Volume 9, No. 5, May - 2018 (Special Issue) International Journal of Mathematical Archive-9(5), 2018, 30-33 MAAvailable online through www.ijma.info ISSN 2229 - 5046

VERTEX EQUITABLE LABELING OF ALTERNATE SNAKE GRAPHS

A. MAHESWARI

Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar, India.

E-mail: bala_nithin@yahoo.co.in

ABSTRACT

Let G be a graph with p vertices and q edges and $A = \{0, 1, 2, ..., \left\lceil \frac{q}{2} \right\rceil\}$ A vertex labeling f: $V(G) \rightarrow A$ induces an

edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv. For $a \in A$, let $v_f(a)$ be the number of vertices v with f(v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, $\left|v_f(a) - v_f(b)\right| \le 1$ and the induced edge labels are 1, 2, 3,..., q. In this paper, we investigate some new families of vertex equitable graphs.

Key words: Vertex equitable labeling, vertex equitable graph.

AMS Classification (2010): 05C78.

1. INTRODUCTION

All graphs considered here are simple, finite, connected and undirected .We follow the basic notations and terminologies of graph theory as in [1]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey of graph labeling can be found in [2]. The vertex set and the edge set of a graph are denoted by V(G) and E(G) respectively. The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan in [3] and further discussed in [4-11]. Let G be a graph with

p vertices and q edges and $A = \{0, 1, 2, ..., \left| \frac{q}{2} \right| \}$. A graph G is said to be vertex equitable if there exists a vertex

labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $\left| v_f(a) - v_f(b) \right| \le 1$ and the induced edge labels are 1, 2, 3,..., q, where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. The vertex labeling f is known as vertex equitable labeling. A graph G is said to be a vertex equitable if it admits vertex equitable labeling. In this paper we extend our study on vertex equitable labeling and prove that the graphs $S(Q_n) \land A(Q_{4m}) \odot nK_1$ and $A(TL_{4m})$ are vertex equitable.

In this paper main results follows after some definitions.

Theorem 1.1 [9]: Let $G_1(p_1,q_1)$, $G_2(p_2,q_2)$,..., $G_m(p_m,q_m)$ be vertex equitable graphs with q_i 's even (i=1,2,...,m) and u_i, v_i be the vertices of G_i $(1 \le i \le m)$ labeled by 0 and $\frac{q_i}{2}$. Then the graph G obtained by identifying v_1 with u_2 and v_2 with u_3 and v_3 with u_4 and so on until we identify v_{m-1} with u_m is also a vertex equitable graph.

International Journal of Mathematical Archive- 9(5), May - 2018

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

Theorem 1.2 [9]: Let $G_1(p_1, q)$, $G_2(p_2, q)$,..., $G_m(p_m, q)$ be vertex equitable graphs with q odd and u_i, v_i be vertices of G_i $(1 \le i \le m)$ labeled by 0 and $\left\lceil \frac{q}{2} \right\rceil$. Then the graph G obtained by joining v_1 with u_2 and v_2 with u_3

and V_3 with u_4 and so on until joining V_{m-1} with u_m by an edge is also a vertex equitable graph.

Definition 1.3: The corona $G_1 \odot G_2$ of the graphs G_1 and G_2 is defined as a graph obtained by taking one copy of G_1 (with *p* vertices) and *p* copies of G_2 and then joining the *i*th vertex of G_1 to every vertex of the *i*th copy of G_2 .

Definition 1.4: A Triangular ladder TL_n , $n \ge 2$ is a graph obtained from the ladder $L_n = P_n \times P_2$ by adding the edges $u_i v_{i+1}, 1 \le i \le n-1$. Such a graph has 2n vertices with 4n-3 edges.

Definition 1.5: Let G be a graph. The subdivision graph S(G) is obtained from G by subdividing each edge of G with a vertex.

Definition 1.6: An alternate quadrilateral snake $A(Q_n)$ consists of alternate quadrilateral snakes that have a common path. That is, a alternate quadrilateral snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to the two new vertices v_i and w_i respectively and adding the edges $v_i w_i$ for i=1,2,...,n-1. That is every alternative edge of a path is replaced by a cycle C₄.

2. MAIN RESULTS

Theorem 2.1: The graph $S(Q_n)$ is a vertex equitable graph.

Proof: Let $G_i = S(Q_2)$ $1 \le i \le n-1$ and u_i , v_i be the vertices of degree 2. The vertex equitable labeling of $G_i = S(Q_2)$ is given in Figure 2.2.

The vertex equitable labeling of u_i and v_i are 0 and $\frac{q_i}{2} = 2$ respectively. By Theorem 1.1, $S(Q_n)$ is vertex equitable labeling.

Theorem 2.3: The graph $A(Q_4) \odot nK_1$ is a vertex equitable graph for $n \ge 1$.

Proof: Let $G = A(Q_4) \odot nK_1$. Let $V(G) = \{u_1, u_2, u_3, u_4, v, w, x, y\}$ $\bigcup \{u_{ij} : 1 \le i \le 4, 1 \le j \le n\} \bigcup \{v_i, w_i, x_i, y_i : 1 \le i \le n\}$ and $E(G) = \{u_1u_2, u_2u_3, u_3u_4, u_1v, vw, wu_2, u_3x, u_4y, xy\}$ $\bigcup \{u_iu_{ij} : 1 \le i \le 4, 1 \le j \le n\} \bigcup \{vv_i, ww_i, xx_i, yy_i : 1 \le i \le n\}$. Here |V(G)| = 8(n+1) and |E(G)| = 8n+9.

