Volume 9, No. 5, May - 2018 (Special Issue) International Journal of Mathematical Archive-9(5), 2018, 51-57 MMA Available online through www.ijma.info ISSN 2229-5046

ASSIGNMENT PROBLEM BASED ON NEW SIMILARITY MEASURES OF INTUITIONISTIC FUZZY SETS

B. POTHIRAJ ${ }^{\mathbf{1}}$ AND S. RAJARAM ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Sri S. R. N. M. College, Sattur-626203, Virudhunagar (Dt.), Tamil Nadu, India.
${ }^{2}$ Associate Professor, Department of Mathematics, Sri S. R. N. M. College, Sattur-626203, Virudhunagar (Dt.), Tamil Nadu, India.
E-mail: komburani@gmail.com ${ }^{1}$ and rajaram_srnm@yahoo.co.in ${ }^{2}$

Abstract

In this paper we introduce some new similarity measures of intuitionistic fuzzy sets. These similarity measures can be applied in models of multi-attribute decision. We propose an assignment model based on similarity measures of intuitionistic fuzzy sets. A numerical example is given to clarify the developed approach under intuitionistic fuzzy environment.

AMS Mathematics subject classification: 90C08, 90C70.
Keywords - Intuitionistic fuzzy set; Similarity measures; Assignment model.

1. INTRODUCTION

In decision-making situations we have to assign tasks to machines, workers to jobs, salesmen to regions, drivers to trucks, trucks to routes requirements to suppliers etc are mainly tackled with the help of Assignment Problems. In day to day problems various calculations should be solved with uncertainty and inexactness accuracy, errors in computation leads to uncertainty and in exactness. In order to deal with this uncertainty we use fuzzy assignment problems instead of classical assignment problems. The measures of distance and similarity are used to estimate the degree of closeness between two sets. In the model of multi-attribute decision, the distance and the similarity between two IFS is very important.

Szmidt and Kacprzyk [20], Hung and Yang [10] showed several measures for the distance between two IFS and the way of associated similarity measure is constructed. Li Qin and Olson [13] made a comparative analysis of different defined measures of similarity between two IFS. Xu [22] developed some similarity measures of IFS and define the notions of positive and negative ideals IFS.

In 1952 Votaw and Orden [21] first proposed the assignment problem. Lin and Wen [14] concentrate on the assignment problem where costs are not deterministic numbers but imprecise ones. Huang and Zhang [16] proposed a mathematical model for the fuzzy assignment problem with restriction on qualification. Chen [6] introduced a fuzzy assignment model that considers all individuals have same skills. Kuhn [12] developed the Hungarian algorithm for the assignment problem. Balinski and Gomory [4] introduced a labeling algorithm for solving assignment problem. Aggarwal et al. [1] developed an algorithm for bottleneck assignment problem. Liu and Gao [15] introduced fuzzy weighted equilibrium multi-job assignment problem and genetic algorithm. Yang and Liu [24] proposed a multi - objective fuzzy assignment problem. Mukherjee and Basu [17] proposed intuitionistic fuzzy assignment problem using similarity measures and score functions. Sakawa et al. [19] dealt with problems on production and work force assignment in a firm.

2. PRELIMINARIES ON INTUITIONISTIC FUZZY SETS

This section presents the basic concepts related to Intuitionistic Fuzzy Set, which was originally introduced by Attanassov and Gargov.

2.1. Intuitionistic Fuzzy Sets (IFS)

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a universe of discourse. A fuzzy set $A=\left\{\left\langle x_{j}, \mu_{A}\left(x_{j}\right)\right\rangle \mid x_{j} \in X\right\}$ defined by Zadeh [25] is characterized by a membership function $\mu_{A}: X \rightarrow[0,1]$ where $\mu_{A}\left(x_{j}\right)$ denotes the degree of membership of the element x_{j} to the set A.

