Volume 9, No. 5, May - 2018 (Special Issue) International Journal of Mathematical Archive-9(5), 2018, 69-73 MAAvailable online through www.ijma.info ISSN 2229 – 5046

SUPRA SEMI NORMAL SPACES AND SOME SUPRA MAPS

G. RAMKUMAR¹, M. GILBERT RANI² AND P. AROCKIADAS³

^{1,2&3}Department of Mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India.

E-mail: ¹ramanujam_1729@yahoo.com, ²gil.anto@yahoo.co.in, and ³aga.arul@gmail.com.

ABSTRACT

In this paper, We obtain the characterizations of supra semi normal space by using supra semi generalized-open sets (supra sg- open sets). Moreover, inorder to obtain preservation theorems of supra semi normal spaces, we introduce the concepts of supra pre sg- continuous maps and supra pre sg-closed maps and also investigate several properties of new notions

2010 Mathematics Subject Classifications: 54A10, 54A20.

Keywords and phrases: Supra semi normal space, supra sg-open set, supra pre sg-continuous map, supra pre sg-closed map, supra topological space.

1. INTRODUCTION

In 1983, Mashhour *et al.* [6] introduced supra topological spaces and studied S –continuous maps and S* - continuous maps. In 2008, Devi *et al.* [3] introduced and studied a class of sets called supra α -open and a class of maps called s α -continuous between topological spaces, respectively. Ravi *et al.* [10] introduced and studied a class of sets called supra g-closed and a class of maps called supra g-continuous and supra g-closed respectively. Kamaraj *et al.* [4] introduced the concepts of supra sg -closed sets and supra gs-closed sets and study their basic properties. Also, introduced the concepts of supra normal spaces and supra-s-normal spaces. In this paper, we obtain the characterizations of supra semi normal space by using supra semi generalized-open sets (supra sg- open sets). Moreover, inorder to obtain preservation theorems of supra semi normal spaces, we introduce the concepts of supra pre sg-closed maps and also investigate several properties of new notions

2. PRELIMINARIES

Throughout this paper (X, τ), (Y, σ) and (Z, ν) (or simply, X, Y and Z) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of (X, τ), the closure and the interior of A in X with respect to τ are denoted by cl(A) and int(A) respectively. The complement of A is denoted by X\A.

Definition 2.1 [6, 11]: Let X be a non-empty set. The subfamily $\mu \subseteq P(X)$ where P(X) is the power set of X is said to be a supra topology on X if $X \in \mu$ and μ is closed under arbitrary unions. (X, μ) is called a supra topological space.

The elements of μ are said to be supra open in (X, μ).

The complement of supra open set is called supra closed set.

Definition 2.2 [3]: Let A be a subset of X. Then

- (i) The supra closure of a set A is, denoted by $cl^{\mu}(A)$, defined as $cl^{\mu}(A) = \bigcap \{B : B \text{ is a supra closed and } A \subseteq B\}$.
- (ii) the supra interior of a set A is, denoted by $int^{\mu}(A)$, defined as $int^{\mu}(A) = \bigcup \{B : B \text{ is a supra open and } A \supseteq B \}$.

Definition 2.3 [6]: Let (X, τ) be a topological space and μ be a supra topology on X. We call μ is a supra topology associated with τ if $\tau \subseteq \mu$.

International Journal of Mathematical Archive- 9(5), May – 2018

69

CONFERENCE PAPER National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

G. Ramkumar¹, M.Gilbert Rani² and P. Arockiadas³ / Supra Semi Normal Spaces And Some Supra Maps / IJMA- 9(5), May-2018, (Special Issue)

Definition 2.4: Let (X, μ) be a supra topological space. A subset A of X is called

- (i) supra semi-open [3] if $A \subseteq cl^{\mu}(int^{\mu}(A))$;
- (ii) supra α -open [3,12] if $A \subseteq int^{\mu}(cl^{\mu}(int^{\mu}(A)));$
- (iii) supra b-open [11] if $A \subseteq cl^{\mu}(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A));$
- (iv) supra β -open [9] if $A \subseteq cl^{\mu}(int^{\mu}(cl^{\mu}(A)));$
- (v) supra pre-open [12] if $A \subseteq int^{\mu}(cl^{\mu}(A))$.

