Volume 9, No. 5, May - 2018 (Special Issue) International Journal of Mathematical Archive-9(5), 2018, 45-50 MAAvailable online through www.ijma.info ISSN 2229 - 5046

(α, β) – CUT OF INTUITIONISTIC ANTI L-FUZZY M-SUBGROUPS

P. PANDIAMMAL*1, C. SUBRAMANI² AND NIVETHA MARTIN³

*^{1, 2}Department of Mathematics, G T N Arts College (Autonomous), Dindigul, Tamil Nadu, India.

Department of Mathematics, Arul Anandar College (Autonomous), Karumathur, Madurai, Tamil Nadu, India.

E-mail: pandiammal1981@yahoo.com¹, subramani_27maths@yahoo.com and nivetha.martin710@gmail.com³

ABSTRACT

In this paper some interesting properties of (α, β) – cut of Intuitionistic Anti L-fuzzy M-subgroups of a M-group are discussed.

Keywords: Intuitionistic fuzzy set (IFS), Intuitionistic fuzzy subgroup (IFSG), Intuitionistic fuzzy Normal subgroup (IFNSG), (α, β) – cut, Intuitionistic Anti L-fuzzy M-subgroup, Intuitionistic Anti L-fuzzy Normal M-subgroup.

1. INTRODUCTION

After the introduction of the concept of fuzzy set by Zadeh [6] several researches were conducted on the generalization of the notion of fuzzy set. The idea of Intuitionistic fuzzy set was given by Krassimiri T. Atanassov [1]. In this paper we study Intuitionistic anti L-fuzzy M-subgroup with the help of some properties of their (α , β) – cut sets.

2. PRELIMINARIES

2.1 Definition: Let $A = \{ < x, \mu_A(x), \nu_A(x) >: x \in X \}$ and $B = \{ < x, \mu_B(x), \nu_B(x) >: x \in X \}$ be any two IFS's of X, then

- (i) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- (ii) A = B if and only if $\mu_A(x) = \mu_B(x)$ and $\nu_A(x) = \nu_B(x)$ for all $x \in X$
- (iii) $A \cap B = \{\langle x, (\mu_A \cap \mu_B)(x), (\nu_A \cap \nu_B)(x) \rangle : x \in X\},\$ where $(\mu_A \cap \mu_B)(x) = Min\{\mu_A(x), \mu_B(x)\} = \mu_A(x) \wedge \mu_B(x) \& (\nu_A \cap \nu_B)(x) = Max\{\nu_A(x), \nu_B(x)\} = \nu_A(x) \vee \nu_B(x)$
- (iv) A UB = { < x, $(\mu_A \cup \mu_B)(x), (\nu_A \cup \nu_B)(x) > : x \in X$ }, where $(\mu_A \cup \mu_B)(x) = Max \{\mu_A(x), \mu_B(x)\} = \mu_A(x) \vee \mu_B(x) \& (\nu_A \cup \nu_B)(x) = Min \{\nu_A(x), \nu_B(x)\} = \nu_A(x) \wedge \nu_B(x)$

2.2 Definition: An IFS A = { $< x, \mu_A(x), \nu_A(x) >: x \in G$ } of a group G is said to be **Intuitionistic Fuzzy Subgroup** of G (IFSG) of G if

$$\begin{split} &(i) \quad \mu_A(xy) \geq \mu_A(x) \land \mu_A(y) \\ &(ii) \quad \mu_A(x^{-1}) = \mu_A(x) \\ &(iii) \quad \nu_A(xy) \leq \nu_A(x) \lor \nu_A(y) \\ &(iv) \quad \nu_A(x^{-1}) = \nu_A(x), \ \text{for all } x, y \in G \end{split}$$

2.3 Definition: An IFSG A = {< x, $\mu_A(x)$, $\nu_A(x) >: x \in G$ } of a group G said to be **Intuitionistic Fuzzy Normal** Subgroup of G (IFNSG) of G if

(i) $\mu_A(xy) = \mu_A(yx)$

(ii) $v_A(xy) = v_A(yx)$, for all $x, y \in G$

International Journal of Mathematical Archive- 9(5), May – 2018

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

45

Remark: It is easy to verify that an IFSG A of a group G is normal iff

(i) $\mu_A(g^{-1} x g) = \mu_A(x)$ and

(ii) $v_A(g^{-1} \times g) = v_A(x)$, for all $x \in A$ and $g \in G$

Proof: Trivial Proof.

