(x, y) = \mu_{B}^{2P}(x, y) = c$$ $\mu_{Bn}^{N}(x, y) = \mu_{B}^{2N}(x, y) = c$ Since every arc in the path connecting x and y is of constant weight 'c'. In both cases G_{Bn} is a bipolar fuzzy graph with all its edges of constant weight 'c'. **Theorem 3.4:** If $G_B:(\sigma_B,\mu_B)$ is a bipolar fuzzy graph such that every edge in G_B lies in a cycle of length 3, then G_B is weak isomorphic with G_{Bn} by the identity map from G_B to G_{Bn} . **Proof:** Considering a cycle of length 3, every pair of nodes on that cycle have the third node as their common neighbour, hence every cycle of length 3 is also in G_{Bn} with the edge weight as in G_B . But two nodes which do not lie on the same cycle of length 3, but having a common neighbour in G_B are made as neighbours in G_{Bn} with $$\mu_{Bn}^{P}(x,y) = \mu_{B}^{2^{P}}(x,y) \ as \ (x,y) \notin \mu_{B}^{*}$$ $$\mu_{Bn}^{N}(x,y) = \mu_{N}^{2^{P}}(x,y) \ as \ (x,y) \notin \mu_{B}^{*}$$ Consider the identity map $$h: G \to G_{Bn}$$ Then, $$\sigma_B^P(x) = \sigma_{Bn}^P(h(x)) for \ all \ x \ in \ V.$$ $$\sigma_B^N(x) = \sigma_{Bn}^N(h(x)) for \ all \ x \ in \ V.$$ (1) For all edges $$(x, y)$$ on the cycles of length 3 $$\begin{cases} \mu_{B}^{P}(x, y) = \mu_{Bn}^{P}(x, y) = \mu_{Bn}^{P}(h(x), h(y)) & \text{if } (x, y) \in \mu_{B}^{*} \\ \mu_{B}^{N}(x, y) = \mu_{Bn}^{N}(x, y) = \mu_{Bn}^{N}(h(x), h(y)) & \text{if } (x, y) \in \mu_{B}^{*} \end{cases}$$ (2) $$\begin{cases} \mu_B^P(x,y) = 0 \le \mu_B^{2^P}(x,y) = \mu_{Bn}^P(h(x),h(y)) & \text{if } (x,y) \notin \mu_B^* \\ \mu_B^N(x,y) = 0 \ge \mu_B^{2^N}(x,y) = \mu_{Bn}^N(h(x),h(y)) & \text{if } (x,y) \notin \mu_B^* \end{cases}$$ (3) From (1), (2) & (3) h is a weak isomorphism from G to G_{Bn} . #### CONCLUSION In this paper new concept bipolar neighbourhood fuzzy graph is introduced some of its properties are discussed. ### REFERENCE - 1. L.A.Zadeh. Fuzzy sets. Information and control, Vol.8 (1965), pp.338-353. L.A.zadeh. Similarity relations and fuzzy orderings. Information sciences, Vol.3 (1971), PP.177-200. - 2. ZHANG W.-R., Bipolar fuzzy sets, Proc. Of FUZZ IEEE, 1998, 835-840. - 3. Ali Asghar Talebi and Hossein Rshmanlou, "complement and Isomorphism on Bipolar Fuzzy Graphs," Fuzzy Information of Engineering, 6(4) (2014): 505-522. - 4. Akram.M, Bipolar fuzzy graphs, Information sciences, 2011. - 5. Karunambigai M.G, Akram.M, Palanivel.K, Sivasankar.S, Domination in Bipolar Fuzzy Graphs, Fuzz-IEEE international conference on Fuzzy system, July 7-10, 2013. - Kulli.V.R, Ther Neighborhood Graph of a Graph, Intern. J. Fuzzy mathematical Archive, Vol.8, 2015, 93-99, ISSN: 2320-3242(P), 2320-3250. - 7. Ponnappan C.Y., Muthuraj.R, surulinathan.P, "New Kinds of Neighborhood connected Domination Parameters in an Intuitionistic Fuzzy Graph" Middle-East Journal of Scientific Research 25(2):362-366,2017. ## Source of support: Nil, Conflict of interest: None Declared. [Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]