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ABSTRACT 
In this paper, we prove a common fixed theorem for a Banach operator pair of mappings satisfying a contraction 
condition given by Singh [17] in cone metric spaces. Our result generalizes the results of Bhatt et al. [5] and some well 
known previous results in cone metric spaces.   
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1. INTRODUCTION                    
 
In 2007, Huang and Zhang [7] introduced the concept of cone metric space by replacing the set of real numbers by an 
ordered Banach space and obtained some fixed point theorems for mappings satisfying different contractive conditions.  
The category of cone metric spaces is larger than metric spaces and there are different types of cones. Subsequently, 
many authors Abbas and Jungck [1], Abbas and Rhoades [2], Ilic and Rakocevic [9], [10], Jungck et al. [11], 
Kadelburg et al. [12], Raja and Vezapour [15] have generalized the results of Huang and Zhang [7] and studied the 
existence of common fixed points of a pair of self mappings satisfying a contractive type condition in the framework of 
normal cone metric spaces. Rhoades [16] made a comparison of various different types of contraction mappings. A new 
generalization of contraction mappings acting on complete metric spaces is introduced by Beiranvand et al. [4] called 
T- contraction mappings which are depending on another function. Morales and Rojas [14] have extended the concept 
for T- contraction mappings to cone metric space by proving fixed point theorems of Kannan [13], Zamfirescu, weakly 
contraction mappings. 
 
In 1975, Subrahmanyam [18] obtained the fixed point of a continuous Banach operator in complete metric space. In 
2007, Chen and Li [6] extended the concept of Banach operator to Banach operator pair and proved various best 
approximation results using common fixed point theorems for 𝑓- nonexpansive mappings. Where 𝑓 is a self-mapping 
of the subset M of a metric space X. Hussain [8], Al- Thagafi and Shahzad [3] generalized the results of Chen and Li 
[6] proved various common fixed point theorems and invariant approximation results for generalized non-expansive 
Banach operator pair of mappings. The Purpose of this paper is to prove a fixed point theorem for a T-Singh type 
contraction mapping in a cone metric space. If the pair of mappings is a Banach pair, then we have obtained a common 
fixed point. Our result generalizes the results of Bhatt et al. [5] and some well known previous results in cone metric 
spaces. 
                 
2. DEFINITIONS AND PRELIMINARIES 
 
Definition 2.1: A self-mapping T of a metric space (𝑋,𝑑) is said to be a contraction mapping, if there exists a real 
number 0 ≤ 𝑘 < 1 such that for all 𝑥,𝑦 ∈ 𝑋, 

𝑑(𝑇𝑥,𝑇𝑦) ≤ 𝑘𝑑(𝑥,𝑦)                                                                                                                       (2.1) 
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Definition 2.2: Let T and  𝑓 be two self-mappings of a metric space (𝑋,𝑑). The self-mapping 𝑓 of 𝑋 is said to be T- 
contraction, if there exists a real number 0 ≤ 𝑘 < 1 such that for all 𝑥,𝑦 ∈ 𝑋, 

𝑑(𝑇𝑓𝑥,𝑇𝑓𝑦) ≤ 𝑘𝑑(𝑇𝑥,𝑇𝑦)                                                                                                              (2.2) 
If T = I, the identity mapping, then the Definition (2.2) reduces to Banach contraction mapping. 
It is obvious that a T-contraction mapping need not be contraction mapping.  
 
Example 2.1: Let 𝑋 = [1, ∞) be with the usual metric. Define two mappings 𝑇, 𝑓:𝑋 → 𝑋 𝑎𝑠 𝑇𝑥 = 1

2𝑥
+ 6 and  

𝑓𝑥 = 2𝑥  obviously, 𝑓 is not contraction but 𝑓 is T- contraction which is seen from the following; 

|𝑇𝑓𝑥 − 𝑇𝑓𝑦| = �
1

4𝑥
−

1
4𝑦
� =

1
2

|𝑇𝑥 − 𝑇𝑦| 

 
Definition 2.3: Let T and f  be two self-mappings of a metric space (𝑋,𝑑). The self mapping f of X is said to be T- 
contractive, if for every 𝑥,𝑦 ∈ 𝑋 such that   𝑇𝑥 ≠ 𝑇𝑦 and  

𝑑(𝑇𝑓𝑥,𝑇𝑓𝑦) < 𝑑(𝑇𝑥,𝑇𝑦). 
It is obvious that every T- contraction mapping is T- contractive but the converse need not be true. 
 