2.4 Definition: Let G be an M-group and μ be an intuitionistic anti fuzzy group of G. If $\mu_A(mx) \leq \mu_A(x)$ and $\nu_A(mx) \geq \nu_A(x)$ for all x in G and m in M then μ is said to be an intuitionistic anti fuzzy subgroup with operator of G. We use the phrase μ is an **intuitionistic anti L-fuzzy M-subgroup** of G.

2.5 Example: Let H be M-subgroup of an M-group G and let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in G defined by $\mu_A(x) = \begin{cases} 0.3; x \in H\\ 0.5; \text{ otherwise} \end{cases}$

 $v_A(x) = \begin{cases} 0.6; x \in H \\ 0.3; \text{ otherwise} \end{cases}$ for all x in G. Then it is easy to verify that $A = (\mu_A, \nu_A)$ is an anti fuzzy M- subgroup of G.

2.6 Definition: Let A and B be any two Intuitionistic Anti L-fuzzy M-subgroups of a M-group (G, \cdot) . Then A and B are said to be **Conjugate Intuitionistic Anti L-fuzzy M-subgroups** of G if for some g in G, $\mu_A(x) = \mu_B(g^{-1}xg)$ & $v_A(x) = v_B(g^{-1}xg)$, for every x in G.

2.7 Proposition: If $\mu = (\delta \mu, \lambda \mu)$ is an intuitionistic anti fuzzy M-subgroup of an M- group G, then for any x, y \in G and $m \in M$.

(i) $\mu_A(mxy) \le \mu_A(x) \lor \mu_A(y)$,

(ii) $\mu_A(mx^{-1}) \leq \mu_A(x)$ and

(iii) $v_A(mxy) \ge v_A(x) \land v_A(y)$,

(iv) $v_A(mx^{-1}) \le v_A(x)$, for all x & y in G.

2.8 Theorem: A is an intuitionistic anti L-fuzzy M-subgroup of a M-group (G, \cdot) iff $\mu_A(mxy^{-1}) \le \mu_A(x) \lor \mu_A(y)$ and $v_A(mxy^{-1}) \ge v_A(x) \land v_A(y)$, for all x and y in G.

2.9 Definition: Let A be an Intuitionistic Anti L-fuzzy subset of X. For α and β in L, the (α, β) -level subset of A is the set $A_{(\alpha,\beta)} = \{x \in X : \mu_A(x) \le \alpha \text{ and } \nu_A(x) \ge \beta\}$. This is called an **Intuitionistic Anti L-fuzzy level subset** of A.

2.10 Definition: Let A be an intuitionistic L-fuzzy M-subgroup of a M-group G. The level M-subgroup $A_{(\alpha, \beta)}$, for α and β in L such that $\alpha \ge \mu_A(e)$ and $\beta \le \nu_A(e)$ is called an **intuitionistic anti L-fuzzy level M-subgroup** of A.

2.11 Definition: Let (G, \cdot) be a M-group. An intuitionistic L-fuzzy M-subgroup A of G is said to be an intuitionistic Anti L-fuzzy normal M-subgroup (IALFNMSG) of G if the following conditions are satisfied:

(i) $\mu A(xy) = \mu A(yx)$,

(ii) vA(xy) = vA(yx), for all x and y in G.

2.12 Definition: (α, β) – Cut of Intuitionistic fuzzy set

Let A be Intuitionistic fuzzy set of a universe set X. Then (α, β) -cut of A is a crisp subset $C_{\alpha, \beta}(A)$ of the IFS A is given by $C_{\alpha, \beta}(A) = \{x: x \in X / \mu_A(x) \ge \alpha, \nu_A(x) \le \beta\}$, where $(\alpha, \beta) \in [0, 1]$ with $\alpha + \beta \le 1$.

3. (α, β) – Cut of Intuitionistic Anti fuzzy set (IAFS) and their Properties

3.1 Definition: (α, β) – Cut of Intuitionistic Anti fuzzy set

Let A be Intuitionistic Anti fuzzy set of a universe set X. Then (α, β) -cut of A is a crisp subset $C_{\alpha,\beta}(A)$ of the IAFS A is given by $C_{\alpha,\beta}(A) = \{x : x \in X / \mu_A(x) \le \alpha, \nu_A(x) \ge \beta\}$, where $(\alpha, \beta) \in [0, 1]$ with $\alpha + \beta \le 1$.

