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ABSTRACT 
In this paper, a new discrete circular model called Wrapped Negative Binomial distribution is constructed by applying 
the method of wrapping for Negative Binomial distribution. The characteristic function of the Wrapped Negative 
Binomial Distribution is derived and the population characteristics such as Mean, Variance, Standard Deviation, 
Skewness and Kurtosis are studied. The graph of probability mass function for various values of parameters are plotted 
using MATLAB. 
 
Keywords: Circular model, Characteristic function, Trigonometric moments, Mean direction.     
 
 
1. INTRODUCTION 
 
Circular data arise in many diverse scientific contexts. Many examples of this kind of data are found in earth science, 
Ecology (as wind direction analysis), Biology (study of animal movement direction), Physics and more. in general any 
context where the study of data recorded in radians or degrees on the unit circle. 
 
Many good number of continuous circular models are available in the literature. Wrapped circular models (Girija 
(2010)), stereographic circular and semicircular models (Phani (2013)) and Offset circular and semicircular models 
(Radhika (2014)) and l – axial models (Sastry (2016)) provide a rich and very useful class of models for circular as well 
as l-axial data. Scant attention was paid in construction of discrete circular models. There is a need to develop discrete 
circular models which are invariant of zero direction and sense of rotation. (Girija et al. (2014)) derived Wrapped 
Discrete Binomial model and studied its characteristics.  
 
2. CIRCULAR DISTRIBUTIONS 
 
A circular distribution is a probability distribution whose total probability is defined on the unit circle. Probabilities to 
different directions are assigned by representing each direction as point on the unit circle. The range of circular random 
variable θ  measured in radians, can be taken as [ )0, 2π  or [ ), .π π−  
 
Circular distributions are of two types, they may be discrete or continuous versions. 
 
2.1. Wrapped Discrete Circular Random Variables 

If X is a discrete random variable on the set of integers, then reduction modulo ( )2 m mπ +∈  wraps the integers on 

to the group of thm  roots of unity which is a sub group of unit circle. 

( )i.e 2 mod 2x mθ π π=  
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More precisely θ  is a mapping from a set of integers G which is a group with respect to ‘+’ to the set of thm  roots of 
unity G′ which is a group with respect to ‘.’ is defined as  

2 2

( ) where ,
ix ix

m mx e x G e G
π π

θ ′= ∈ ∈
 

Then θ is called wrapped discrete circular random variable. 
 
Clearly θ  is a homomorphism 

2 ( ) 2 2

1) ( ) ( ) ( )
i x y ix iy
m m mx y e e e x y

π π π

θ θ θ
+

+ = = =  

 
2 (0)

02) (0) 1 where 0 ,1
i
me e G G

π

θ ′= = = ∈ ∈  

 

Since θ contains a finite number of elements they are denoted by 
2 0,1,2..... 1r r m
m
πθ  = = − 

 
 which is lattice 

on the unit   Circle. 
 
3. PROBABILITY MASS FUNCTION 
 

Suppose if θ  is a wrapped discrete circular random   variable then probability mass function of θ  is denoted by 
2 rPr
m
πθ = 

 
 which is defined as  

2 ( )
k

rPr P r km
m
πθ

∞

=−∞

 = = + 
 

∑
   

where 0,1,... 1r m= −  Such that m +∈                                                       (3.1) 

 
Further if it is to be a circular probability mass function it should satisfy the following properties. 

1. 
2 0rPr
m
πθ = ≥ 

 
 

2. 
1

0

2 1
m

r

rPr
m
πθ

−

=

 = = 
 

∑  

3. ( ) ( )2Pr Pr lθ θ π= +   For any integer l  (i.e Pr  is periodic)  
 
4. DISTRIBUTION FUNCTION 
 
Suppose if θ  is a wrapped discrete circular random variable then distribution function of θ  is  
 
Denoted by ( )wF θ  which is defined as  

0

2( ) where 0,1,... 1
y

w
r

rF Pr y m
m
πθ θ

=

 = = = − 
 

∑  

 
5. WRAPPED NEGATIVE BINOMIAL DISTRIBUTION 
 
Suppose if X follows Negative Binomial Distribution with the parameters 1 1, where and 0 1n p n p+∈ < <  
then the probability mass function of the wrapped Negative Binomial distribution defined from  (3.1) as 

n 1c 1 1
0

2( ) ( 1) n r km

k

rPr r km n p q
m
πθ

−

∞
+

=

= = + + −∑  

1Where p =probability of   success and   1q =probability of failure ∋ 1 1 1p q+ =  
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Graph for Probability Mass Function of Wrapped Negative Binomial Distribution 

 
6. DISTRIBUTION FUNCTION OF WRAPPED NEGATIVE BINOMIAL DISTRIBUTION 
 
The distribution function of  the Wrapped Negative Binomial Distribution is defined as 

0

2( )
y

w
r

rF Pr
m
πθ θ

=

 = = 
 

∑  

             
n 1c 1 1

0
( 1) where 0,1,... 1

y
n r km

r
r km n p q y m

−

+

=

= + + − = −∑  

 
7. CHARACTERISTIC FUNCTION OF   THE WRAPPED NEGATIVE BINOMIAL DISTRIBUTION 
 
 The Characteristic function of the Wrapped   Negative Binomial Distribution is defined as  

1

0

2( ) ( )
m

ip

r

rp e Pr
m

θ
θ

πϕ θ
−

=

= =∑ where p ∈  

n 1

1

c 1 1
0 0

( 1)
m
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r k
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−

− ∞
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2
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1
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2 21 cos sin

2 2 2 21 cos sin 1 cos sin
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2
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( )nx iy= +        Where       
1 1 1 1

2 2
1 1 1 1
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p pp q p qm mx and yp pq q q q
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By taking cos and sinx R y Rθ θ= =  
2 2 2 1we get and tan yx y R

x
θ −  + = =  

 
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Now the circular mean direction is denoted by 1µ  and it is defined as
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Now 1ρ represents the concentration towards mean direction which is defined as 1
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1 1In general  = and =µ µ ρ ρ  
 
Now the circular variance is denoted by oV  which is defined as  
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The circular standard deviation is denoted by oσ and it is defined as       
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8. CENTRAL TRIGONOMETRIC MOMENTS 
 
The pth Central trigonometric moment of θ  is defined as  

* ( )( ) ipp E e θ µ
θϕ − =  

ip ipE e eθ µ− =  
ip ipe E eµ θ−  =    
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p pe iµ α β−= +
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( ) ( )
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For Wrapped Negative Binomial distribution Skewness is defined as       
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And the kurtosis is defined as 
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