Example 2.2: Let 𝑋 = [1,∞) be with usual metric. Define two mappings 𝑇, 𝑓 ∶ 𝑋 → 𝑋 as 𝑇𝑥 = 1

1000
𝑥 + 2 and 

𝑓𝑥 = 𝑠𝑖𝑛𝑥. Obviously, 𝑓 is not T- contraction but 𝑓 is T- contractive. 
 
Definition 2.4: Let T be a self-mapping of a metric space (𝑋,𝑑). Then             

(i) The mapping T is said to be sequentially convergent, if the sequence {𝑦𝑛} in X is convergent whenever {𝑇𝑦𝑛}  
is convergent.  

(ii) The mapping T is said to be subsequentially convergent, if {𝑦𝑛} has a convergent subsequence whenever 
{𝑇𝑦𝑛} is convergent. 

 
Theorem 2.1: Let (𝑋,𝑑) be a complete metric space and 𝑇:𝑋 → 𝑋 be a one to one, continuous and subsequentially 
convergent mapping. Then every T- contraction and continuous self mapping 𝑓:𝑋 → 𝑋 has a unique fixed point in 𝑋. 
Also if T is sequentially convergent, then for each 𝑥0 ∈ 𝑋, the sequence of iterates {𝑓𝑛𝑥0} converges to the fixed point. 
 
Definition 2.5: Let T be a self-mapping of a normal space X. Then T is called a Banach operator of type 𝑘 if  

||𝑇2𝑥 − 𝑇𝑥|| ≤ 𝑘||𝑇𝑥 − 𝑥|| 
 
For some 𝑘 ≥ 0 and for all 𝑥 ∈ 𝑋.  
 
Definition 2.6: Let T and f be two self-mappings of a nonempty subset M of a normed linear space X. Then (𝑇, 𝑓) is a 
Banach operator pair, if any one of the following conditions is satisfied: 

1. 𝑇[𝐹(𝑓)] ⊆ 𝐹(𝑓) 𝑖𝑠 𝑇-invariant.   
2. 𝑓𝑇𝑥 = 𝑇𝑥 for each 𝑥 ∈ 𝐹(𝑓). 
3. 𝑓𝑇𝑥 = 𝑇𝑓𝑥 for each 𝑥 ∈ 𝐹(𝑓). 
4. �|𝑇𝑓𝑥 − 𝑓𝑥|� ≤ 𝑘�|𝑓𝑥 − 𝑥|� forsome 𝑘 ≥ 0.                                      

 
Definition 2.7: Let E be a real Banach space. A subset P of E is called a cone if and only if 

1. 𝑃 is nonempty, closed and 𝑃 ≠ {0}; 
2. 𝛼,𝛽 ∈ 𝑅,𝛼,𝛽 ≥ 0 and 𝑥,𝑦 ∈ 𝑃 ⇒ 𝛼𝑥 + 𝛽𝑦 ∈ 𝑃. 
3. 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃 𝑖. 𝑒 𝑃 ∩ −𝑃 = {0}. 

For a given cone 𝑃 ⊆ 𝐸, a partial ordering is defined as  ≤ on 𝐸 with respect to 𝑃 by 𝑥 ≤  y if and only if 𝑦 − 𝑥 ∈ 𝑃. It 
is denoted as 𝑥 < 𝑦 to indicate that 𝑥 ≤ 𝑦 but 𝑥 ≠ 𝑦, while 𝑥 ≪ 𝑦 will stand for 𝑦 − 𝑥 ∈ int𝑃,  where int𝑃 denotes the 
interior of 𝑃. The  cone  𝑃 ⊂ 𝐸 is called normal, if there is a number 𝐾 > 0 such that for all 𝑥,𝑦 ∈ 𝐸, 0 ≤ 𝑥 ≤ 𝑦  
implies 

     �|𝑥|� ≤ 𝐾�|𝑦|�                                                                                                                                                (2.3) 
 
The least positive number 𝐾 satisfying (2.3) is called the normal constant of  𝑃. 
 