3.2 Proposition: If A and B be two IAFS's of a universe set X, then following holds

(i) $C_{\alpha \beta}(A) \subseteq C_{\delta, \theta}(A)$ if $\alpha \ge \delta$ and $\beta \le \theta$

(ii) $C_{1-\beta \ \beta}(A) \subseteq C_{\alpha \ \beta}(A) \subseteq C_{\alpha \ 1-\alpha}(A)$

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

46

(iii) $A \subseteq B$ implies $C_{\alpha,\beta}(A) C_{\alpha,\beta}(B)$ (iv) $C_{\alpha,\beta}(A \cap B) = C_{\alpha,\beta}(A) \cap C_{\alpha,\beta}(B)$ (v) $C_{\alpha,\beta}(A \cup B) \supseteq C_{\alpha,\beta}(A) \cup C_{\alpha,\beta}(B)$ equality hold if $\alpha + \beta = 1$ (vi) $C_{\alpha,\beta}(\cap A_i) = \cap C_{\alpha,\beta}(A_i)$ (vii) $C_{0,1}(A) = X$.

Proof:

roof:		
(i)	Let $x \in C_{\alpha,\beta}(A) \Rightarrow \mu_A(x) \le \alpha$ and $\nu_A(x) \ge \beta$	
	Since $\delta \leq \alpha$ and $\theta \geq \beta$ implies that $\mu_A(x) \leq \alpha \leq \delta$ and $\nu_A(x) \geq \beta \geq \theta$	
	$\Rightarrow \mu_A(x) \le \delta$ and $\nu_A(x) \ge \theta$ and so $x \in C_{\delta, \theta}(A)$. Hence $C_{\alpha, \beta}(A) \subseteq C_{\delta, \theta}(A)$	
(ii)	Since $\alpha + \beta \le 1$ implies that $1 - \beta \ge \alpha$ and $\beta \le \beta$	(1)
	Therefore by part (i) we get C _{1-β} , β (A) \subseteq C _{α} , β (A)	(1)
	Again $\alpha + \beta \le 1$ implies that $\alpha \ge \alpha$ and $\beta \le 1 - \alpha$ Therefore by part (i) we get $C_{\alpha} = 0$ (Δ) $\subseteq C_{\alpha} = 1 = 0$ (Δ)	(2)
	Therefore by part (i) we get $C_{\alpha, \beta}(A) \subseteq C_{\alpha, 1-\alpha}(A)$ From (1) and (2) we get $C_{1-\beta, \beta}(A) \subseteq C_{\alpha, \beta}(A) \subseteq C_{\alpha, 1-\alpha}(A)$	(2)
(iii)	Let $x \in C_{\alpha, \beta}(A) \Rightarrow \mu_A(x) \le \alpha$ and $\nu_A(x) \ge \beta$	
(111)	As $B \supseteq A$ implies $\mu B(x) \le \mu A(x) \le \alpha$ and $\nu B(x) \ge \nu A(x) \ge \beta$	
	$\Rightarrow \mu \mathbf{B}(\mathbf{x}) \le \alpha \text{ and } \mathbf{v} \mathbf{B}(\mathbf{x}) \ge \mu \mathbf{A}(\mathbf{x}) \ge 0 \text{ and } \mathbf{v} \mathbf{B}(\mathbf{x}) = \mathbf{v} \mathbf{A}(\mathbf{x}) = \mathbf{v}$	
	so $x \in C_{\alpha}$, $\beta(B)$ Hence C_{α} , $\beta(A) \subseteq C_{\alpha}$, $\beta(B)$	
(iv)	Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$	
(11)	Therefore by part (i) C_{α} , $\beta(A \cap B) \subseteq C_{\alpha}$, $\beta(A)$ and C_{α} , $\beta(A \cap B) \subseteq C_{\alpha}$, $\beta(B)$	
	$\Rightarrow C_{\alpha, \beta}(A \cap B) \subseteq C_{\alpha, \beta}(A) \cap C_{\alpha, \beta}(B)$	(3)
	Also, let $x \in C_{\alpha, \beta}(A) \cap C_{\alpha, \beta}(B) \Rightarrow x \in C_{\alpha, \beta}(A)$ and $x \in C_{\alpha, \beta}(B)$	