The complements of the above mentioned open sets are called their respective closed sets.

Definition 2.5 [4]: Let A be a subset of (X, μ) . Then

- (i) the supra semi-closure of A is, denoted by $scl^{\mu}(A)$, defined as $scl^{\mu}(A) = \bigcap \{B : B \text{ is a supra semi-closed and } A \subseteq B\}$.
- (ii) the supra semi-interior of A is, denoted by $sint^{\mu}(A)$, defined as $sint^{\mu}(A) = \bigcup \{G : G \text{ is a supra semi-open and } A \supseteq G \}$.

Definition 2.6[4]: Let (X, μ) be a supra topological space. A subset A of X is called Suprasg-closed if $scl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra semi-open in (X, μ) .

Definition 2.7[5]: Let (X, τ) and (Y,σ) be two topological spaces with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f : (X, \mu) \rightarrow (Y,\lambda)$ is called

- (i) suprasg-continuous if the inverse image of each open set of Y is a supra sg-open set in X.
- (ii) Supra sg-irresoluate if the inverse image of each supra sg-closed set of Y is a supra sg-closed set in X.
- (iii) Supra pre semi-closed (resp. supra pre semi-open) if the image of each semi-closed (resp. semi-open) set of X is supra semi-closed (resp. supra semi-open) in Y.

Definition 2.8[4]: A space X is called supra normal if for any pair of disjoint supra closed subsets A and B of X, there exist disjoint supra open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 2.9[4]: A space X is called supras-normal if for any pair of disjoint supraclosed subsets A and B of X, there exist disjoint suprasemi-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

3. Supra semi-normal space

Definition 3.1: A space X is called supra semi normal if for each pair of disjoint supra semi-closed sets A and B, there exist disjoint supra-semi open sets U and V such that $A \subseteq U$ and $B \subseteq U$.

Definition 3.2: A space X is called supra $T_{\frac{1}{2}}$ if every supra g-closed set of X is supra closed in X.

Definition 3.3: A space X is called supra semi $T_{\frac{1}{2}}$ if every supra sg-closed set of X is supra semi-closed in X.

Theorem 3.4: Let (X, μ) be supra topological space. The following properties are equivalent.

- a) X is supra semi-normal.
- b) For each pair of disjoint supra semi-closed sets A and B, there exist disjoint supra sg-open sets U and V such that $A \subseteq U$ and $B \subseteq U$.
- c) For each supra semi-closed set A and each supra semi-open set containing A, there exist a supra sg-open set G such that $A \subseteq G \subseteq scl^{\mu}(G) \subseteq U$.
- d) For each supra semi-closed set A and each supra sg-open set U containing A, there exist supra semi-open set G, such that $A \subseteq G \subseteq scl^{\mu}(G) \subseteq sint^{\mu}(G)$.
- e) For each supra sg-closed set A and each supra semi-open set U containing A, there exist supra semi open set G, such that $A \subseteq scl^{\mu}(A) \subseteq G \subseteq scl^{\mu}(G) \subseteq U$.
- f) For each supra semi-closed set A of X and supra semi open set U containing A, there exists $G \in S-SO(X) \cap S-SC(X)$ such that $A \subseteq G \subseteq U$.

Proof:

 $(a) \Rightarrow (b)$: It is obvious, since every supra semi-open set is supra sg-open set.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

70

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

 $(b) \Rightarrow (c)$: Let $A \in S$ -SC(X) and $U \in S$ -SO(X) containing A. Then $A \cap (X \setminus U) = \varphi$ and $X \setminus U \in SC(X)$. There exist supra sg-open sets G and V such that $A \subseteq G$, $X \setminus U \subseteq V$, $G \cap V = \varphi$. Therefore, we have $A \subseteq G \subseteq X \setminus U \subseteq V$ and hence $scl^{\mu}(G) \subseteq scl^{\mu}(X \setminus V) \subseteq U$ since $X \setminus V$ is supra sg-closed and $U \in S$ -SO(X). Consequently, we obtain $A \subseteq G \subseteq scl^{\mu}(G) \subseteq U$.

