Volume 9, No. 5, May - 2018 (Special Issue) International Journal of Mathematical Archive-9(5), 2018, 34-39 MAAvailable online through www.ijma.info ISSN 2229 - 5046

HOMOMORPHISM AND ANTI HOMOMORPHISM OF PSEUDO FUZZY COSET OF A HX RING

R. MUTHURAJ[!]

PG & Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai- 622001, Tamilnadu, India.

N. RAMILA GANDHI² Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624622, Tamilnadu, India.

E-mail: rmr1973@yahoo.co.in1, satrami@yahoo.com2

ABSTRACT

In this paper, we introduce the notion of pseudo fuzzy cosets of a fuzzy HX ring and reviewed its properties. We introduce the concept of an image, pre-image of pseudo fuzzy coset of a HX ring and discuss the properties of homomorphic and anti homomorphic images and pre images of pseudo fuzzy coset of a fuzzy HX ring of a HX ring \mathcal{P} . Also, we introduce the notion of pseudo fuzzy cosets of a fuzzy normal HX ring and discuss the concept of an image, pre-image of pseudo fuzzy coset of a fuzzy normal HX ring and discuss the concept of an image, pre-image of pseudo fuzzy coset of a HX ring and discuss the properties of homomorphic and anti homomorphic images and pre images and pre images of pseudo fuzzy coset of a fuzzy normal HX ring of a HX ring \mathcal{P} .

Keywords- HX ring, fuzzy HX ring, pseudo fuzzy coset of a HX ring.

1. INTRODUCTION

In 1965, Lotfi.A.Zadeh [11] introduced the concept of fuzzy set. In 1982 Wang-jin Liu [3] introduced the concept of fuzzy subring and fuzzy ideal. In 1988, Professor Li Hong Xing [4] proposed the concept of HX ring and derived some of its properties, then Professor Zhong [1, 2] gave the structures of HX ring on a class of ring. W. B. Vasantha kandasamy [9] introduced the concept of fuzzy cosets. In this paper we define pseudo fuzzy coset of a fuzzy HX ring and investigate some related properties under homomorphism and anti homomorphism.

2. PSEUDO FUZZY COSET OF A FUZZY HX RING

In this section, we introduce the notion of pseudo fuzzy cosets of a fuzzy HX ring and discuss its properties.

2.1 Definition: Let μ be a fuzzy set defined on R. Let $\mathfrak{R} \subset 2^{R} - \{\phi\}$ be a HX ring. Let λ^{μ} be a fuzzy HX subring of a HX ring \mathfrak{R} and $A \in \mathfrak{R}$. Then the pseudo fuzzy coset of a fuzzy HX ring λ^{μ} of a HX ring \mathfrak{R} determined by the element $A \in \mathfrak{R}$ is denoted as $(A + \lambda^{\mu})^{P}$ and is defined by $(A + \lambda^{\mu})^{P}(X) = p(A) \lambda^{\mu}(X)$ for every $X \in \mathfrak{R}$ and for some $p \in P$, where $P = \{p(X) / p(X) \in [0, 1] \text{ for all } X \in \mathfrak{R} \}$.

2.2 Theorem: Let λ^{μ} be a fuzzy HX subring of a HX ring \Re , then the pseudo fuzzy coset $(A + \lambda^{\mu})^{P}$ is a fuzzy HX subring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

Proof: Let λ^{μ} be a fuzzy HX subring of a HX ring \Re .

For every X, Y, $A \in \mathfrak{R}$ we have i. $(A + \lambda^{\mu})^{P} (X - Y) = p(A) \lambda^{\mu} (X - Y)$ $\geq p(A) \min \{ \lambda^{\mu} (X), \lambda^{\mu} (Y) \}$ $= \min \{ p(A)\lambda^{\mu} (X), p(A) \lambda^{\mu} (Y) \}$ $= \min \{ (A + \lambda^{\mu})^{P} (X), (A + \lambda^{\mu})^{P} (Y) \}$

International Journal of Mathematical Archive- 9(5), May – 2018

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

34

Therefore, $\begin{aligned} (A + \lambda^{\mu})^{P}(X-Y) \geq \min \left\{ (A + \lambda^{\mu})^{P}(X), (A + \lambda^{\mu})^{P}(Y) \right\} \\ \text{ii.} \qquad (A + \lambda^{\mu})^{P}(XY) &= p(A) \lambda^{\mu}(XY) \\ &\geq p(A) \min \left\{ \lambda^{\mu}(X), \lambda^{\mu}(Y) \right\} \\ &= \min \left\{ p(A)\lambda^{\mu}(X), p(A) \lambda^{\mu}(Y) \right\} \\ &= \min \left\{ (A + \lambda^{\mu})^{P}(X), (A + \lambda^{\mu})^{P}(Y) \right\} \end{aligned}$ Therefore,

