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ABSTRACT 
We introduce the notion of multi L-fuzzy cosets, pseudo multi L-fuzzy cosets, multi L-fuzzy middle cosets of a subgroup 
A of a group G and discuss some of its properties.  
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1. INTRODUCTION 
 
Applying the concept of fuzzy sets introduced by Zadeh [12], Rosenfeld [9] defined fuzzy subgroup of a given group 
and derived some of their properties. The concept of anti – fuzzy subgroup was introduced by Biswas [4].  S.Sabu and 
T.V.Ramakrishnan [8] introduce the multi-fuzzy sets. Mukherjee and bhattacharya [7] introduced the fuzzy right cosets 
and fuzzy left cosets of a group. In all these studies, the closed unit interval [0, 1] is taken as the membership lattice. 
 
2. PRELIMINARIES 
 
Throughout this paper G denotes an arbitrary group with “e” is an identity element and L denotes an arbitrary Lattice 
with least element 0 and greatest element 1. The join and meet operations in L are denoted by ˅ and ∧ respectively.                                           
A function A: G →   L is called multi L – fuzzy subset of G.  
 
2.1 Definition [12]: Let X be any nonempty set. A function A: X → [0, 1]. is called a fuzzy set A on X. 
 
2.2 Definition [12]: Let (G, .) be a group. A fuzzy subset A of G is said to be a fuzzy subgroup (FSG) of G if the 
following conditions are satisfied: 

i. A(xy) ≥ min{A(x),  A(y)},   
ii. A(x -1) = A(x), for all x and y∈G. 

 
2.3 Definition [7]: Let (G, .) be a group. A fuzzy subgroup A of G is said to be a normal fuzzy subgroup of G if  
A(xy) = A (yx),  for all x and y∈G. 
 
2.4 Definition [4]: A fuzzy subset A of G is said to be an anti fuzzy group of G, if for all x, y ∈ G 

i. A(xy ) ≤ max{A(x) , A(y)} 
ii. A(x-1) = A (x). 

 
2.5 Definition [10]: Let X be a non-empty set and L = (L, ≤) be a lattice with least element 0 and greatest element 1. A 
L-fuzzy subset A of X is a function A : X → L. 
 
2.6 Definition [8]: Let X be a non – empty set. A multi fuzzy set A in X is defined as a set of ordered sequences, A 
={(x, A1(x), A2(x), ..., Ai(x), ...) : x∈X}, where  Ai : X →L for all i. 
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2.7 Definition [10]: A multi L-fuzzy subset A of G is called a multi L-fuzzy subgroup (MLFS) of G if for every x, 
y∈G, 

i. A(xy )  ≥  A(x) ∧ A(y) 
ii. A(x-1) = A (x). 

 
2.8 Definition [10]: A multi L-fuzzy subset A of G is called a multi anti L-fuzzy subgroup (MALFS) of G if for every 
x,y ∈G, 

i. A(xy )  ≤ A(x) ∨ A(y) 
ii. A(x-1) = A (x). 

 
2.9 Definition: Let A be an multi L-fuzzy subgroup of a group and H = {x ∈  G/ A(x) = A(e)}, then order of A is 
defined  as O(A) = O(H). 
 
2.10 Definition: Let A be a multi L-fuzzy subgroup of a group G, for any a∈G, define (aA)(x) = A(a-1x) for all x∈G is 
called a multi  L-fuzzy  coset of a multi L-fuzzy group A  of the group G determined by the element a∈G. 
 
2.11 Definition: Let A be a multi L-fuzzy subgroup of a group G, then for any a,b∈G, defined by  (aAb)(x)= A(a-1xb-1) 
for every x∈G is called a  multi L-fuzzy  middle coset  of a multi L-fuzzy group A  of the group G determined by the 
element  a, b∈G. 
 
2.12 Definition: Let A be a multi L-fuzzy subgroup of a group G, then for any a∈G, the  multi L-pseudo fuzzy coset of 
a multi L-fuzzy subgroup A  of the group G determined by the element  a∈G, denoted by (aA)p and is defined as 
(aA)p(x) = p(a)A(x)) for every x∈G, p∈P,  where P = {p(a) / p(a) ∈[0,1]} 
 
2.13 Definition: Let A and B be any two multi L-fuzzy subgroups of a group G, then for any a ∈ G, the multi L-pseudo 
fuzzy double coset of multi L-fuzzy subgroups A and B of the group G determined by the element  a∈G, denoted by 
(AaB)p and is defined as (AaB)p = ((aA)p ∩ (aB)p )(x)= (aA)p (x) ∧ (aB)p(x) for every x ∈ G, p∈P,  
where P = {p(a) / p(a) ∈[0,1]}. 
 
3. PROPERTIES OF A MULTI L – FUZZY COSETS OF A MULTI L-FUZZY SUBGROUP 
 
In this section, we discuss some of the properties of a multi L-fuzzy coset of a multi L-fuzzy subgroup of a group G. 
 
3.1 Theorem: Let A be a multi L-fuzzy subgroup of a finite group G, then O(A)/O(G). 
 
Proof: Let A be a multi L-fuzzy subgroup of a finite group G with “e” as its identity element.  
 