Definition 2.8: Let X be a non-empty set. Suppose E is a real Banach space, P is a cone with int𝑃 ≠ 𝜙 𝑎𝑛𝑑 ≤ is a 
partial ordering with respect to P. If the mapping  𝑑:𝑋 × 𝑋 → 𝐸 satisfies:            

1. 0 ≤ 𝑑(𝑥,𝑦)for all 𝑥,𝑦 ∈ 𝑋 and 𝑑(𝑥,𝑦) = 0 𝑖f and only if 𝑥 = 𝑦; 
2. 𝑑(𝑥,𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥,𝑦 ∈ 𝑋; 
3. 𝑑(𝑥,𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧,𝑦)for all 𝑥,𝑦, 𝑧 ∈ 𝑋;              
       Then 𝑑 is called a cone metric on X and (𝑋,𝑑) is called a cone metric space. 
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Example 2.3: Let 𝐸 = ℝ2,𝑃 = {(𝑥,𝑦) ∈ 𝐸:𝑥,𝑦 ≥ 0} ⊂ ℝ2,𝑋 = ℝ and 𝑑:𝑋 × 𝑋 → 𝐸 such that  
𝑑(𝑥,𝑦) = (|𝑥 − 𝑦|,𝛼|𝑥 − 𝑦|), where 𝛼 ≥ 0 is a constant. Then (𝑋,𝑑) is a cone metric space. 
 
Definition 2.9: Let (𝑋,𝑑) be a cone metric space and {𝑥𝑛} be a sequence in X.  Then, 

(i) {𝑥𝑛} converges to 𝑥 𝜖 𝑋, if for every c 𝜖 𝐸 with 0 ≪ 𝑐, there is 𝑛0 𝜖 ℕ, the set of all natural numbers such that 
for all 𝑛 ≥ 𝑛0, 𝑑(𝑥𝑛 , 𝑥) ≪ 𝑐. 

       It is denoted by lim𝑛→∞ 𝑥n = 𝑥. 
(ii) If for 𝑐 𝜖 𝐸, there is a number 𝑛0 𝜖 𝑁 such that for all 𝑛 ≥ 𝑛0 𝑑(𝑥𝑛 , 𝑥) ≪ 𝑐. Then {𝑥𝑛} is called a Cauchy 

sequence in X. 
(iii) (𝑋,𝑑) is a complete cone metric space, if every Cauchy sequence in 𝑋 is convergent. 
(iv) A self-mapping 𝑇:𝑋 → 𝑋 is said to be continuous at a point 𝑥 ∈ 𝑋, if  lim𝑛→∞ 𝑥n = 𝑥 implies  

lim𝑛→∞ 𝑇 𝑥n = 𝑇𝑥 for every {𝑥𝑛} in 𝑋. 
 
Lemma 2.1: Let (𝑋,𝑑) be a cone metric space and P be a normal cone with normal constant 𝐾. A sequence {𝑥𝑛} in 𝑋 
is a Cauchy sequence if and only if  𝑑(𝑥𝑛 , 𝑥) → 0 𝑎𝑠 𝑛 → ∞ 
 
Lemma 2.2: Let (𝑋,𝑑) be a cone metric space and 𝑃 be a normal cone with normal constant 𝐾. A sequence {𝑥𝑛} in 𝑋 
is a Cauchy sequence if and only if  𝑑(𝑥𝑛 , 𝑥𝑚) → 0 as 𝑛,𝑚 → ∞ 
 
Corollary 2.1: 𝐿𝑒𝑡 𝑎, 𝑏, 𝑐,𝑢 ∈ 𝐸, the real Banach space. 

(1)  If 𝑎 ≤ 𝑏 and 𝑏 ≪ 𝑐, then 𝑎 ≤ 𝑐; 
(2)  If 𝑎 ≪ 𝑏 and 𝑏 ≪ 𝑐, then 𝑎 ≪ 𝑐; 
(3)  If 0 ≤ 𝑢 ≪ 𝑐 for each 𝑐 ∈ int𝑃, then 𝑢 = 0; 

 
Remark 2.1: If 𝑐 ∈ int𝑃, 0 ≤ 𝑎𝑛 𝑎𝑛𝑑 𝑎𝑛 → 0, then there exists 𝑛0 such that for all 𝑛 > 𝑛0, it follows that 𝑎𝑛 ≪ 𝑐.  
  
