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ABSTRACT
In this paper, we introduce the notions of o*-yi-set, t-yi-set, s-yi-set, f*-yi-set, C,I-continuity, B,I-continuity, S,I-
continuity and g,I-continuity to obtain decompositions of y-continuity with respect to an operator in ideal topological
spaces.

2010 Mathematics Subject Classification: 54C10, 54A10, 54A05.

Key words and phrases: a-y-open set, semi-y-open set, pre-y-open set, S-y-open set, ideal topological space.

1. INTRODUCTION AND PRELIMINARIES

Kasahara [12] defined the concept of an operation on topological space and introduced a-closed graphs of an operation.
Ogata [8] called the operation o as y operation and introduced the notion of z, which is the collection of all y-open sets
in a topological space (X, 7). In [10], the authors introduced the notions of o-y-open sets and t,., which is the collection
of all a-y-open sets in a topological space (X, 7). In [6,7], the authors introduced and studied the notions of semi-y-open
set, pre-y-open set and S-y-open set. In [11] , the authors introduced the notions of o.-y:- open sets and t,.,., which is the
collection of all o-y1-open sets and also studied the notions of semi-yi-open set, pre-y1-open set, S-y-open set in ideal
topological space. In this paper, we introduce the notions of a*-yi-set, t-yi-set, s-yi-set, f*-yi-set, C,l-continuity,
B,I-continuity, S,I-continuity and £,1-continuity to obtain decompositions of y-continuity in ideal topological spaces.

An operation y on a topology zis a mapping from z on to power set P(X) of X such that Vcy(V) for each V e 7, where y
(V) denotes the value of y at V. A subset A of X with an operation y on zis called y-open if for each xeA, there exists an
open set U such that x € U and y(U)cA. 7, denotes the set of all y-open sets in X. For any topological space (X,7), r,cr
[8]. Complements of y-open sets are called y-closed. The y-closure of a subset A of X with an operation y on zis
denoted by CL,(A) and is defined to be the intersection of all y-closed sets containing A. The y-interior of a subset A of X
with an operation y on 7 is denoted by Int,(A) and is defined to be the union of all y-open sets containing A. A
topological space X with an operation y on zis said to be y-regular if for each xeX and for each neighborhood V of X,
there exists an open neighborhood U of x such that y(U) contained in V. It is also to be note that z= z,if and only if X is
a y-regular space [8]. An ideal on a topological space (X,z) is a nonempty collection of subsets of X which is satisfies
(i) Ael and B<A implies Bel, (ii) Acl and Bel implies AuBel [9]. An ideal topological space is a topological space
(X,7) with an ideal I on X [9] and if P(X) is the set of all subsets of X, a set operator (.) : P(X) — P(X) called a local
function of A with respect to zand | is defined as follows: for AcX, A*(l,7)={xeX : U - Ag¢l for every Ue 7(x)} where
t(X)={Ue 7 : xeU}, simply write A* instead of A*(l,7) [9]. For every ideal topological space, there exists a topology
(1) or briefly «*, finer than 7, generated by g(I,7)={U -W : Uez and Wel}, but in general g(l,7) is not always a
topology [4]. Also CI*(A)=AUA* defines a Kuratowski closure operator for z*(I) [4]. If Aet*, Int*(A)=A [4] and
Int*(A) will denote the 7* interior of A. If I is an ideal on X then (X, 1) is called an ideal topological space [4].