© 2018, IJMA. All Rights Reserved

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

Let
$$A = \{0, 1, 2, ..., \left\lceil \frac{8n+9}{2} \right\rceil\}$$
. Define a vertex labeling $f: V(G) \to A$ as follows. For $1 \le i \le n$
 $f(u_{1i}) = f(v_i) = i$, $f(u_{2i}) = 2n+3-i$, $f(u_{3i}) = 2n+2+i$, $f(u_{4i}) = f(y_i) = 3n+4+i$,
 $f(x_i) = 2n+i+2$, $f(w_i) = n+1+i$, $f(u_1) = 0$, $f(u_2) = 2n+2$, $f(u_3) = 2n+3$, $f(u_4) = 4n+5$,
 $f(v) = n+1$, $f(w) = n+2$, $f(x) = 3n+3$, $f(y) = 3n+4$. It can be verified that the induced edge labels of
 $A(Q_4) \odot nK_1$ are 1, 2,..., 8n+9 and $\left| v_f(a) - v_f(b) \right| \le 1$ for all $a, b \in A$. Hence f is a vertex equitable labeling of
 $A(Q_4) \odot nK_1$.

An example for the vertex equitable labeling of $A(Q_4) \odot 4K_1$ is shown in Figure 2.4.

Figure-2.4

Theorem 2.5: The graph $A(Q_{4m}) \odot nK_1$ is a vertex equitable graph for $m \ge 2$, $n \ge 1$

Proof: By Theorem 2.3, $A(Q_4) \odot nK_1$ is a vertex equitable graph for $n \ge 1$. Let $G_i = A(Q_4) \odot nK_1$ for $1 \le i \le m-1$. Since each G_i has 8n+9 edges, by Theorem 1.2, $A(Q_{4m}) \odot nK_1$ admits vertex equitable labeling.

Theorem 2.6: The graph $A(TL_4)$ is a vertex equitable graph.

Proof: Let $V(A(TL_4)) = \{u_1, u_2, u_3, u_4, v, w, x, y\}$ and $E(A(TL_4)) = \{u_1u_2, u_2u_3, u_3u_4, u_1v, u_1w, vw, wu_2, u_3x, u_3y, u_4y, xy\}$. Here $|V(A(TL_4))| = 8$ and $|E(A(TL_4))| = 11$. Let $A = \{0, 1, 2, ..., 6\}$. Define a vertex labeling $f: V(G) \to A$ as follows. $f(u_i) = 2i - 2$ if $1 \le i \le 4$, f(v) = 1, f(w) = f(x) = 3, f(y) = 5. The vertex equitable labeling of $A(TL_4)$ is given in Figure 2.7.

Theorem 2.8: The graph $A(TL_{4m})$ is a vertex equitable graph for $m \ge 2$.

Proof: By Theorem 2.6, $A(TL_4)$ is a vertex equitable graph. Let $G_i = A(TL_4)$ for $1 \le i \le m-1$. Since each G_i has 11 edges, by Theorem 1.2, $A(TL_{4m})$ admits vertex equitable labeling.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

32

REFERENCES

- 1. F.Harary, Graph theory, Addison Wesley, Massachusetts, 1972.
- 2. Joseph A.Gallian, A Dynamic Survey of graph labeling, The Electronic Journal of Combinatorics, DS6, 2017.
- 3. A.Lourdusamy and M.Seenivasan, Vertex equitable labeling of graphs, *Journal of Discrete Mathematical Sciences & Cryptography*, Vol.11, No.6 (2008), .727-735.
- 4. P.Jeyanthi and A.Maheswari, Some Results on Vertex Equitable Labeling, Open Journal of Discrete Mathematics, 2(2012), 51-57.
- 5. P.Jeyanthi and A.Maheswari, Vertex equitable labeling of cycle and path related graphs, *Utilitas Mathematica*, (to appear)..
- 6. P.Jeyanthi and A.Maheswari, Vertex equitable labeling of Transformed Trees, Journal of Algorithms and Computation 44 (2013), 9 -20.
- 7. P.Jeyanthi and A.Maheswari, Vertex equitable labeling of cyclic snakes and bistar graphs, *Journal of Scientific Research*, Vol. 6, No.1(2014), 79-85.
- 8. P.Jeyanthi A.Maheswari and M.Vijaya Laksmi, Vertex equitable labeling of Double Alternate Snake Graphs, Journal of Algorithms and Computation, 46 (2015) PP. 27 34.
- 9. P.Jeyanthi A.Maheswari, and M.Vijaya Laksmi, New Results on Vertex Equitable labeling, Journal of Algebra Combinatorics Discrete structures and Applications Vol 3(2) (2016) 97-104.
- 10. P.Jeyanthi A.Maheswari, and M.Vijaya Laksmi, Vertex Equitable Labeling of Super Subdivision Graphs, Scientific International, 27(4) (2015),1-3.
- 11. P.Jeyanthi A.Maheswari, and M.Vijaya Laksmi, Vertex Equitable Labeling of Union of Cyclic Snake graphs, Proyecciones Journal of Mathematics Vol. 35, No2, pp. 177-186, June 2016.

Source of support: Proceedings of National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics (RAPAM - 2018)", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

CONFERENCE PAPER National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.