	$\Rightarrow \mu_A(x) \leq \alpha \text{ and } \nu_A(x) \geq \beta \text{ and } \mu_B(x) \leq \alpha \text{ and } \nu_B(x) \geq \beta$	
	$\Rightarrow \mu_A(x) \le \alpha \text{ and } \mu_B(x) \le \alpha \text{ and } \nu_A(x) \ge \beta \text{ and } \nu_B(x) \ge \beta$	
	$\Rightarrow \mu_A(x) \land \mu_B(x) \leq \alpha \text{ and } \nu_A(x) \lor \nu_B(x) \geq \beta$	
	$\Rightarrow (\mu_A \cap \mu_B)(x) \leq \alpha \text{ and } (\nu_A \cap \nu_B)(x) \geq \beta$	
	$\Rightarrow x \in C_{\alpha, \beta}(A \cap B)$	
	Thus $C_{\alpha, \beta}(A) \cap C_{\alpha, \beta}(B) \subseteq C_{\alpha, \beta}(A \cap B)$	(4)
	From (3) and (4), we get $C_{\alpha, \beta}(A \cap B) = C_{\alpha, \beta}(A) \cap C_{\alpha, \beta}(B)$	
(v)	Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ The factor $a \in A \cup B$ is a constant $a \in A \cup B$ if $A = a \in A \cup B$ is a constant $a \in A \cup B$.	
	Therefore by part (i) $C_{\alpha, \beta}(A) \subseteq C_{\alpha, \beta}(A \cup B)$ and $C_{\alpha, \beta}(B) \subseteq C_{\alpha, \beta}(A \cup B)$	
	$\Rightarrow C_{\alpha,\beta}(A) \cup C_{\alpha,\beta}(B) \subseteq C_{\alpha,\beta}(A \cup B) \text{ Now equality hold if } \alpha + \beta = 1.$	
	We show that $C\alpha$, $\beta(A \cup B) \subseteq C\alpha$, $\beta(A) \cup C\alpha$, $\beta(B)$	
	Let $\mathbf{x} \in \mathbf{C}_{\alpha}$, $\beta(A \cup B) \Rightarrow (\mu_A \cup \mu_B)(\mathbf{x}) \le \alpha$ and $(\nu_A \cup \nu_B)(\mathbf{x}) \ge \beta$	
	$\Rightarrow \mu_{A}(x) \lor \mu_{B}(x) \le \alpha \text{ and } v_{A}(x) \land v_{B}(x) \ge \beta$	
	If $\mu_A(x) \le \alpha$, then $\nu_A(x) \ge 1 - \mu_A(x) \ge 1 - \alpha = \beta$ Implies that $x \in C$, $\rho(A) \models C$, $\rho(A) \models C$, $\rho(B)$	(5)
	Implies that $x \in C_{\alpha}$, $\beta(A) \subseteq C_{\alpha}$, $\beta(A) \cup C_{\alpha}$, $\beta(B)$ Similarly if $\mu_B(x) <_{\alpha}$, then $\nu_B(x) \ge 1 - \mu_B(x) \ge 1 - \alpha = \beta$	(5)
	Implies that $x \in C_{\alpha}$, $\beta(B) \subseteq C_{\alpha}$, $\beta(A) \cup C_{\alpha}$, $\beta(B)$	
	Thus we see that $x \in C_{\alpha}$, $\beta(A \cup B) \Rightarrow x \in C_{\alpha}$, $\beta(A) \cup C_{\alpha}$, $\beta(B)$,	
	$C_{\alpha, \beta}(A \cup B) \subseteq C_{\alpha, \beta}(A) \cup C_{\alpha, \beta}(B)$	(6)
	From (5) and (6), we get C_{α} , $\beta(A \cup B) = C_{\alpha}$, $\beta(A) \cup C_{\alpha}$, $\beta(B)$	
(vi)	Let $x \in C_{\alpha}$, $\beta(\cap A_i) \Rightarrow (\cap \mu_{A_i})(x) \le \alpha$ and $(\cap v_{A_i})(x) \ge \beta$	
. ,	$\wedge \mu_{Ai}(x) \leq \alpha$ and $\forall v_{Ai}(x) \geq \beta \Rightarrow x \in C_{\alpha, \beta}(A_i)$, for all i	
	$\Rightarrow x \in \cap C_{\alpha, \beta}(A_i) \& \text{ hence } C_{\alpha, \beta}(\cap A_i) \subseteq \cap C_{\alpha, \beta}(A_i)$	
(vii)Follows from definition	