Throughout this paper, (X,7) and (Y,o) represent topological space on which no separation axioms are assumed unless
otherwise mentioned. CI(A) and Int(A) denote the closure of A and the interior of A, respectively, in topological space

(X, 7). Let us recall some of basic definitions used in the sequel.
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Definition 1: Let (X, 7) be a topological space and A be a subset of X and y be an operation on z Then A is said to be
1. a-open set [10] if A < Int,(Cl,(Int,(A))),

pre-y-open set [7] if A < Int,(CL(A)),

semi-y-open set [6] if A < Cl,(Int,(A)),

B -y-open set [7] if A < Cl,(Int,(CL(A))), 53

y-regular open set [1] if Int,(CL(A)) = A.

gk wn

Definition 2: [11] Let (X,71) be an ideal topological space and A be a subset of X and y be an operation on z Then A is
said to be

1. a-yr-open set if A < Int,(Cl ¥'(Int,(A))),

2. pre-yi-open set if A  Int,(Cl ¥'(A)),

3. semi- yi- open set if A < CI¥(Int(A)),

4. B-yi-open set if A  CL(Int,(CI7'(A))).

Definition 3: [5] A subset A of a topological space (X, 7) with an operation y is called
a*-y-set if Inty(CL(Int,(A))) = Int,(A),

t-y-set if Int,(Cl,(A)) = Int,(A),

s-y-set if Cl,(Int,(A)) = Int,(A),

B*-y-set if CL(Int,(C17'(A))) = Int,(A).

A

Definition 4:[5] A subset A of a topological space (X,z) with an operation y is called
1. Cy-setif A=U-V,where Ue r,and V is an o*-y-set,
2. By-setifA=U-V,where Ue z,and V is a t-y-set,
3. Sy-setifA=U-V, where Ue z,and V is a s-y-set,
4. py-setif A=U-V, where Ue z,and V is a f*-y-set.

Definition 5: Let (X, 7) and (Y,o) be two topological spaces and let y be an operation on z. A mapping f: (X,7) — (Y,0)
is said to be y-continuous [3] (resp. a-y-continuous [10], pre-y-continuous [7], semi-y-continuous [6], S-y-continuous
[7]) if for each x € X and each open set V of Y containing f(x), there exists a y-open set U containing x (resp. o.-y-open
set, pre-y-open set, semi-y-open set, S-y-open set) such that f(U) < V.

Definition 6: [11] Let (X,zl) be an ideal topological space and (Y,o) be a topological space and y: = — P(X) be the
operation on 7. A mapping f: (X,51) > (Y,0) is said to be a-y1-continuous (resp. pre-y-continuous, semi-y1-continuous,
S-y1-continuous) if for each xe X and each open set V of Y containing f(x), there exists an a.-y1-open set U containing x
(resp. pre-y-open set, semi-yz-open set, S-yi-open set) such that f(U) V.

Definition 7: [5] Let (X,7) and (Y,o0) be two topological spaces and let y : 7 — P(X) be the operation on = Let f: (X,7)
— (Y,0) be a function. If foreach V e o, f *(V) isa C,-set (resp. B,-set, S,-set, §,-set), then f is said to be C,-continuous
(resp. B,-continuous, S,-continuous, £,-continuous).

2. y-local FUNCTION

In [11], the authors defined Kuratowski* closure operator as Cl""(A) = AUA*. According to this definition, we can
explain that an ideal topological space with an operation y is a topological space (X, 7) with an ideal | and an operation y
on X. Therefore, if P(X) is the set of all subsets of X, a set operator (.)" : P(X) — P(X) called a y-local function of A
with respect to 7, an operator y and | is defined as follows: for A = X, A”(l,7) ={xeX : U - A ¢ | for every Uer(X)}
where 7,(x) = {Uerz, : xeU}, simply write A" instead of A”"(1,7). Therefore, we can give some properties of y-local
function in the following.

Remark 1:
1. The minimal ideal is {¢} and the maximal ideal is P(X) in any ideal topological space (X, 7,1) with an operation
7. Then A ({$}) = CL(A) = CI(A) and A”"(P(X)) = ¢ for every A c X.
2. If Ael, then A" = ¢.
3. Neither Ac A" nor A” — A in general.