 $(A + \lambda^{\mu})^{P}(XY) \geq \min\{(A + \lambda^{\mu})^{P}(X), (A + \lambda^{\mu})^{P}(Y)\}$

Hence, the pseudo fuzzy coset $(A + \lambda^{\mu})^{P}$ determined by the element $A \in \Re$ is a fuzzy HX subring of a HX ring \Re .

2.3 Theorem: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX subrings λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{P} \cap (A + \gamma^{\eta})^{P}$ is a fuzzy HX subring of \Re .

Proof: Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX subring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 2.2, $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ are fuzzy HX subrings of a HX ring \Re determined by the element $A \in \Re$. Hence, $(A + \lambda^{\mu})^{P} \cap (A + \gamma^{\eta})^{P}$ is a fuzzy HX subring of \Re determined by the element $A \in \Re$.

2.4 Theorem: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX subrings λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{P} \cup (A + \gamma^{\eta})^{P}$ is a fuzzy HX subring of \Re .

Proof: Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX subring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 2.2, $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ are fuzzy HX subrings of a HX ring \mathfrak{R} determined by the element $A \in \mathfrak{R}$. Hence, $(A + \lambda^{\mu})^{P} \cup (A + \gamma^{\eta})^{P}$ is a fuzzy HX subring of \mathfrak{R} determined by the element $A \in \mathfrak{R}$.

2.5 Theorem: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX subrings λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{P} \times (A + \gamma^{\eta})^{P}$ is a fuzzy HX subring of $\Re \times \Re$.

Proof: Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX subring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 2.2, $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ are fuzzy HX subrings of a HX ring \Re determined by the element $A \in \Re$. Hence, $(A + \lambda^{\mu})^{P} \times (A + \gamma^{\eta})^{P}$ is a fuzzy HX subring of $\Re \times \Re$ determined by the element $A \in \Re$.

3. HOMOMORPHISM AND ANTI HOMOMORPHISM OF A PSEUDO FUZZY COSET OF A FUZZY HX SUBRING OF A HX RING

In this section, we introduce the concept of an image, pre-image of pseudo fuzzy coset of a HX ring and discuss the properties of homomorphic and anti homomorphic images and pre images of pseudo fuzzy coset of a fuzzy HX ring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

3.1 Theorem: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f: \Re_1 \to \Re_2$ be a homomorphism onto HX rings. Let $(A+\lambda^{\mu})^P$ be the pseudo fuzzy coset of a fuzzy HX ring λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^P)$ is the pseudo fuzzy coset of a fuzzy HX ring $f(\lambda^{\mu})$ of a HX ring \Re_2 determined by the element $f(A) \in \Re_2$ and $f((A + \lambda^{\mu})^P) = (f(A) + f(\lambda^{\mu}))^P$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: Let $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ be a homomorphism onto HX rings.

© 2018, IJMA. All Rights Reserved

35

CONFERENCE PAPER National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India. Let $(A + \lambda^{\mu})^{P}$ be the pseudo fuzzy coset of a fuzzy HX ring λ^{μ} of a HX ring \Re_{1} determined by the element $A \in \Re_{1}$. $f(\lambda^{\mu})$ is a fuzzy HX subring of a HX ring \Re_{2} . Then $f((A + \lambda^{\mu})^{P})$ is the pseudo fuzzy coset of a fuzzy HX ring $f(\lambda^{\mu})$ of a HX ring \Re_{2} determined by the element $f(A) \in \Re_{2}$.

Let A, $X \in \mathfrak{R}_1$, then f(A), f(X) $\in \mathfrak{R}_2$.

Now, $(f(A) + f(\lambda^{\mu}))^{p} f(X) = p(f(A))(f(\lambda^{\mu})(f(X)))$ = $p(A) \lambda^{\mu}(X)$ = $(A + \lambda^{\mu})^{p}(X)$ = $f((A + \lambda^{\mu})^{p})f(X)$. $(f(A) + f(\lambda^{\mu}))^{p} f(X) = f((A + \lambda^{\mu})^{p})f(X)$, for any $f(X) \in \Re_{2}$.