3.3 Theorem: If A is Intuitionistic anti L-fuzzy M-subgroup of a M-group G. Then $C_{\alpha, \beta}(A)$ is a M-subgroup of M-group G, where $\mu_A(e) \leq \alpha$, $\nu_A(e) \geq \beta$ and e is the identity element of G.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India. **Proof:** Clearly $C_{\alpha,\beta}(A) \neq \phi$ as $e \in C_{\alpha,\beta}(A)$. Let $x, y \in C_{\alpha,\beta}(A)$ be any two elements. Then $\mu_A(x) \leq \alpha, \nu_A(x) \geq \beta$ and $\mu_A(y) \leq \alpha, \nu_A(y) \geq \beta$ $\mu_A(x) \land \mu_A(y) \leq \alpha$ and $\nu_A(x) \lor \nu_A(y) \geq \beta$

As A is intuitionistic anti L-fuzzy M-subgroup of G Therefore $\mu_A(mxy^{-1}) \le \mu_A(x) \land \mu_A(y) \le \alpha$ and $\nu_A(mxy^{-1}) \ge \nu_A(x) \lor \nu_A(y) \ge \beta$ Thus $xy^{-1} \in C_{\alpha \ \beta}(A)$. Hence $C_{\alpha \ \beta}(A)$ is a M-subgroup of G.

3.4 Theorem: If A be intuitionistic anti L-fuzzy normal M-subgroup of M-group G. Then $C_{\alpha,\beta}(A)$ is normal M-subgroup of M-group G, where $\mu_A(e) \leq \alpha$, $\nu_A(e) \geq \beta$ and e is the identity element of G.

Proof: Let $x \in C_{\alpha, \beta}(A)$ and $g\in G$ be any element. Then $\mu_A(x) \leq \alpha, \nu_A(x) \geq \beta$. Also A be Intuitionistic anti L-fuzzy normal M-subgroup of M-group G Therefore, $\mu_A(g^{-1}x g) = \mu_A(x)$ and $\nu_A(g^{-1}x g) = \nu_A(x)$ for all $x \in A$ and $g \in G$. Therefore $\mu_A(g^{-1} x g) = \mu_A(x) \leq \alpha$ and $\nu_A(g^{-1} x g) = \nu_A(x) \geq \beta$ implies that $\mu_A(g^{-1} x g) \leq \alpha$ and $\nu_A(g^{-1} x g) \geq \beta$ and so $g^{-1} x g \in C_{\alpha, \beta}(A)$.

Hence $C_{\alpha,\beta}(A)$ is normal M-subgroup of G.

3.5 Theorem: If A is Intuitionistic fuzzy subset of a group G. Then A is intuitionistic anti L-fuzzy M-subgroup of G if and only if $C_{\alpha,\beta}(A)$ is a M-subgroup of M-group G for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \le 1$, where $\mu_A(e) \le \alpha$, $\nu_A(e) \ge \beta$ and e is the identity element of G.

Proof: Firstly let A be intuitionistic anti L-fuzzy M-subgroup of M-group G. Then the result follows by Theorem (3.3)

Conversely, let A is Intuitionistic fuzzy subset of a group G such that $C_{\alpha, \beta}(A)$ is a M-subgroup of M- group G for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \le 1$.