Atanassov [3] introduced a generalized fuzzy set called IFS as follows:
An Intuitionistic Fuzzy Set (IFS) A in X is an object having the form: $A=\left\{\left\langle x_{j}, \mu_{A}\left(x_{j}\right), \vartheta_{A}\left(x_{j}\right)\right\rangle \mid x_{j} \in X\right\}$ which is characterized by a membership function μ_{A} and a nonmembership function ϑ_{A} where $\mu_{A}: X \rightarrow[0,1], \vartheta_{A}: X \rightarrow[0,1]$ with the condition $\mu_{A}\left(x_{j}\right)+\vartheta_{A}\left(x_{j}\right) \leq 1$ for all $x_{j} \in X$. Attanassov defined $\pi_{A}\left(x_{j}\right)=1-\mu_{A}\left(x_{j}\right)-\vartheta_{A}\left(x_{j}\right)$, for all $x_{j} \in X$ as the degree of indeterminacy or hesitancy of x_{j} to A where A is an IFS in X. Especially, if
$\pi_{A}\left(x_{j}\right)=1-\mu_{A}\left(x_{j}\right)-\vartheta_{A}\left(x_{j}\right)=0$ for each $x_{j} \in X$ then the IFS A is reduced to a fuzzy set.

2.2 Intuitionistic Fuzzy Number (IFN)

An Intuitionistic fuzzy number A is defined as follows:
(i) intuitionistic fuzzy sub set of the real line.
(ii) normal i.e. there is any $x_{0} \in \mathbb{R}$ such that $\mu_{A}\left(x_{0}\right)=1$ (so $\vartheta_{A}\left(x_{0}\right)=0$)
(iii) a convex set for the membership function $\mu_{A}(x)$ i. e $\mu_{A}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right)$ for all $x_{1}, x_{2} \in \mathbb{R}, \lambda \in[0,1]$
(iv) a concave set for the non membership function $\vartheta_{A}(x)$
i.e $\vartheta_{A}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \max \left(\vartheta_{A}\left(x_{1}\right), \vartheta_{A}\left(x_{2}\right)\right)$ for all $x_{1}, x_{2} \in \mathbb{R}, \lambda \in[0,1]$

2.3 Ranking of Intuitionistic Fuzzy Number

Let $a=\left(\mu_{1}, \vartheta_{1}\right)$ be an intuitionistic fuzzy number. Chen T.Y [8] introduced a score function S of an intuitionistic fuzzy value, which is represented as follows:

$$
\begin{equation*}
S(a)=\mu_{1}-\pi_{1} \vartheta_{1} \text { where } S(a) \in[-1,1] \tag{1}
\end{equation*}
$$

2.4 Similarity Measures of Intuitionistic Fuzzy sets [23]

Let $\Phi(X)$ be the set of all IFSs of X. Let $S: \Phi(\mathrm{X})^{2} \rightarrow[0,1]$, then the degree of similarity between $A \in \Phi(X)$ and $B \in \Phi(X)$ is defined as $S(A, B)$, which satisfies the following properties:

1. $0 \leq S(A, B) \leq 1$;
2. $S(A, B)=1$ iff $A=B$
3. $S(A, B)=S(B, A)$;
4. $\quad S(A, C) \leq S(A, B)$ and $S(A, C) \leq S(B, C)$, if $\subseteq B \subseteq C, C \in \Phi(X)$.