Hence, $f((A+\lambda^{\mu})^{P}) = (f(A) + f(\lambda^{\mu}))^{P}$.

3.2 Theorem: Let \mathfrak{R}_1 and \mathfrak{R}_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ be a homomorphism on HX rings. Let $(B + \eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy HX ring η^{α} of a HX ring \mathfrak{R}_2 determined by the element $B \in \mathfrak{R}_2$. Then $f^{-1}((B + \eta^{\alpha})^P)$ is the pseudo fuzzy coset of a fuzzy HX ring $f^{-1}(\eta^{\alpha})$ of a HX ring \mathfrak{R}_1 determined by the element $f^{-1}(B) \in \mathfrak{R}_1$ and $f^{-1}((B + \eta^{\alpha})^P) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^P$.

Proof: Let $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ be a homomorphism on HX rings.

Let $(B+\eta^{\alpha})^{P}$ be the pseudo fuzzy coset of a fuzzy HX ring η^{α} of a HX ring \Re_{2} determined by the element $B \in \Re_{2}$. f⁻¹(η^{α}) is a fuzzy HX subring of a HX ring \Re_{1} . Then, f⁻¹($(B + \eta^{\alpha})^{P}$) is the pseudo fuzzy coset of a fuzzy HX ring f⁻¹(η^{α}) of a HX ring \Re_{1} determined by the element f⁻¹(B) $\in \Re_{1}$.

Let $X \in \mathfrak{R}_1$ and $B \in \mathfrak{R}_2$.

Now, $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}(X) = p(f^{-1}(B))(f^{-1}(\eta^{\alpha}))(X)$ $= p(B)(\eta^{\alpha}(f(X)))$ $= (B + \eta^{\alpha})^{p}f(X)$ $= f^{-1}((B + \eta^{\alpha})^{p})(X).$ $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}(X) = f^{-1}((B + \eta^{\alpha})^{p})(X).$

Hence, $f^{-1}((B + \eta^{\alpha})^{P}) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}$.

3.3 Theorem: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f: \Re_1 \to \Re_2$ be an anti homomorphism onto HX rings. Let $(A + \lambda^{\mu})^P$ be the pseudo fuzzy coset of a fuzzy HX ring λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^P)$ is the pseudo fuzzy coset of a fuzzy HX ring $f(\lambda^{\mu})$ of a HX ring \Re_2 determined by the element $f(A) \in \Re_2$ and $f((A + \lambda^{\mu})^P) = (f(A) + f(\lambda^{\mu}))^P$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: Let $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ be an anti homomorphism onto HX rings.

Let $(A + \lambda^{\mu})^{P}$ be the pseudo fuzzy coset of a fuzzy HX ring λ^{μ} of a HX ring \Re_{1} determined by the element $A \in \Re_{1}$. $f(\lambda^{\mu})$ is a fuzzy HX ring of a HX subring \Re_{2} . Then $f((A + \lambda^{\mu})^{P})$ is the pseudo fuzzy coset of a fuzzy HX ring $f(\lambda^{\mu})$ of a HX ring \Re_{2} determined by the element $f(A) \in \Re_{2}$.

Let A, $X \in \mathfrak{R}_1$, then f(A), f(X) $\in \mathfrak{R}_2$.

Now, $(f(A) + f(\lambda^{\mu}))^{p} f(X) = p(f(A))(f(\lambda^{\mu})(f(X))$ $= p(A) \lambda^{\mu} (X)$ $= (A + \lambda^{\mu})^{p} (X)$ $= f((A + \lambda^{\mu})^{p})f(X).$ $(f(A) + f(\lambda^{\mu}))^{p} f(X) = f((A + \lambda^{\mu})^{p})f(X), \text{ for any } f(X) \in \mathfrak{R}_{2}.$

Hence, $f((A + \lambda^{\mu})^{P}) = (f(A) + f(\lambda^{\mu}))^{P}$.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

36

3.4 Theorem: Let \mathfrak{R}_1 and \mathfrak{R}_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ be an anti homomorphism on HX rings. Let $(B+\eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy HX ring η^{α} of a HX ring \mathfrak{R}_2 determined by the element $B \in \mathfrak{R}_2$. Then $f^{-1}((B+\eta^{\alpha})^P)$ is the pseudo fuzzy coset of a fuzzy HX ring $f^{-1}(\eta^{\alpha})$ of a HX ring \mathfrak{R}_1 determined by the element $f^{-1}(B) \in \mathfrak{R}_1$ and $f^{-1}((B+\eta^{\alpha})^P) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^P$.