To show that A be intuitionistic anti L-fuzzy M-subgroup of M-group G. For this we show that

(i) $\mu_A(mxy) \leq \mu_A(x) \land \mu_A(y) \text{ and } \nu_A(mxy) \geq \nu_A(x) \lor \nu_A(y) \text{ for all } x, y \in G$

(ii) $\mu_A(x^{-1}) = \mu_A(x)$ and $\nu_A(x^{-1}) = \nu_A(x)$

For (i) Let x, $y \in G$ and let $\alpha = \mu_A(x) \land \mu_A(y)$ and $\beta = \nu_A(x) \lor \nu_A(y)$. Then $\mu_A(x) \le \alpha$, $\mu_A(y) \le \alpha$ and $\nu_A(x) \ge \beta$, $\nu_A(y) \ge \beta$ i.e. $\mu_A(x) \le \alpha$, $\nu_A(x) \ge \beta$ and $\mu_A(y) \le \alpha$, $\nu_A(y) \ge \beta$ i.e. $x \in C_{\alpha}$, $\beta(A)$ and $y \in C_{\alpha}$, $\beta(A)$ and so $xy \in C_{\alpha}$, $\beta(A)$ [As $C_{\alpha,\beta}$ is a group] Therefore $\mu_A(mxy) \le \alpha = \mu_A(x) \land \mu_A(y)$ and $\nu_A(mxy) \ge \beta = \nu_A(x) \lor \nu_A(y)$ i.e. $\mu_A(mxy) \le \mu_A(x) \land \mu_A(y)$ and $\nu_A(mxy) \ge \nu_A(x) \lor \nu_A(y)$

For (ii) Let $x \in G$ be any element. Let $\mu_A(x) = \alpha$ and $\nu_A(x) = \beta$. Then $\mu_A(x) \le \alpha$ and $\nu_A(x) \ge \beta$ is true i.e. $x \in C_{\alpha,\beta}(A)$ As $x \in C_{\alpha,\beta}(A)$ is a M- subgroup of G Therefore we have $x^{-1} \in C_{\alpha,\beta}(A) \Rightarrow \mu_A(x^{-1}) \le \alpha$ and $\nu_A(x^{-1}) \ge \beta$ Thus $\mu_A(x^{-1}) \le \alpha = \mu_A(x)$ and $\nu_A(x^{-1}) \ge \beta = \nu_A(x)$ Thus $\mu_A(x) = \mu_A((x^{-1})^{-1}) \le \mu_A(x^{-1}) \le \mu_A(x)$ implies that $\mu_A(x^{-1}) = \mu_A(x)$ And $\nu_A(x) = \nu_A((x^{-1})^{-1}) \ge \nu_A(x^{-1}) \ge \nu_A(x)$ implies that $\nu_A(x^{-1}) = \nu_A(x)$

Hence A is Intuitionistic Anti L-fuzzy M-subgroup of M-group G.

3.6 Theorem: If A and B be two IALFMSG's of a M-group G, then $A \cap B$ is IALFMSG of M-group G.

Proof: By Theorem (3.5), $A \cap B$ is IALFMSG of M-group G if and only if $C_{\alpha, \beta}(A \cap B)$ is a M-subgroup of G. but as $C_{\alpha, \beta}(A \cap B) = C_{\alpha, \beta}(A) \cap C_{\alpha, \beta}(B)$ and both $C_{\alpha, \beta}(A)$ and $C_{\alpha, \beta}(B)$ are M-subgroups of G and intersection of two M-subgroups of a M-group is a subgroup of G implies that $C_{\alpha, \beta}(A \cap B)$ is a M-subgroup of G and hence $A \cap B$ is IALFMSG of M-group G.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

3.7 Remark: Union of two IALFMSG's of a group G need not be IALFMSG of M-group G

3.8 Example: Consider the Klein four group.

 $G = \{e, a, b, ab\}$, where a = e = b & ab = baFor $0 \le i \le 5$, let $t_i, s_i \in [0, 1]$ such that $1 = t_0 > t_1 > ... > t_5$ and $0 < s_0 < s_1 < ... < s_5$

Define Intuitionistic fuzzy subset A and B as follows:

$$\begin{split} &A = \{< x, \, \mu_A(x), \nu_A(x) >: x \in G \} \text{ and } B = \{< x, \, \mu_B(x), \nu_B(x) >: x \in G \}, \text{where} \\ &\mu_A(e) = t_1, \, \mu_A(a) = t_3, \, \mu_A(b) = \mu_A(ab) = t_4, \, \nu_A(b) = \nu_A(ab) = s_4, \, \nu_A(a) = s_3, \, \nu_A(e) = s_1 \\ &\mu_B(e) = t_0, \, \mu_B(a) = t_5, \, \mu_B(b) = t_2, \, \mu_B(ab) = t_5, \, \nu_B(b) = \nu_B(ab) = s_5, \, \nu_B(a) = s_2, \, \nu_B(e) = s_0 \end{split}$$