 $(c) \Rightarrow (d)$: Let $A \in S-SC(X)$ and U be a supra sg-open set containing A. We have $A \subseteq sint^{\mu}(U)$ and $sint^{\mu}(U) \in S-SO(X)$. There exist a supra sg-open set V such that $A \subseteq V \subseteq sint^{\mu}(V) \subseteq sint^{\mu}(U)$. Put $G = sint^{\mu}(V)$, then we obtain $G \in S - SO(X)$ and $A \subseteq G \subseteq sint^{\mu}(G) \subseteq sint^{\mu}(U)$.

 $(d) \Rightarrow (e)$: Let A be supra sg-closed set and $U \in S$ -SO(X) containing A. Then, we have scl^µ(A) $\subseteq U$ and scl^µ(A) \in S-SC(X). Since every supra semi open set is supra sg-open, there exist $G \in S$ -SO(X) such that $A \subseteq scl^µ(A) \subseteq G \subseteq scl^µ(G) \subseteq U$.

 $(e) \Rightarrow (f)$: Let A \in S-SC(X) and U \in S-SO(X) containing A. There exist V \in S-SO(X) such that A \subseteq V \subseteq scl^µ(V) \subseteq U. Put G = scl^µ(V), then G is supra semi-open and supra semi-closed and A \subseteq G \subseteq U.

 $(f) \Rightarrow (a)$: Let A and B be any pair of disjoint supra semi-closed sets. Then we have $A \subseteq X \setminus B \in S$ -SO(X) and there exist $U \in S$ -SO(X) $\cap S$ -SC(X) such that $A \subseteq U \subseteq X \setminus B$. Now, put $V = X \setminus U$ then we obtain $A \subseteq U$, $B \subseteq V \in S$ -SO(X) and $U \cap V = \varphi$. This shows that X is supra semi-normal.

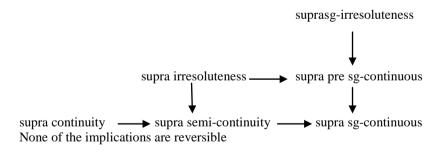
4. Supra pre sg-continuous maps

In this section, we introduce a new class of functions called supra pre sg-continuous maps.

Definition 4.1: Let (X, τ) and (Y, σ) be two supra topological space and $\tau \subseteq \mu$. A map $f:(X, \mu) \rightarrow (Y, \sigma)$ is said to be supra pre sg-continuous if the inverse image of each semi-closed set in Y is supra sg-closed set in X.

Definition 4.2: Let (X, τ) and (Y, σ) be two supra topological space and $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A map $f:(X, \mu) \rightarrow (Y, \lambda)$ is called supra pre sg^{*}- continuous if the inverse image each supra semi-closed set in Y is supra sg-closed in X.

Remark 4.3: From the above definition we have the following implications



Theorem 4.4: Let (X, τ) and (Y, σ) be two supra topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A mapf: $(X, \mu) \rightarrow (Y, \lambda)$ is called supra pre sg- continuous and supra pre semi-closed then f is supra sg-irresolute.

Proof: Let K be any supra sg-closed set of Y and U be supra semi open set containing $f^{1}(V)$. Since f is supra pre semiclosed, there exist supra semi open set V in Y such that $K \subseteq V$ and $f^{1}(V) \subseteq U$. Since K is supra sg-closed in Y, $scl^{\mu}(V) \subseteq V$ and hence $f^{1}(scl^{\mu}(V)) \subseteq f^{1}(V) \subseteq U$. Since f is supra pre sg-continuous. $f^{1}(scl^{\mu}(V))$ is supra sg-closed in X and hence $scl^{\mu}(f^{1}(K)) \subseteq scl^{\mu}(f^{1}(scl^{\mu}(V))) \subseteq U$. This shows that $f^{1}(K)$ supra sg-closed in X. Hence f is supra sg-irresolute.

Corollary 4.5: Every supra irresolute, supra pre-semi closed function is supra sg-irresolute.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

71

G. Ramkumar¹, M.Gilbert Rani² and P. Arockiadas³ / Supra Semi Normal Spaces And Some Supra Maps / IJMA- 9(5), May-2018, (Special Issue)

Corollary 4.6: Let (X, τ) and (Y, σ) be topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. If a space X is supra semi $T_{\frac{1}{2}}$ and f: $(X, \mu) \rightarrow (Y, \lambda)$ is onto supra irresolute and supra pre semi-closed then the space (Y, σ) is supra semi $T_{\frac{1}{2}}$.