Proof: Let f: $\mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be an anti homomorphism on HX rings.

Let $(B + \eta^{\alpha})^{P}$ be the pseudo fuzzy coset of a fuzzy HX ring η^{α} of a HX ring \Re_{2} determined by the element $B \in \Re_{2}$. f⁻¹(η^{α}) is a fuzzy HX subring of a HX ring \Re_{1} . Then f⁻¹($(B + \eta^{\alpha})^{P}$) is the pseudo fuzzy coset of a fuzzy HX ring f⁻¹(η^{α}) of a HX ring \Re_{1} determined by the element f⁻¹($B \in \Re_{1}$.

Let $X \in \mathfrak{R}_1$ and $B \in \mathfrak{R}_2$.

Now, $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}(X) = p(f^{-1}(B))(f^{-1}(\eta^{\alpha}))(X)$ $= p(B)(\eta^{\alpha}(f(X)))$ $= (B + \eta^{\alpha})^{P}f(X)$ $= f^{-1}((B + \eta^{\alpha})^{P})(X).$ $(f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}(X) = f^{-1}((B + \eta^{\alpha})^{P})(X).$

Hence, $f^{-1}((B + \eta^{\alpha})^{P}) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{p}$.

4. PSEUDO FUZZY COSET OF A FUZZY NORMAL HX SUBRING OF A HX RING

In this section, we introduce the notion of pseudo fuzzy cosets of a fuzzy normal HX ring and discuss its properties.

4.1 Definition: Let μ be a fuzzy set defined on R. Let $\Re \subset 2^{R} - \{\phi\}$ be a HX ring. Let λ^{μ} be a fuzzy normal HX subring of a HX ring \Re and $A \in \Re$. Then the pseudo fuzzy coset of a fuzzy normal HX ring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$ is denoted as $(A + \lambda^{\mu})^{P}$ and is defined by $(A + \lambda^{\mu})^{P}(X) = p(A) \lambda^{\mu}(X)$ for every $X \in \Re$ and for some $p \in P$, where $P = \{p(X) / p(X) \in [0, 1] \text{ for all } X \in \Re\}$.

4.2 Theorem: Let λ^{μ} be a fuzzy normal HX subring of a HX ring \Re , then the pseudo fuzzy coset $(A + \lambda^{\mu})^{P}$ is a fuzzy normal HX subring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

Proof: Let λ^{μ} be a fuzzy normal HX subring of a HX ring \Re .

By Theorem 2.2, $(A + \lambda^{\mu})^{P}$ is a fuzzy HX subring λ^{μ} of a HX ring \Re .

For X, $Y \in \Re$, we have $(A + \lambda^{\mu})^{P} (XY) = p(A) \lambda^{\mu}(XY)$ $= p(A) \lambda^{\mu}(YX)$ $= (A + \lambda^{\mu})^{P} (YX).$ Therefore, $(A + \lambda^{\mu})^{P} (XY) = (A + \lambda^{\mu})^{P} (YX).$

Hence, the pseudo fuzzy coset $(A + \lambda^{\mu})^{P}$ determined by the element $A \in \Re$ is a fuzzy normal HX subring of a HX ring \Re .

4.3 Theorem: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy normal HX subrings λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{P} \cap (A + \gamma^{\eta})^{P}$ is a fuzzy normal HX subring of \Re .

Proof: Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy normal HX subrings of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 4.2, $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ are fuzzy normal HX subrings of a HX ring \Re determined by the element $A \in \Re$.

Hence, $(A + \lambda^{\mu})^{P} \cap (A + \gamma^{\eta})^{P}$ is a fuzzy normal HX subring of \Re determined by the element $A \in \Re$.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

4.4 Theorem: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy normal HX subrings λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{P} \cup (A + \gamma^{\eta})^{P}$ is a fuzzy normal HX subring of \Re .

Proof: Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy normal HX subrings of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 4.2, $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ are fuzzy normal HX subrings of a HX ring \Re determined by the element $A \in \Re$.

Hence, $(A + \lambda^{\mu})^{P} \cup (A + \gamma^{\eta})^{P}$ is a fuzzy normal HX subring of \Re determined by the element $A \in \Re$.

4.5 Theorem: Let μ and η be any two fuzzy sets defined on R. Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy normal HX subrings λ^{μ} and γ^{η} of a HX ring \Re determined by the element $A \in \Re$. Then $(A + \lambda^{\mu})^{P} \times (A + \gamma^{\eta})^{P}$ is a fuzzy normal HX subring of $\Re \times \Re$.