Clearly A and B are IALFMSG of the M-group G. (i) Now $A \cup B = \{ < x, (\mu_A \cup \mu_B)(x), (\nu_A \cup \nu_B)(x) > : x \in G \}$, Where $(\mu_A \cup \mu_B)(x) = Max \{\mu_A(x), \mu_B(x)\} = \mu_A(x) \vee \mu_B(x)$ and $(\nu_A \cup \nu_B)(x) = Min \{\nu_A(x), \nu_B(x)\} = \nu_A(x) \wedge \nu_B(x)$ Here $(\mu_A \cup \mu_B)(e) = t_0, (\mu_A \cup \mu_B)(a) = t_3, (\mu_A \cup \mu_B)(b) = t_2, (\mu_A \cup \mu_B)(ab) = t_4$ $(\nu_A \cup \nu_B)(e) = s_0, (\nu_A \cup \nu_B)(a) = s_2, (\nu_A \cup \nu_B)(b) = s_4, (\nu_A \cup \nu_B)(ab) = s_4$ $(\tau_{3, s4}(A) = \{x : x \in G \text{ such that } \mu_A(x) \le t_3, \nu_A(x) \ge s_4\} = \{a, e\}$ $C_{t_3, s4}(A \cup B) = \{x : x \in G \text{ such that } \mu_B(x) \le t_3, \nu_B(x) \ge s_4\} = \{e\}$ $C_{t_3, s4}(A \cup B) = \{x : x \in G \text{ such that } \mu_A(x) \vee \mu_B(x) \le t_3, \nu_A(x) \wedge \nu_B(x) \ge s_4\}$ $= \{x : x \in G \text{ such that } \mu_A(x) \vee \mu_B(x) \le t_3, \nu_A(x) \wedge \nu_B(x) \ge s_4\}$ $= \{e, a, b\}$

Since {e, a, b} is not a M-subgroup of G i.e. $C_{t3, s4}(A \cup B)$ is not a M-subgroup of G and hence $A \cup B$ is not IALFMSG of M-group G.

3.9 Definition: Intuitionistic anti L-fuzzy left and right cosets

Let G be a M-group and A be IALFMSG of M-group G. Let $x \in G$ be a fixed element. Then the set $xA = \{(g, \mu_XA(g), \nu_XA(g)) : g \in G\}$ where $\mu_XA(g) = \mu_A(x^{-1}g)$ and $\nu_XA(g) = \nu_A(x^{-1}g)$ for all $g \in G$ is called intuitionistic anti L-fuzzy left coset of G determined by A and x. similarly, the set $Ax = \{(g, \mu_AX(g), \nu_AX(g)) : g \in G\}$ where $\mu_{AX}(g) = \mu_A(gx^{-1})$ and $\nu_{AX}(g) = \nu_A(gx^{-1})$ for all $g \in G$ is called the intuitionistic anti L-fuzzy right coset of G determined by A and x.

3.10 Remark: It is clear that if A is intuitionistic anti L-fuzzy normal M-subgroup of G, then the intuitionistic anti L-fuzzy left coset and intuitionistic anti L-fuzzy right coset of A on G coincide and in this case, we call intuitionistic anti L-fuzzy coset instead of intuitionistic anti L-fuzzy left or intuitionistic anti L-fuzzy right coset.

3.11 Theorem: Let A be intuitionistic anti L-fuzzy M-subgroup of a M-group G and x be any fixed element of G. Then

- (i) x. $C_{\alpha, \beta}(A) = C_{\alpha, \beta}(xA)$
- (ii) $C_{\alpha,\beta}(A).x = C_{\alpha,\beta}(Ax)$, for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \le 1$.