3. MAIN RESULTS 
 
Theorem 3.1: Let 𝑇 and 𝑓 be two continuous self-mappings of a complete cone metric space (𝑋,𝑑). Assume that T is 
an injective mapping and 𝑃 is a normal cone with normal constant. If the mappings T and 𝑓 satisfying   

          𝑑(𝑇𝑝𝑓𝑥,𝑇𝑝𝑓𝑦) ≤ 𝑎[𝑑(𝑇𝑝𝑥,𝑇𝑝𝑓𝑥) + 𝑑(𝑇𝑝𝑦,𝑇𝑝𝑓𝑦)]                                                            (3.1) 
for all x, y ∈ X, where 𝑝 is a positive integer and 𝑎 ∈ (0, 1/2). Then f has a fixed point in X. Moreover, if (𝑇, 𝑓) is a 
Banach pair, then 𝑇 and 𝑓 have unique common fixed point in X. 
 
Proof: Let 𝑥0 ∈ 𝑋 be arbitrary. Define a sequence {𝑥𝑛} in X such that 𝑥𝑛+1 = 𝑓𝑥𝑛 ⇒ 𝑥𝑛 = 𝑓𝑥𝑛−1 for each 𝑛 = ℕ ∪
{0} consider,        𝑑(𝑇𝑝𝑥𝑛,𝑇𝑝𝑥𝑛+1) = 𝑑(𝑇𝑝𝑓𝑥𝑛−1,𝑇𝑝𝑓𝑥𝑛)                                                                        (3.2)                                        
                               ≤ 𝑎[𝑑(𝑇𝑝𝑥𝑛−1,𝑇𝑝𝑓𝑥𝑛−1) + 𝑑(𝑇𝑝𝑥𝑛,𝑇𝑝𝑓𝑥𝑛)      

𝑑(𝑇𝑝𝑥𝑛,𝑇𝑝𝑥𝑛+1) ≤ 𝑎[𝑑(𝑇𝑝𝑥𝑛−1,𝑇𝑝𝑥𝑛) + 𝑑(𝑇𝑝𝑥𝑛 ,𝑇𝑝𝑥𝑛+1)      
𝑑(𝑇𝑝𝑥𝑛,𝑇𝑝𝑥𝑛+1) ≤ 𝑎

1−𝑎
𝑑(𝑇𝑝𝑥𝑛−1,𝑇𝑝𝑥𝑛),  

                             ≤ . . .  
in this way, we get.          

𝑑(𝑇𝑝𝑥𝑛,𝑇𝑝𝑥𝑛+1) ≤ 𝑎𝑛

1−𝑎
𝑑(𝑇𝑝𝑥0,𝑇𝑝𝑥1)                                                                                           (3.3)          

 
Let 𝑎

𝑛

1−𝑎
= 𝑘𝑛 , then (3.2) reduces to, 

𝑑(𝑇𝑝𝑥𝑛,𝑇𝑝𝑥𝑛+1) ≤ 𝑘𝑛𝑑(𝑇𝑝𝑥0,𝑇𝑝𝑥1)                                                                                             (3.4)                  
 
Next to claim that {𝑇𝑝𝑥𝑛} is a Cauchy sequence consider 𝑚,𝑛 ∈ ℕ such that 𝑚 > 𝑛.  Now  

𝑑(𝑇𝑝𝑥𝑛,𝑇𝑝𝑥𝑚) ≤ 𝑑(𝑇𝑝𝑥𝑛 ,𝑇𝑝𝑥𝑛+1) + 𝑑(𝑇𝑝𝑥𝑛+1,𝑇𝑝𝑥𝑛+2)+...+𝑑(𝑇𝑝𝑥𝑚−1,𝑇𝑝𝑥𝑚) 
                           ≤ (𝑘𝑛 + 𝑘𝑛+1 + ⋯𝑘𝑚−1) 𝑑(𝑇𝑝𝑥0,𝑇𝑝𝑥1) 
                           ≤ (𝑘𝑛 + 𝑘𝑛+1 + ⋯ ) 𝑑(𝑇𝑝𝑥0,𝑇𝑝𝑥1) 
𝑑(𝑇𝑝𝑥𝑛,𝑇𝑝𝑥𝑚)  ≤ 𝑘𝑛