Proof: Let $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ be any two pseudo fuzzy coset of a fuzzy HX subring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

By Theorem 4.2, $(A + \lambda^{\mu})^{P}$ and $(A + \gamma^{\eta})^{P}$ are fuzzy normal HX subrings of a HX ring \Re determined by the element $A \in \Re$.

Hence, $(A + \lambda^{\mu})^{P} \times (A + \gamma^{\eta})^{P}$ is a fuzzy normal HX subring of $\Re \times \Re$ determined by the element $A \in \Re$.

5. HOMOMORPHISM AND ANTI HOMOMORPHISM OF A PSEUDO FUZZY COSET OF A FUZZY NORMAL HX SUBRING OF A HX RING

In this section, we introduce the concept of an image, pre-image of pseudo fuzzy coset of a HX ring and discuss the properties of homomorphic and anti homomorphic images and pre images of pseudo fuzzy coset of a fuzzy normal HX ring λ^{μ} of a HX ring \Re determined by the element $A \in \Re$.

5.1 Theorem: Let \mathfrak{R}_1 and \mathfrak{R}_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ be a homomorphism onto HX rings. Let $(A + \lambda^{\mu})^P$ be the pseudo fuzzy coset of a fuzzy normal HX ring λ^{μ} of a HX ring \mathfrak{R}_1 determined by the element $A \in \mathfrak{R}_1$. Then $f((A + \lambda^{\mu})^P)$ is the pseudo fuzzy coset of a fuzzy normal HX ring $f(\lambda^{\mu})$ of a HX ring \mathfrak{R}_2 determined by the element $f(A) \in \mathfrak{R}_2$ and $f((A + \lambda^{\mu})^P) = (f(A) + f(\lambda^{\mu}))^P$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: Let f: $\Re_1 \rightarrow \Re_2$ be a homomorphism onto HX rings.

Let $(A + \lambda^{\mu})^{P}$ be the pseudo fuzzy coset of a fuzzy normal HX subring λ^{μ} of a HX ring \Re_{1} determined by the element $A \in \Re_{1}$. $f(\lambda^{\mu})$ is a fuzzy normal HX ring of a HX ring \Re_{2} .

By Theorem 3.1, $f((A + \lambda^{\mu})^{P})$ is the pseudo fuzzy coset of a fuzzy normal HX ring $f(\lambda^{\mu})$ of a HX ring \Re_{2} determined by the element $f(A) \in \Re_{2}$ and $f((A + \lambda^{\mu})^{P}) = (f(A) + f(\lambda^{\mu}))^{P}$.

5.2 Theorem: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f: \Re_1 \to \Re_2$ be a homomorphism on HX rings. Let $(B + \eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy normal HX ring η^{α} of a HX ring \Re_2 determined by the element $B \in \Re_2$. Then $f^{-1}((B + \eta^{\alpha})^P)$ is the pseudo fuzzy coset of a fuzzy normal HX ring $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_1 determined by the element $f^{-1}(B) \in \Re_1$ and $f^{-1}((B + \eta^{\alpha})^P) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^P$.

Proof: Let $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ be a homomorphism on HX rings.

Let $(B + \eta^{\alpha})^{P}$ be the pseudo fuzzy coset of a fuzzy normal HX ring η^{α} of a HX ring \Re_{2} determined by the element $B \in \Re_{2}$. $f^{-1}(\eta^{\alpha})$ is a fuzzy normal HX ring of a HX ring \Re_{1} .

By Theorem 3.2, $f^{-1}((B + \eta^{\alpha})^{P})$ is the pseudo fuzzy coset of a fuzzy normal HX ring $f^{-1}(\eta^{\alpha})$ of a HX ring \mathfrak{R}_{1} determined by the element $f^{-1}(B) \in \mathfrak{R}_{1}$ and $f^{-1}((B + \eta^{\alpha})^{P}) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{P}$.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

R. Muthuraj[!] and N. Ramila Gandhi² / Homomorphism and Anti Homomorphism of Pseudo Fuzzy Coset of a HX Ring / IJMA- 9(5), May-2018, (Special Issue)

5.3 Theorem: Let \Re_1 and \Re_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f: \Re_1 \to \Re_2$ be an anti homomorphism onto HX rings. Let $(A + \lambda^{\mu})^P$ be the pseudo fuzzy coset of a fuzzy normal HX ring λ^{μ} of a HX ring \Re_1 determined by the element $A \in \Re_1$. Then $f((A + \lambda^{\mu})^P)$ is the pseudo fuzzy coset of a fuzzy normal HX ring $f(\lambda^{\mu})$ of a HX ring \Re_2 determined by the element $f(A) \in \Re_2$ and $f((A + \lambda^{\mu})^P) = (f(A) + f(\lambda^{\mu}))^P$, if λ^{μ} has a supremum property and λ^{μ} is f-invariant.