2.5 New similarity measures

The new similarity measures are defined by

$$
\begin{align*}
& S_{B 1}(A, B)=1-\frac{1}{3 n} \sum_{i=0}^{n}\left(\begin{array}{l}
\mid\left(\text { Max. of } \mu_{A} \text { and } \mu_{B}\right)-\left(\text { A. M of } \mu_{A} \text { and } \mu_{B}\right) \mid+ \\
\mid\left(\text { Max. of } \vartheta_{A} \text { and } \vartheta_{B}\right)-\left(\text { G. M of } \vartheta_{A} \text { and } \vartheta_{B}\right) \mid+ \\
\mid\left(\text { Max. of } \pi_{A} \text { and } \pi_{B}\right)-\left(\text { H. M of } \pi_{A} \text { and } \pi_{B}\right) \mid .
\end{array}\right) \tag{2}\\
& S_{B 2}(A, B)=1-\frac{1}{3 n} \sum_{i=0}^{n}\left(\begin{array}{l}
\mid\left(\text { Max. of } \mu_{A} \text { and } \mu_{B}\right)-\left(\text { A. M of } \mu_{A} \text { and } \mu_{B}\right) \mid+ \\
\mid\left(\text { Max. of } \vartheta_{A} \text { and } \vartheta_{B}\right)-\left(\text { A. M of } \vartheta_{A} \text { and } \vartheta_{B}\right) \mid+ \\
\mid\left(\text { Max. of } \pi_{A} \text { and } \pi_{B}\right)-\left(\text { A. M of } \pi_{A} \text { and } \pi_{B}\right) \mid .
\end{array}\right) \tag{3}\\
& S_{B 3}(A, B)=1-\frac{1}{3 n} \sum_{i=0}^{n}\left(\begin{array}{l}
\mid\left(\text { Max. of } \mu_{A} \text { and } \mu_{B}\right)-\left(\text { G. M of } \mu_{A} \text { and } \mu_{B}\right) \mid+ \\
\mid\left(\text { Max. of } \vartheta_{A} \text { and } \vartheta_{B}\right)-\left(\text { G. M of } \vartheta_{A} \text { and } \vartheta_{B}\right) \mid+ \\
\mid\left(\text { Max. of } \pi_{A} \text { and } \pi_{B}\right)-\left(\text { G. M of } \pi_{A} \text { and } \pi_{B}\right) \mid .
\end{array}\right) \tag{4}\\
& S_{B 4}(A, B)=1-\frac{1}{3 n} \sum_{i=0}^{n}\left(\begin{array}{l}
\mid\left(\text { Max. of } \mu_{A} \text { and } \mu_{B}\right)-\left(\text { H. M of } \mu_{A} \text { and } \mu_{B}\right) \mid+ \\
\mid\left(\text { Max. of } \vartheta_{A} \text { and } \vartheta_{B}\right)-\left(\text { H. M of } \vartheta_{A} \text { and } \vartheta_{B}\right) \mid+ \\
\mid\left(\text { Max. of } \pi_{A} \text { and } \pi_{B}\right)-\left(\text { H. M of } \pi_{A} \text { and } \pi_{B}\right) \mid .
\end{array}\right) \tag{5}
\end{align*}
$$

3. MATHEMATICAL MODEL OF INTUITIONISTIC FUZZY ASSIGNMENT PROBLEM

An assignment problem is a special type of transporation problem which can be stated in the form of $n \times n$ cost matrix [$\tilde{c}_{i j}$] of intuitionistic fuzzy numbers as follows:

Table-1: Cost matrix of an assignment problem

Job				
Person	1	2	\ldots	n
1	\tilde{c}_{11}	\tilde{c}_{12}	\ldots	$\tilde{c}_{1 n}$
2	\tilde{c}_{21}	\tilde{c}_{22}	\ldots	$\tilde{c}_{2 n}$
\vdots	\vdots	\vdots	\vdots	\vdots
n	$\tilde{c}_{n 1}$	$\tilde{c}_{n 2}$	\ldots	$\tilde{c}_{n n}$

The objective is to assign a number of origins to an equal number of destinations at a minimum cost or maximum profit. Each job must be done by exactly one person and one person can do, at most one job. Mathematically assignment problem can be denoted as
$\operatorname{Min} Z=\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{c}_{i j} x_{i j}$
subject to

$$
\begin{align*}
& \sum_{j=1}^{n} x_{i j}=1, i=1,2, \ldots, n \tag{6}\\
& \sum_{i=1}^{n} x_{i j}=1, j=1,2, \ldots, n \tag{7}
\end{align*}
$$

where $x_{i j}$ is the decision variable defined as
$x_{i j}=\left\{\begin{array}{c}1, \text { if the } i^{\text {th }} \text { person is assigned to the } j^{\text {th }} \text { job; where } i, j=1,2, \ldots, n . \\ 0, \text { otherwise }\end{array}\right.$
The cost of a person i doing the job j is considered as an intuitionistic fuzzy number
$\tilde{c}_{i j}=\left\{\left(\mu_{i j}, \vartheta_{i j}\right), i, j=1,2, \ldots, n\right\}$ where $\mu_{i j}$ denotes the degree of acceptance and $\vartheta_{i j}$ denotes the degree of rejection.
As our objective is to minimize the cost and maximize the profit, we should go for maximize the acceptance degree $\mu_{i j}$ and minimize the rejection degree $\vartheta_{i j}$.

Then the objective function becomes a multi-objective function as

$$
\begin{align*}
& \operatorname{Max}_{z_{1}}=\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i j} x_{i j} \text { and } \\
& \operatorname{Min}_{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \vartheta_{i j} x_{i j} \\
& \text { subject to }\left(\mu_{i j}+\vartheta_{i j}-1\right) x_{i j} \leq 0 \tag{8}\\
& \mu_{i j} x_{i j} \geq \vartheta_{i j} x_{i j} \tag{9}\\
& \vartheta_{i j} x_{i j} \geq 0 \tag{10}
\end{align*}
$$

Thus the model becomes
$\max Z=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\mu_{i j}-\vartheta_{i j}\right) x_{i j}$.
subject to the conditions (6), (7), (8), (9) and (10).