Proof: Let A be supra sg-closed set in Y. we have that $f^{1}(A)$ is supra sg-closed in X [In 5 Theorem 3.6]. since X is supra semi $T_{\frac{1}{2}}$, $f^{1}(A)$ is supra semi-closed and hence A is supra semi closed. Hence Y is supra $T_{\frac{1}{2}}$ space.

Theorem 4.7: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. Let X be supra semi T_{1/2} space. A map f: X \rightarrow Y is supra pre sg^{*}- continuous if and only if f is supra semi-irresolute.

Proof: Suppose that f is supra pre sg^{*}-continuous. Let K be any supra semi closed set of Y. Then $f^{1}(K)$ is supra sgclosed in X. Since X is supra semi $T_{\frac{1}{2}}$, $f^{1}(K)$ is supra semi-closed. Hence f is supra semi-irresolute. The converse is obvious.

Corollary 4.8: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A map $f : (X, \mu) \rightarrow (Y, \lambda)$ is supra seguritresolute and X is supra semi T_{1/2} then f is supra semi irresolute.

Proof: Let V be supra semi-closed in Y. Every supra semi-closed set is supra sg-closed. Since f is supra sg-irresolute then $f^{1}(V)$ is supra sg-closed in X. Since X is supra semi $T_{\frac{1}{2}} \cdot f^{1}(V)$ is supra semi-closed in X. Hence f is supra semi-irresolute.

Definition 4.9: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A map $f:(X, \mu) \rightarrow (Y, \lambda)$ is called supra pre semi^{*}-closed if the image of each supra semi-closed in X is supra semi-closed in Y.

Theorem 4.10: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu, \sigma \subseteq \lambda$. If a map $f:(X, \mu) \rightarrow (Y, \lambda)$ is supra pre seg^{*}-continuous, supra pre semi^{*}-closed injection and Y is supra semi normal space, then X is supra semi normal.

Proof: Let A and B be any two disjoint supra semi-closed sets of X. Since f is supra pre semi^{*}-closed injection, f(A) and f(B) are disjoint supra semi-closed sets of Y. By supra semi normality of Y, there exit supra semi-open sets U and V in Y such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Since f is supra pre sg^{*}-continuous, $f^{1}(U)$ and $f^{1}(V)$ are disjoint supra sg-closed sets containing A and B respectively. By theorem 3.4, X is supra semi normal.

Corollary 4.11: The inverse image of supra semi normal space under an supra irresolute and supra pre semi^{*}-closed injection is supra semi-normal.

5. Supra pre sg-closed maps

In this section, we introduce the new class of maps called supra pre sg-closed and supra pre sg^{*}-closed maps.

Definition 5.1: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. If a map $f:(X, \mu) \to (Y, \lambda)$ is called supra pre sg-closed if the image of each semi closed set in X is supra sg-closed in Y.

Definition 5.2: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A map $f:(X, \mu) \to (Y, \lambda)$ is called supra sg^{*}-closed if image of each supra semi-closed in X is supra sg-closed in Y.

Theorem 5.3: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A map f: $(X, \mu) \rightarrow (Y, \lambda)$ is an supra semi irresolute and supra pre sg^{*}-closed map and A is a supra sg-closed of X, then f(A) is a supra sg-closed in Y.

Proof: Let A be a supra sg-closed set of X. Let $f(A) \subseteq U$ where U is supra semi-open set of Y. Then $A \subseteq f^{-1}(U)$ and $f^{-1}(U)$ is supra semi-open in X because f is supra semi irresolute. Since f is supra pre sg^{*}-closed scl^µ(A) is supra semi closed in X and f(scl^µ(A)) is supra sg-closed in Y and $f(scl^µ(A)) \subseteq U$. Therefore we have $scl^{\lambda}f(A) \subseteq scl^{\lambda}(f(scl^µ(A))) \equiv (u)$. Hence f(A) is supra sg-closed in Y.