Proof: Let $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ be an anti homomorphism onto HX rings.

Let $(A + \lambda^{\mu})^{P}$ be the pseudo fuzzy coset of a fuzzy normal HX ring λ^{μ} of a HX ring \Re_{1} determined by the element $A \in \Re_{1}.f(\lambda^{\mu})$ is a fuzzy normal HX ring \Re_{2} .

By Theorem 3.3, $f((A + \lambda^{\mu})^{P})$ is the pseudo fuzzy coset of a fuzzy normal HX ring $f(\lambda^{\mu})$ of a HX ring \Re_{2} determined by the element $f(A) \in \Re_{2}$ and $f((A + \lambda^{\mu})^{P}) = (f(A) + f(\lambda^{\mu}))^{P}$.

5.4 Theorem: Let \mathfrak{R}_1 and \mathfrak{R}_2 be any two HX rings on the rings R_1 and R_2 respectively. Let $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ be an anti homomorphism on HX rings. Let $(B + \eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy normal HX ring η^{α} of a HX ring \mathfrak{R}_2 determined by the element $B \in \mathfrak{R}_2$. Then $f^{-1}((B + \eta^{\alpha})^P)$ is the pseudo fuzzy coset of a fuzzy normal HX ring $f^{-1}(\eta^{\alpha})$ of a HX ring \mathfrak{R}_1 determined by the element $f^{-1}(B) \in \mathfrak{R}_1$ and $f^{-1}((B + \eta^{\alpha})^P) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^P$.

Proof: Let $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ be an anti homomorphism on HX rings.

Let $(B + \eta^{\alpha})^P$ be the pseudo fuzzy coset of a fuzzy normal HX ring η^{α} of a HX ring \Re_2 determined by the element $B \in \Re_2$. $f^{-1}(\eta^{\alpha})$ is a fuzzy normal HX ring of a HX ring \Re_1 .

By Theorem 3.4, $f^{-1}((B + \eta^{\alpha})^{P})$ is the pseudo fuzzy coset of a fuzzy normal HX ring $f^{-1}(\eta^{\alpha})$ of a HX ring \Re_{1} determined by the element $f^{-1}(B) \in \Re_{1}$ and $f^{-1}((B + \eta^{\alpha})^{P}) = (f^{-1}(B) + f^{-1}(\eta^{\alpha}))^{P}$.

REFERENCES

- 1. Bing-xueYao and Yubin-Zhong, The construction of power ring, Fuzzy information and Engineering (ICFIE), ASC 40, pp.181-187, 2007.
- 2. Bing-xueYao and Yubin-Zhong, Upgrade of algebraic structure of ring, Fuzzy information and Engineering (2009) 2: 219-228.
- 3. Liu. W.J., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and systems, 8:133-139.
- 4. Li Hong Xing, HX ring, BUSEFAL, 34(1) 3-8, January 1988.
- 5. Manikandan.K.H,Muthuraj.R, Pseudo Fuzzy Cosets of a HX Group, Applied Mathematical Sciences, Vol. 7, 2013, no. 86, 4259 4271.
- 6. Mukherjee.T.K & Sen.M.K., On fuzzy ideals in rings, Fuzzy sets and systems, 21, 99-104, 1987.
- 7. Rajesh Kumar, Fuzzy Algebra, Publication division, University of Delhi, (1993).
- 8. Rosenfeld. A., Fuzzy groups, J.Math.Anal., 35(1971), 512-517.
- 9. Vasantha Kandasamy. W. B., Smarandahe Fuzzy Algebra, American Research Press, 2003.
- 10. Young Bae Jun, Kyoung Ja Lee, Generalised fuzzy cosets and radicals, Applied Mathematical sciences, Vol.6,No.126,6273-6280.
- 11. Zadeh.L.A., Fuzzy sets, Information and control, 8, 338-353.

Source of support: Proceedings of National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics (RAPAM - 2018)", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.