5. SOLUTION PROCEDURE

Algorithm 1:

Step-1: Determine the positive-ideal and negative-ideal solution based on intuitionistic fuzzy numbers, defined as follows

$$
\begin{align*}
& A^{+}=\left\{\left\langle\mu_{A^{+}}(C), \vartheta_{A^{+}}(C)\right\rangle\right\} \tag{11}\\
& A^{-}=\left\{\left\langle\mu_{A^{-}}(C), \vartheta_{A^{-}}(C)\right\rangle\right\} \tag{12}
\end{align*}
$$

where $\mu_{A^{+}}(C)=\max \left\{\mu_{A_{i}}\left(C_{i j}\right)\right\}, \vartheta_{A^{+}}(C)=\min \left\{\left(\vartheta_{A_{i}}\left(C_{i j}\right)\right\}\right.$ and $\pi_{A^{+}}(C)=1-\mu_{A^{+}}(C)-\vartheta_{A^{+}}(C)$

$$
\begin{equation*}
\mu_{A^{-}}(C)=\min \left\{\mu_{A_{i}}\left(C_{i j}\right)\right\}, \vartheta_{A^{-}}(C)=\max \left\{\left(\vartheta_{A_{i}}(C)\right\} \text { and } \pi_{A^{-}}(C)=1-\mu_{A^{-}}(C)-\vartheta_{A^{-}}(C)\right. \tag{13}
\end{equation*}
$$

Step-2: Based on the equation (2), the following similarity measures of IFSs have been defined. Calculate the degree of similarity of positive ideal IFS A^{+}and the alternative A_{i}, and the degree of similarity of negative ideal IFS A^{-}and the alternative A_{i}, using the following equations respectively. The degree of similarity of each alternative A_{i} and the positive ideal IFS A^{+}is defined as:

$$
\begin{align*}
& S_{B 1}\left(A^{+}, A_{i}\right)=1-\frac{1}{3}\left(\begin{array}{l}
\mid\left(\text { Max. of } \mu_{A^{+}} \text {and } \mu_{A_{i}}\right)-\left(\text { A.M of } \mu_{A^{+}} \text {and } \mu_{A_{i}}\right) \mid+ \\
\mid\left(\text { Max.of } \vartheta_{A^{+}} \text {and } \vartheta_{A_{i}}\right)-\left(\text { G.M of } \vartheta_{A^{+}} \text {and } \vartheta_{A_{i}}\right) \mid+ \\
\mid\left(\text { Max.of } \pi_{A^{+}} \text {and } \pi_{A_{i}}\right)-\left(\text { H.M of } \pi_{A^{+}} \text {and } \pi_{A_{i}}\right) \mid .
\end{array}\right) \tag{15}\\
& i=1,2,3, \ldots n ; j=1,2,3, \ldots, n
\end{align*}
$$

Similarly, degree of similarity of each alternative A_{i} and the negative ideal IFS A^{-}is defined as:

$$
S_{B 1}\left(A^{-}, A_{i}\right)=1-\frac{1}{3}\left(\begin{array}{c}
\mid\left(M a x . \text { of } \mu_{A^{-}} \text {and } \mu_{A_{i}}\right)-\left(\text { A.M of } \mu_{A^{-}} \text {and } \mu_{A_{i}}\right) \mid+ \tag{16}\\
\mid\left(\text { Max.of } \vartheta_{A^{-}} \text {and } \vartheta_{A_{i}}\right)-\left(\text { G.M of } \vartheta_{A^{-}} \text {and } \vartheta_{A_{i}}\right) \mid+ \\
\mid\left(\text { Max.of } \pi_{A^{-}} \text {and } \pi_{A_{i}}\right)-\left(H . M \text { of } \pi_{A^{-}} \text {and } \pi_{A_{i}}\right) \mid .
\end{array}\right)
$$

$i=1,2,3, \ldots n ; j=1,2,3, \ldots, n$. similarly to calculate positive and negative ideals for equations (3) (4) and (5).
Step-3: Using (15) and (16) calculate the relative similarity measure d_{i} corresponding to the alternative A_{i} as

$$
\begin{equation*}
d_{i}=\frac{S_{B 1}\left(A^{+}, A_{i}\right)}{S_{B 1}\left(A^{+}, A_{i}\right)+S_{B 1}\left(A^{-}, A_{i}\right)}, i=1,2,3, \ldots, n . \tag{17}
\end{equation*}
$$

Step-4: Then considering the relative similarity matrix as the initial table for an assignment problem in the maximization type and we solved by Hungarian method or by any standard software to find the optimal assignment.