Clearly H={x∈G/ A(x) = A(e)} is a subgroup of the group G. By Lagrange’s theorem O(H) / O(G). Hence by the 
definition of the order of multi L-fuzzy subgroup of a group G, we have O(A)/O(G). 
 
3.2 Theorem: Let A be a multi L-fuzzy subgroup of a group G. The multi L-fuzzy coset aA of a multi L-fuzzy group A 
of the group G determined by the element a∈G is a multi L-fuzzy subgroup of G if A(y -1a) ∧ A(a) = A(y -1a). 
 
Proof: Let A be a multi L-fuzzy subgroup of a group G and A(a-1y) ∧ A(y) = A(a-1y). 
 
Consider the multi L-fuzzy coset aA and for any x, y ∈ G, 
               aA(xy-1)  = A(a-1xy-1)  
   = A(a-1xy-1aa-1) 
   ≥ A(a-1x) ∧ A(y-1aa-1

 ) 
   ≥ A(a-1x) ∧ { A(y-1a) ∧ A(a-1

 )} 
   ≥ A(a-1x) ∧  A(y-1a) 
   = aA(x) ∧ aA(y). 
Hence,                  aA(xy-1) ≥ aA(x) ∧ aA(y). 
 
The multi L-fuzzy coset aA of a multi L-fuzzy group A of the group G determined by the element a ∈ G is a multi L-
fuzzy subgroup of G. 
 
3.3 Theorem: If A is a multi L-fuzzy subgroup of a group G, then for any a∈G, the multi L-fuzzy middle coset aAa-1 of 
a multi L-fuzzy group A of the group G determined by the element a∈G is also a multi L-fuzzy subgroup of a group G. 
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Proof: Let A be a multi L-fuzzy subgroup of a group G and a∈G. for every x, y ∈ G, we have  

(aAa-1 )(xy-1) = A(a-1xy-1a), 
= A(a-1xaa-1y-1a) 
= A((a-1xa)(a-1ya) -1) 
≥ A(a-1xa) ∧ A((a-1ya ) -1) 
≥ A(a-1xa)  ∧ A(a-1ya), since A is a MLFS of G 
= (aAa-1)(x) ∧ (aAa-1) (y) 

Therefore            (aAa-1 )( xy-1) ≥ (aAa-1)(x) ∧ (aAa-1)(y). 
 
Hence, aAa-1 is a multi L-fuzzy subgroup of a group G. 
 
3.4 Theorem: If A is a multi L-fuzzy subgroup of a group G, and  aAa-1

 be a  multi  L-fuzzy middle coset of a multi L-
fuzzy group A of the group G determined by the element a∈G, then O(aAa-1) = O(A), for any a∈G. 
 
Proof: Let A be a multi L-fuzzy subgroup of a group G and a∈G. By Theorem 3.3, the fuzzy middle coset aAa-1 is a 
multi L-fuzzy subgroup of G. Further by the definition of a multi L-fuzzy middle coset of a group G. We have         
(aAa-1)(x) = A(a-1xa), for every x∈G.  
 
Hence for any a∈G, A and aAa-1 are conjugate multi L-fuzzy subgroups of a group G as there exists a∈G such that 
(aAa-1 )(x) = A( a-1xa ), for every x∈G. Hence, O(aAa-1) = O(A), for any a∈G. 
 
3.5 Theorem: If A is a multi L-fuzzy subgroup of a group G. Then xA = yA, for x and y∈G if and only if  
A(x-1y) = A(y-1x) = A(e). 
 
Proof: Let A be a multi L-fuzzy subgroup of a group G. Let xA = yA, for x, y∈G. 
Then,                       xA(x) = yA(x),   and    xA(y) = yA(y), which implies that 
                          A(x-1x)  = A(y-1x), and  A(x-1y) = A(y-1y). 
Hence                     A(e) = A(y-1x), and  A(x-1y) = A(e) . 
 
Therefore A(x-1y) = A(y-1x) = A(e). 
 
Conversely, let A(x-1y) = A(y-1x) = A(e), for x and y∈G. 
 
For every g∈G and we have,  

xA(g) = A(x-1g) 
  = A(x-1yy-1g) 
  ≥ A(x-1y) ∧  A(y-1g) 
  = A(e) ∧  A(y-1g) 
  = A(y-1g) 
  = yA(g). 

 
Therefore,            xA(g) ≥ yA(g) and,          

yA(g) = A(y-1g) 
  = A(y-1xx-1g) 
  ≥ A(y-1x) ∧  A(x-1g) } 
  = A(e) ∧  A(x-1g) } 
  = A(x-1g) 
  = xA(g). 

Therefore,  yA(g) ≥ xA(g)  
  
Hence,                xA(g) = yA(g) and g is arbitrary,  
 
We get,               xA = yA. 
 
3.6 Theorem: If A is a multi L-fuzzy subgroup of a group G and xA= yA, for x and y∈G, then A(x) = A(y). 
 
Proof: Let A be a multi L-fuzzy subgroup of a group G and xA = yA, for x and y∈G. 
 