Proof:

(i) Now
$$C_{\alpha,\beta}(xA) = \{ g \in G : \mu_{xA}(g) \le \alpha \& v_{xA}(g) \ge \beta \}$$
 with $\alpha + \beta \le 1$
Also $x \cdot C_{\alpha,\beta}(A) = x \cdot \{ y \in G : \mu_A(y) \le \alpha \text{ and } v_A(y) \ge \beta \}$
 $= \{ x y \in G : \mu_A(y) \ge \alpha \text{ and } v_A(y) \ge \beta \}$
Put $xy = g$ so that $y = x^{-1}g$
Therefore $x \cdot C_{\alpha,\beta}(A) = \{ g \in G : \mu_A(x^{-1}g) \le \alpha \text{ and } v_A(x^{-1}g) \ge \beta \}$
 $= \{ g \in G : \mu_{xA}(g) \le \alpha \text{ and } v_{xA}(g) \ge \beta \}$
Thus $x \cdot C_{\alpha,\beta}(A) = C_{\alpha,\beta}(xA)$ for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \le 1$

(ii) Again $C_{\alpha,\beta}(Ax) = \{g \in G: \mu_{Ax}(g) \le \alpha \text{ and } \nu_{Ax}(g) \ge \beta\}$ with $\alpha + \beta \le 1$ Also $C_{\alpha,\beta}(A).x = \{y \in G: \mu_A(y) \le \alpha \text{ and } \nu_X(y) \ge \beta\}$. x $= \{yx \in G: \mu_A(y) \le \alpha \text{ and } \nu_X(y) \ge \beta\}$ Put yx = g so that $y = gx^{-1}$

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

49

$$\begin{split} C_{\alpha, \beta}(A).x &= \{g \in G: \ \mu_A(gx^{-1}) \leq \alpha \text{ and } \nu_X(gx^{-1}) \geq \beta \} \\ &= \{g \in G: \ \mu_{Ax}(g) \leq \alpha \text{ and } \nu_{Ax}(g) \geq \beta \} \\ \text{Hence } C_{\alpha, \beta}(A).x &= C_{\alpha, \beta}(Ax), \text{ for all } \alpha, \beta \in [0, 1] \text{ with } \alpha + \beta \leq 1. \end{split}$$

3.12 Theorem: Let A be Intuitionitic Anti L-fuzzy M-subgroup of M-group G. Let x, y be elements of G such that $\mu_A(x) \land \mu_A(y) = \alpha$ and $\nu_A(x) \lor \nu_A(y) = \beta$. Then

Proof:

(i) Now $xA = yA \Leftrightarrow C_{\alpha,\beta}(xA) = C_{\alpha,\beta}(yA)$ $\Leftrightarrow x \cdot C_{\alpha,\beta}(A) = y \cdot C_{\alpha,\beta}(A)$ [by Theorem (3.11)(i)] $\Leftrightarrow x^{-1}y \in C_{\alpha,\beta}(A)$ [As $C_{\alpha,\beta}(A)$ is a subgroup of G] (ii) Again $Ax = Ay \Leftrightarrow C_{\alpha,\beta}(Ax) = C_{\alpha,\beta}(Ay)$ $\Leftrightarrow C_{\alpha,\beta}(A) \cdot x = C_{\alpha,\beta}(A) \cdot y$ [by Theorem (3.11)(ii)] $\Leftrightarrow xy^{-1} \in C_{\alpha,\beta}(A)$ [As $C_{\alpha,\beta}(A)$ is a subgroup of G]

REFERENCES

- 1. K.T Atanassov, "Intuitionistic fuzzy sets", Fuzzy Sets and Systems 20(1986), no.1, 87-96
- 2. D.K Basnet and N.K Sarma, "A note on Intuitionistic Fuzzy Equivalence Relation", International Mathematical Forum, 5, 2010, no. 67, 3301-3307
- 3. Kul Hur and Su Youn Jang, "The lattice of Intuitionistic fuzzy congruences", International Mathematical Forum, 1, 2006, no. 5, 211-236
- 4. N. Palaniappan, S. Naganathan and K. Arjunan, "A study on Intuitionistic L- Fuzzy Subgroups", Applied Mathematical Sciences, vol. 3, 2009, no. 53, 2619-2624
- 5. Ranjit Biswas "Vague Groups", International Journal of Computational Cognition, Vol. 4, no. 2, June 2006
- 6. L.A Zadeh, "Fuzzy sets", Information and Control 8, (1965), 338-353
- 7. P. K. Sharma, " (α, β) Cut of Intuitionistic Fuzzy Groups", International Mathematical Forum, Vol. 6, 2011, no. 53, 2605 2614

Source of support: Proceedings of National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics (RAPAM - 2018)", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

CONFERENCE PAPER National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.