Algorithm 2:

Step-1: Find the score function matrix of the given cost matrix with data in the form of IFN by using (1).
Step-2: Considering this score function matrix as the maximization form and solve Hungarian method or standard software to find the optimal assignment.

6. ILLUSTRATIVE EXAMPLE

Let us consider an Intuitionistic fuzzy assignment problem having three persons and three jobs where the cost matrix contains intuitionistic fuzzy elements denoting time for completing the $j^{\text {th }}$ job by the $i^{\text {th }}$ person. The cost matrix is given in Table 2. It is required to find the optimal assignment of jobs to machines.

Table-2: Intuitionistic fuzzy cost matrix

	J_{1}	J_{2}	J_{3}
P_{1}	$(0.4,0.5)$	$(0.6,0.2)$	$(0.5,0.2)$
P_{2}	$(0.2,0.7)$	$(0.8,0.1)$	$(0.6,0.3)$
P_{3}	$(0.7,0.1)$	$(0.3,0.6)$	$(0.4,0.3)$

Similarity measure for $S_{B 1}(A, B)$

Apply Algorithm1 in table 2. The positive-ideal and negative-ideal by using (15) and (16) are as in table 3 and table 4.
Table-3: Positive ideal

$\boldsymbol{S}_{\boldsymbol{B} \mathbf{1}}\left(\boldsymbol{A}^{+}, \boldsymbol{A}_{\boldsymbol{i}}\right)$	J_{1}	J_{2}	J_{3}
P_{1}	0.841	0.925	0.88
P_{2}	0.755	1	0.924
P_{3}	0.961	0.798	0.841

Table-4: Negative ideals

$\boldsymbol{S}_{\boldsymbol{B} 1}\left(A^{-}, \boldsymbol{A}_{\boldsymbol{i}}\right)$	J_{1}	J_{2}	J_{3}
P_{1}	0.931	0.802	0.791
P_{2}	1	0.755	0.853
P_{3}	0.749	0.966	0.836

To calculate Relative similarity by using (17) we get
Table-5: Relative similarity

d_{i}	J_{1}	J_{2}	J_{3}
P_{1}	0.475	0.536	0.527
P_{2}	0.43	0.57	0.52
P_{3}	0.562	0.452	0.501

By using step4 and we calculate optimal assignment for Table 5.

The optimal assignment is
$1^{\text {st }}$ job is assigned to the $2^{\text {nd }}$ person.
$2^{\text {nd }}$ job is assigned to the $3^{\text {rd }}$ person.
$3^{\text {rd }}$ job is assigned to the $1^{\text {st }}$ person.
Similarity measure for $S_{B 2}(A, B)$
Apply Algorithm1 in table 2. The positive-ideal and negative-ideal by using $S_{B 2}\left(A^{+}, A_{i}\right)$ and $S_{B 2}\left(A^{-}, A_{i}\right)$ we get
Table 6: Positive ideal

$\boldsymbol{S}_{\boldsymbol{B} 2}\left(\boldsymbol{A}^{+}, \boldsymbol{A}_{\boldsymbol{i}}\right)$	J_{1}	J_{2}	J_{3}
P_{1}	0.85	0.95	0.917
P_{2}	0.783	0.983	0.917
P_{3}	0.983	0.817	0.833

Table-7: Negative ideal

$\boldsymbol{S}_{\boldsymbol{B} 2}\left(A^{-}, \boldsymbol{A}_{\boldsymbol{i}}\right)$	J_{1}	J_{2}	J_{3}
P_{1}	0.933	0.833	0.833
P_{2}	1	0.8	0.867
P_{3}	0.8	0.967	0.867

To calculate Relative similarity by using (17) we get
Table-8: Relative similarity

d_{i}	J_{1}	J_{2}	J_{3}
P_{1}	0.477	0.533	0.524
P_{2}	0.439	0.551	0.514
P_{3}	0.551	0.458	0.505

By using step4 and we calculate optimal assignment for Table 8.