1−𝑘
𝑑(𝑇𝑝𝑥0,𝑇𝑝𝑥1)                                                           (3.5) 

 
From (2.3); it follows that 

||𝑑(𝑇𝑝𝑥𝑛 ,𝑇𝑝𝑥𝑚)|| ≤
𝑘𝑛

1 − 𝑘
||𝑑(𝑇𝑝𝑥0,𝑇𝑝𝑥1)|| 

 
Since 𝑘 ∈ (0, 1) ⇒  𝑘 → 0 𝑎𝑠 𝑛 → ∞.  Therefore �|𝑑(𝑇𝑝𝑥𝑛 ,𝑇𝑝𝑥𝑚)|� → 0 as 𝑚,𝑛 → ∞.  Thus {𝑇𝑝𝑥𝑛} is a Cauchy 
sequence in X. As X is a complete cone metric space, there exists 𝑧 ∈ 𝑋 such that 

lim𝑛→∞ 𝑥m = 𝑧. 
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Since  𝑇𝑝 is subsequentially convergent, {𝑥𝑛} has a convergent subsequence {𝑥𝑚} such that lim𝑛→∞ 𝑥m = 𝑢. As 𝑇 is 
continuous 

lim𝑚→∞ 𝑇𝑝𝑥𝑚 = 𝑇𝑝𝑢.                                                                                             (3.6) 
 
By uniqueness of the limit, 𝑧 = 𝑇𝑢, since 𝑓 is continuous, we have                                                 

lim𝑚→∞ 𝑓𝑥𝑚 = 𝑓𝑢.                                                                                                   (3.7) 
 
Again T is continuous, lim𝑚→∞ 𝑇𝑝𝑓𝑥𝑚 = 𝑇𝑝𝑓𝑢.                                                                                                         (3.8)    
 
Therefore                      lim𝑚→∞ 𝑇𝑝𝑥𝑚+1 = 𝑇𝑝𝑓𝑢.                                                                               (3.9) 
 
Now consider, 

𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑢) ≤ 𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑥𝑚) + 𝑑(𝑇𝑝𝑥𝑚,𝑇𝑝𝑓𝑢) 
                         = 𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑓𝑥𝑚−1) + 𝑑(𝑇𝑝𝑥𝑚 ,𝑇𝑝𝑢)                                                                 (3.10) 

 
Now using condition (3.1) from (3.10), we get. 

𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑢) ≤ 𝑎𝑑(𝑇𝑝𝑢,𝑇𝑝𝑓𝑢) + 𝑑(𝑇𝑝𝑥𝑚−1,𝑇𝑝𝑓𝑥𝑚−1) +  𝑑(𝑇𝑝𝑥𝑚,𝑇𝑝𝑢) 
                        = 𝑎𝑑(𝑇𝑝𝑢,𝑇𝑝𝑓𝑢) + 𝑑(𝑇𝑝𝑥𝑚−1,𝑇𝑝𝑥𝑚) +  𝑑(𝑇𝑝𝑥𝑚 ,𝑇𝑝𝑢)  
𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑢) ≤ 𝑎

1−𝑎
 𝑑(𝑇𝑝𝑥𝑚−1,𝑇𝑝𝑥𝑚) + 1

1−𝑎
 𝑑(𝑇𝑝𝑥𝑚 ,𝑇𝑝𝑢)                                                    (3.11) 

 
Let 0 ≤ 𝑐 be arbitrary then by (3.5); 𝑑(𝑇𝑝𝑥𝑚,𝑇𝑝𝑢) ≤ 𝑐 (1−𝑎)

2
 similarly by (3.7) 𝑑(𝑇𝑝𝑥𝑚−1,𝑇𝑝𝑥𝑚) ≤ 𝑐 1−𝑎

2𝑎
, then (3.11) 

becomes;    
       𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑢) ≤ 𝑐

2
+ 𝑐

2
= 𝑐 

 
Thus 𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑢) ≤ 𝑐  for each  𝑐 ∈ int𝑃.  Now using Corollary 2.1, it follows that 𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑢) = 0. Which 
implies that 𝑇𝑝𝑢 = 𝑇𝑝𝑓𝑢,  as 𝑇 is injective then 𝑢 = 𝑓𝑢.  Thus 𝑢 𝑖𝑠 fixed point of 𝑓. 
 