Now,               A(x) = A(yy-1x) 

  ≥ A(y) ∧A(y-1x) 
  = A(y) ∧ A(e),  by  Theorem 3.5 
  = A(y). 
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Therefore                          A(x) ≥ A(y) and, A(y) = A(xx-1y)  

 ≥ A(x) ∧  A(x-1y) 
 = A(x) ∧  A(e), by  Theorem 3.5 
 = A(x). 

Therefore                          A(y) ≥ A(x) 
Hence, we get,                  A(x) = A(y). 
 
3.7 Theorem: If  A be a  multi L-fuzzy subgroup of a group G, then the multi  L-pseudo fuzzy coset (aA)p is a multi  L-
fuzzy subgroup of a group G for every a∈G. 
 
Proof: Let A be a multi L-fuzzy subgroup of a group G. for every x, y∈G, we have  

i.      (aA)p(xy) = p(a) A(xy) 
 ≥ p(a){ A(x) ∧A(y)} 
 = p(a)A(x) ∧ p(a) A(y) 
 = (aA)p(x) ∧ (aA)p(y) 

  Therefore,               (aA)p(xy) ≥  (aA)p(x) ∧ (aA)p(y)     
ii.      (aA)p(x-1) = p(a) A(x-1) 

 = p(a) A(x) 
 = (aA)p(x) 

Therefore,                 (aA)p(x-1) = (aA)p(x).                 
Hence, (aA)p is a multi  L-fuzzy subgroup of a group G for every a∈G. 
 
3.8 Theorem: Let  A and B be any two multi L-fuzzy subgroup of a group G, then the  multi L-pseudo fuzzy double 
coset (AaB)p is a multi  L-fuzzy subgroup of a group G for every a∈G. 
 
Proof: Let A and B be any two multi L-fuzzy subgroup of a group G.  
 
For every x, y ∈ G, we have  

(aAB)p(xy-1) = ((aA)p
 ∩ (aB)p

 )(xy) 
 = (aA)p

 (xy) ∧  (aB)p
 (xy) 

 = p(a)A(xy-1) ∧ p(a)B(xy-1) 
 ≥ p(a){ A(x) ∧ A(y)} ∧ p(a){ B(x) ∧ B(y)} 
 ≥ {p(a)A(x) ∧ p(a) B(x)} ∧ {p(a)A(y) ∧ p(a) B(y)} 
 = ((aA)p ∩ (aB)p)(x) ∧ ((aA)p ∧ (aB)p)(y) 
 = (AaB)p(x) ∧ (AaB)p

 (y) 
That is,               (aAB)p(xy-1)  ≥ (AaB)p(x) ∧ (AaB)p

 (y). 
 
Hence, (aAB)p

 is a multi L-fuzzy subgroup of G. 
 
3.9 Theorem: Let A be a multi L-fuzzy normal subgroup of a group G. The multi L-fuzzy coset aA of a multi L-fuzzy 
normal sub group A of the group G determined by the element a∈G is also a multi L-fuzzy normal subgroup of G if  
A(a-1y) ∧ A(y) = A(a-1y). 
 
Proof: By Theorem 3.2, the multi L-fuzzy coset aA is a of a multi L-fuzzy normal group A of the group G determined 
by the element a∈G is also a  multi L-fuzzy subgroup of G. 
 
Now,                    aA(xy) = A(a-1xy) 

= A(a-1yx), since A is a MLFNS of G. 
= aA(yx) 

aA(xy) = aA(yx). 
Hence, the multi L-fuzzy coset aA of a multi L-fuzzy normal group A of the group G determined by the element a ∈ G 
is also a multi L-fuzzy normal subgroup of G. 
 
3.10 Theorem: If A is a multi L-fuzzy normal subgroup of a group G, then the set G /A = {xA: x∈G} is a group with 
the operation (xA)(yA) = (xy)A. 
 
Proof: Let x and y in G,  xA and yA  in G /A. 
 
Clearly, y-1 in G. Therefore, y-1A in G /A. 
 
Now,   (xA)(y-1A) = ( xy-1)A  in G /A.  
Hence G /A is a group. 
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3.11 Theorem: If  A be a  multi L-fuzzy normal subgroup of a group G, then the  multi L-pseudo fuzzy coset (aA)p  of 
a multi L-fuzzy normal group A of the group G determined by the element a∈G is also a  multi L-fuzzy normal 
subgroup of a group G for every  a∈G. 
 
Proof:  By Theorem 3.7, the multi L-pseudo fuzzy coset (aA)p of a multi L-fuzzy normal sub group A of the group G 
determined by the element a∈G is also a multi L-fuzzy subgroup of a group G. For any x,y∈G, 

(aA)p(xy) = p(a)A(xy) 
= p(a)A(yx), since A is MLFNS of G, 
= (aA)p(yx). 

(aA)p(xy) = (aA)p(yx). 
 
Hence, the multi L-pseudo fuzzy coset (aA)p of a multi L-fuzzy normal group A of the group G determined by the 
element a∈G is also a multi L-fuzzy normal subgroup of a group G for every a∈G. 
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