The optimal assignment is

$1^{\text {st }}$ job is assigned to the $2^{\text {nd }}$ person.
$2^{\text {nd }}$ job is assigned to the $3^{\text {rd }}$ person.
$3^{\text {rd }}$ job is assigned to the $1^{\text {st }}$ person.
Similarity measure for $S_{B 3}(A, B)$
Apply Algorithm1 in table 2. The positive-ideal and negative-ideal by using $S_{B 3}\left(A^{+}, A_{i}\right)$ and $S_{B 3}\left(A^{-}, A_{i}\right)$ we get
Table-9: Positive ideal

$\boldsymbol{S}_{\boldsymbol{B} \mathbf{3}}\left(\boldsymbol{A}^{+}, \boldsymbol{A}_{\boldsymbol{i}}\right)$	\boldsymbol{J}_{1}	J_{2}	J_{3}
P_{1}	0.83	0.925	0.882
P_{2}	0.722	1	0.922
P_{3}	0.963	0.778	0.837

Table-10: Negative ideal

$\boldsymbol{S}_{\boldsymbol{B} 3}\left(A^{-}, \boldsymbol{A}_{\boldsymbol{i}}\right)$	J_{1}	J_{2}	J_{3}
P_{1}	0.925	0.787	0.788
P_{2}	1	0.722	0.835
P_{3}	0.727	0.964	0.838

To calculate Relative similarity by using (17) we get
Table-11: Relative similarity

d_{i}	J_{1}	J_{2}	J_{3}
P_{1}	0.473	0.54	0.528
P_{2}	0.419	0.581	0.525
P_{3}	0.57	0.477	0.5

By using step4 and we calculate optimal assignment for Table 11

The optimal assignment is

$1^{\text {st }}$ job is assigned to the $2^{\text {nd }}$ person.
$2^{\text {nd }}$ job is assigned to the $3^{\text {rd }}$ person.
$3^{\text {rd }}$ job is assigned to the $1^{\text {st }}$ person.
Similarity measure for $\mathbf{S}_{\mathbf{B} 4}(\mathbf{A}, \mathrm{~B})$
Apply Algorithm1 in table 2. The positive-ideal and negative-ideal by using $S_{B 4}\left(A^{+}, A_{i}\right)$ and $S_{B 4}\left(A^{-}, A_{i}\right)$ we get
Table-12: Positive ideal

$\boldsymbol{S}_{\boldsymbol{B 4}}\left(\boldsymbol{A}^{+}, \boldsymbol{A}_{\boldsymbol{i}}\right)$	J_{1}	J_{2}	J_{3}
P_{1}	0.8	0.917	0.866
P_{2}	0.665	1	0.912
P_{3}	0.96	0.736	0.811

Table-13: Negative ideal

$\boldsymbol{S}_{\boldsymbol{B 4} 4}\left(A^{-}, \boldsymbol{A}_{\boldsymbol{i}}\right)$	J_{1}	J_{2}	J_{3}
P_{1}	0.917	0.748	0.749
P_{2}	1	0.665	0.807
P_{3}	0.673	0.962	0.812

To calculate Relative similarity by using (17) we get
Table-14: Relative similarity

d_{i}	J_{1}	J_{2}	J_{3}
P_{1}	0.466	0.551	0.536
P_{2}	0.399	0.601	0.531
P_{3}	0.588	0.433	0.5

By using step4 and we calculate optimal assignment for Table 14

The optimal assignment is

$1^{\text {st }}$ job is assigned to the $2^{\text {nd }}$ person.
$2^{\text {nd }}$ job is assigned to the $3^{\text {rd }}$ person.
$3^{\text {rd }}$ job is assigned to the $1^{\text {st }}$ person.

Hungarian method

By using score function (1) for given table then we get
Table-14: Score value

	J_{1}	J_{2}	J_{3}
P_{1}	0.35	0.56	0.44
P_{2}	0.13	0.79	0.57
P_{3}	0.68	0.24	0.31

Apply Algorithm 2 for the above table we get the following optimal assignment.

The optimal assignment is

$1^{\text {st }}$ job is assigned to the $2^{\text {nd }}$ person.
$2^{\text {nd }}$ job is assigned to the $3^{\text {rd }}$ person.
$3^{\text {rd }}$ job is assigned to the $1^{\text {st }}$ person.