To prove uniqueness, suppose that 𝑤 is another fixed point point of 𝑓 then 𝑓𝑤 = 𝑤. Now consider,  

𝑑(𝑇𝑝𝑢,𝑇𝑝𝑤) = 𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑓𝑤) 
 
Using (3.1) in above equation, we obtain 

𝑑(𝑇𝑝𝑢,𝑇𝑝𝑤) = 𝑑(𝑇𝑝𝑓𝑢,𝑇𝑝𝑓𝑤) ≤ 𝑎[𝑑(𝑇𝑝𝑢,𝑇𝑝𝑓𝑢) + 𝑑(𝑇𝑝𝑤,𝑇𝑝𝑓𝑤)].       
 
Now by 𝑓𝑢 = 𝑢 and 𝑓𝑤 = 𝑤,  we have  𝑑(𝑇𝑝𝑢,𝑇𝑝𝑤) ≤ 0.  
 
Therefore  𝑑(𝑇𝑝𝑢,𝑇𝑝𝑤) = 0.   
 
Thus 𝑇𝑝𝑢 = 𝑇𝑝𝑤. Since   𝑇 is injective then 𝑢 = 𝑤. Hence 𝑓 has unique fixed point. 
 
As (𝑇, 𝑓) is a Banach pair,𝑇 and 𝑓 commutes at the fixed point of 𝑓 which implies that 𝑇𝑓𝑢 = 𝑓𝑇𝑢 for 𝑢 ∈ 𝐹(𝑓)  
𝑖. 𝑒 𝑇𝑢 = 𝑓𝑇𝑢; which implies that 𝑇𝑢  is another fixed point of 𝑓. By uniqueness of fixed point of 𝑓,𝑢 = 𝑇𝑢.      
Hence 𝑢 = 𝑓𝑢 = 𝑇𝑢 𝑖s unique common fixed point of 𝑓 and 𝑇 in 𝑋. 
 
Example 3.2:  Let 𝑋 =  [0, 1]  ∪  {2} be a set with usual partial metric. Define functions such that    

𝑓(𝑥) = �0,𝑤ℎ𝑒𝑛 𝑥 ∈ [0,1]
1,𝑤ℎ𝑒𝑛 𝑥 = 2     

� 

𝑇(𝑥)  = �
0,𝑤ℎ𝑒𝑛 𝑥 ∈ [0,1]

1
2

,𝑤ℎ𝑒𝑛 𝑥 = 2
                             � 

Here 𝑇[0, 1] = 0,𝑇(2) = 1
2
, we get 𝑇2(𝑥) = 𝑇3(𝑥) = · · · = 𝑇𝑝(𝑥)  = 0; for all 𝑥. We have 

 𝑇𝑓𝑥 = 𝑇[𝑓[0, 1]] = 𝑇[0] = 0,𝑇[𝑓[2]]  =  𝑇(1)  =  0. Therefore,  𝑇2𝑓𝑥 =  𝑇3𝑓𝑥 = 𝑇4𝑓𝑥 = · · · =  𝑇𝑝𝑓𝑥 = 0, for 
every 𝑥.  Let 𝑥 =  0 and 𝑦 =  1.  Applying (3.1), we get 
                     𝑝(𝑇𝑝𝑓(0),𝑇𝑝𝑓(1)) ≤ 𝑎[𝑝(𝑇𝑝(0),𝑇𝑝𝑓(0)) + 𝑝(𝑇𝑝(1),𝑇𝑝𝑓(1))], 
                                               𝑝(0, 0) ≤ 𝑎[𝑝(0, 0) +  𝑝(0, 0)]                                                 
                                                          0 ≤ 0. 
So, Theorem (3.1) is verified and we get 𝑓 and 𝑇 have a unique common fixed point 0. 
 
Corollary 3.1: Let 𝑓 be self-mapping of a complete cone metric space. (𝑋,𝑑) satisfying  

𝑑(𝑓𝑝𝑥, 𝑓𝑝𝑦) ≤ 𝑎[𝑑(𝑥, 𝑓𝑝𝑥) + 𝑑(𝑦, 𝑓𝑝𝑦)]  
where 𝑝 is a positive integer and 𝑎 such that 0 < 𝑎 < 1

2
  for every 𝑥,𝑦 ∈ 𝑋. Then 𝑓 has a unique fixed point in 𝑋. 
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