Proposition 5.4: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A surjective map $f:(X, \mu) \rightarrow (Y, \lambda)$ is supra pre sg^{*}-closed if and only if for each subset B of Y and each supra open set U of X contain $f^{-1}(B)$, there exist a supra sg-open set V of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq U$.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

Proof:

Necessity: Suppose that f is supra pre sg^{*}-closed. Let B be any subset of Y and U is supra semi open set containing $f^{1}(B)$. V=Y\f(X\U) then V is supra sg-open inY, B \subseteq V and $f^{1}(V) \subseteq U$.

Sufficient: Let F be any supra semi-closed set of X. Put $B = Y \setminus f(F)$ then we have $f^{1}(B) \subseteq X \setminus F$ supra semi open in X. There exist a supra sg-open set V of Y such that $B \subseteq V$ and $f^{1}(V) \subseteq X \setminus F$. Therefore we obtain $f(F) = Y \cdot V$ and hence f(F) is supra sg-closed in Y. Hence f is supra pre sg^{*}-closed.

Theorem 5.5: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A surjective map f: $(X, \mu) \rightarrow (Y, \lambda)$ is supra pre sg^{*}-closed and supra semi-irresolute surjection and X is supra semi-normal space, then Y is supra semi normal.

Proof: Let A and B be any pair of disjoint supra semi-closed sets of Y. Since f is supra semi-irresolute, $f^{1}(A)$ and $f^{1}(B)$ are disjoint semi closed sets of X. By semi normality of X, there exist supra semi open set U and V of X such that $f^{1}(A) \subseteq U$ and $f^{1}(B) \subseteq V$ and $U \cap V = \varphi$. By proposition 5.4 there exist supra sg-open set G and H such that $A \subseteq G$ and $B \subseteq H$, $f^{1}(G) \subseteq U$ and $f^{1}(H) \subseteq V$, since f is surjective and $\bigcup V = \varphi$. We have $G \cap H = \varphi$. By theorem 3.4 we have Y is supra semi-normal.

Corollary 5.6: Supra semi normality is preserved under supra pre semi^{*}-closed and irresolute map.

REFERENCES

- 1. S.P. Arya and M.P. Bhamini, A generalization of normal spaces, Mat. Vesnik, 35(1983), 1-10.
- 2. S.G.Crossley and S.K. Hildebrand, Semi topological properties, Fund. Math., 74(1972), 233-254.
- 3. R.Devi, S.Sampathkumar and M. Caldas, On supra α -open sets and s α -continuous maps, General Mathematics, 16(2) (2008), 77-84.
- 4. M. Kamaraj, G. Ramkumar and O. Ravi, Supra sg-closed sets and supra gs-closed sets, International Journal of Mathematical Archive, 2(11) (2011), 2413-2419.
- 5. M. Kamaraj, G. Ramkumar, O. Ravi and M. L. Thivagar, Supra sg-closed sets and related maps, Global Journal of Advances in Pure and Applied Mathematics., Vol(1) (2012), 9-23
- 6. A. S. Mashhour, A.A. Allam, F.S. Mahmoud and F.H. Khedr, On supra topological spaces, Indian J.Pure and Appl.Math., 14(4) (1983), 502- 510.
- 7. G. B. Navalgi, Properties of sg-closed sets and gs-closed sets in topology, Topology Atlas.
- 8. T.Noiri Semi normal spaces, Acta Math.Hungar., 65(3) (1994), 305-311.
- 9. O. Ravi, G. Ramkumar and M. Kamaraj, On supra β -open sets and supra β -continuity on Topological spaces, Proceed. National Seminar held at Sivakasi, India, (2011), 22-31.
- 10. O. Ravi, G. Ramkumar and M. Kamaraj, On supra g-closed sets, International Journal of Advances in Pure and Applied Mathematics, 1(2)(2011), 52-66.
- 11. O. R. Sayed and T. Noiri, On supra b-open sets and supra b-continuity on topological spaces, European J. Pure and Applied Math., (3) (2) (2010), 295-302.
- 12. O. R. Sayed, Supra pre-open sets and supra pre-continuity on topological spaces, Vasile Alecsandri, University of Bacau, Faculty of Sciences, Scientific Studies and Research Series Mathematics and Informatics., 20(2)(2010), 79-88.

Source of support: Proceedings of National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics (RAPAM - 2018)", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

CONFERENCE PAPER

National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.