7. CONCLUSION

In this paper a real life intuitionistic fuzzy assignment model with new similarity measure is proposed. The procedure for solving IFAP has been described which uses the concept of relative degree of similarity under intuitionistic fuzzy environment. Even though different similarity measures are defined, the result obtained by the proposed method is validated with the same result obtained by solving the IFAP considering the score function matrix as the profit matrix.

National Conference March 1st 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

REFERENCES

1. Aggarwal V, Tikekar V G, Hsu L F., Bottleneck assignment problems under categorization, Computers and Operation Research 13 (1986), 11 -26.
2. Angelov P P., Optimization in an intuitionistic fuzzy environment, Fuzzy Sets and Systems 86 (1997), 299-306.
3. Atanassov K T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986), 87 - 96.
4. Balinski M L, Gomory R E., A primal method for the assignment and transportation problems, Management Science 10 (1967), 578-593.
5. Burillo P, Bustince H, Mohedano V., Some definition of Intuitionistic Fuzzy Numbers, First Properties, In Proceedings of the $1^{\text {st }}$ workshop on Fuzzy Based Expert Systems, D.Lakoy (Ed.) (1994), 53-55.
6. Chen M S., On a fuzzy assignment problem, Tamkang Journal 22 (1985), 407-411.
7. Chen S M, Tan J M., Handling multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy sets and Systems 67 (1994), 163-172.
8. Chen T Y., A comparitive analysis of score functions for multiple criteria decision making in intuitionistic fuzzy sets, Information Sciences 181 (2011), 3652 - 3676.
9. Hong D H, Choi C H., Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets and Systems 114 (2000), 103-113.
10. Hung W L, Yang M S., Similarity measure of Intuitionistic fuzzy set based on Hausdorff distance, Pattern Recognition Letters 25 (2004), 1613 - 1611.
11. Hung W L, Yang M S., On Similarity measures between Intuitionistic fuzzy sets, International Journal of Intelligent Systems 23 (2008), $364-383$.
12. Kuhn H W., The Hungarian method for the assignment and transportation problems, Naval Research Logistics Quartely 2 (1955), 83 - 97.
13. Li Y, Olson D, Qin Z., Similarity measures between Intuitionistic fuzzy sets, a comparative analysis, Pattern recognition Letters 28 (2007), 278 - 285.
14. Lin Chi - Jen, Wen Ue - pyng., A labeling algorithm for the fuzzy assignment problem, Fuzzy Sets and Systems 142 (2004), 373 - 391.
15. Liu C J, and Gao X., Fuzzy weighted equilibrium multi - objective assignment problem and genetic algorithm. Applied Mathematical Modelling 33 (2009), 3926 - 3935.
16. Long - Sheng, Huang Li - pu, Zhang., Solution method for Fuzzy Assignment Problem with Restriction of Qualification, Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (2006), (ISDA’06).
17. Mukherjee S, Basu K., Solving intuitionistic fuzzy assignment problem by using similarity measures and score Functions, International journal of pure and Applied Sciences and Technology 2 (2011), pp 1 - 18.
18. Mukherjee S, Basu K ., Solution of a class of Intuitionistic Fuzzy Assignment Problem by using similarity measures. Knowledge - Based Systems 27 (2012), 170 - 179.
19. Sakawa M, Nishizaki I, Uemura Y., Interactive fuzzy programming for two - level linear and linear fractional production and assignment problems: a case study, European Journal on Operation Research 135 (2001), 142 - 157.
20. Szmidt E, Kacprzyk J., distance between intuitionistic fuzzy sets, Fuzzy set and System 114 (2000) 505 - 518.
21. Votaw D F, Orden A., The personal assignment problem, symposium on linear inequalities and programming, Project SCOOP 10,US Air Force, Washington (1952), 155 - 163.
22. Xu Z., Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making 6 (2007), $109-121$.
23. Xu Z S, Chen J., An overview of distance and similarity measures of Intuitionistic fuzzy sets, International Journal of uncertainity, Fuzziness and Knowledge Based system, 16 (2008) 529 - 555.
24. Yang L, Liu B., A multi - objective fuzzy assignment problem New model and algorithm, IEEE International conference on Fuzzy Systems (2005), 551 - 556.
25. Zadeh L., A Fuzzy sets, Information and Control 8 (1965), 338-353.

Source of support: Proceedings of National Conference March 1st 2018, On "Recent Advances in Pure and Applied Mathematics (RAPAM - 2018)", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