Theorem 1: Let (X,zl) be an ideal topological space with an operation y on tand A, B subsets of X. The following
properties hold:

L@ =9, o

2. IfAcB,thenA” cB”,

3. JolonX, A”(J) c A”(l), J another ideal,
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4. A”c CIxA),

5. A" =CI(A”)c ClL(A)and A" is y- closed,

6. (AT A",

7. (AUB)"=A"UB",

8. A" -B” :(A_B)V* _BV*C(A_B)V*’ 54

9. IfUer’,thenUNAY =UNUNA)Yc(UNA),
10. If Uel, then (A-U)YcAY = (AU U)7.
Proof: Straightforward.o

Now we define 7" in terms of the closure operator CI”"(A) = AUA ",

Theorem 2: Let (X, 7,1) be an ideal topological space with an operation y on 7, CI”"(A) = AU A”" and A, B subsets of X.
Then

L CI"(9)= ¢,

2. AcCI"(A),

3. CI” (AU B)=CI"(A) U CI"(B),
4. CI”(A)=CI”(CI"(A)).

Proof: (1) and (2) are obvious by Theorem 1.
3. CI”(AuB)=(AUB)” U(AUB)=(A""UB") U (AUB)
=CI”" (A) U CI”"(B).
4.CI"(CI"(A) =CI"(A" UA) = (AT UA) " U (AT UA)
= (A UANUAY VA=A UA=CI (A).o

A basis for y-open sets of 77" described as follows:

Then, for A = X, A is #"-closed if and only if A¥" = A. Thus we have U ez if and only if X- U is 7'~ closed if and
only if Uc X-(X-U)". Thusifx € U, x ¢ (X - U)Y , that is, there exists a y-open set V such that VA (X - U) € I.
Hence let I, = V(X - U) and we have x €V - |, = U, where V is y-open set containing x and I, € I. Let us denote
B(l,5) ={V - 1,: Visy-open, I, € | }, simplicity (I, ) for 5. Therefore, Zis a basis for ",

Remark 2: The topology t¥ finer than t,. If A € ©, Int"(A) = A and Int”' (A) will denote the t" interior of A. If I is
an ideal on X, then (X, 1) is called an ideal topological space with an operation y.
Now, we can give the following definitions to obtain new decompositions of y-continuity.

3. Cyl-sets, Byl-sets, Sy1-sets AND Sy 1-sets

Definition 8: A subset A of an ideal topological space (X, 7 I) with an operation y is called

a*-y1-set if Int,(Cl”'(Int, (A))) = Int,(A),

t-y1-set if Int, (CI”'(A)) = Int,(A),

s-yi-set if CI(Int, (A)) = Int,(A),

B-y1-set if Cl,(Int,(CI7' (A))) = Int,(A),

weak S-y1-open set if A < Cl,(Int”"(Cl,(A))) and the complement of weak B-y1-open set is a weak S-y1-closed
set if Int, (CI”(Int,(A)) < A.

6. yi-regular open set if Int,(Cl7'(A)) = A.

SAREE A

Proposition 1: The following are equivalent for a subset A of an ideal topological space (X, z,1) with an operator v,
1. Ais a*-yi-set,
2. Aisweak S-yi-closed set,
3. Inty(A) is beta-regular open set change with gammal-regular open set.

Proof: Straightforward.

Proposition 2: Let A be a subset of an ideal topological space (X, z1) with an operator v,
1. Asemi-y1-open set A is a t-yz- set if and only if A is an o*-y1-set.
2. Aisan a-y1-open set and A is an a*-yi-set if and only if A is y1-regular open set.

Proof:
1. Let A be a semi-yz-open and an a*-yz-set. Since A is a semi-yz- open, CI7'((Int,{(A)) = CI"(A) and Int,{Cl "(A))
= Int(Cl”'(Int (A))) = Int(A). Therefore, A is a t-yz-set.
2. Let A be an a-y1- open set and an o*-yz-set. By Proposition 1 and the definition of a-yz-open set, we have
Int,{CI"(A)) = A and hence Int, (C17'(A)) = Int, (CI 7 (Int(A))) = A.
The converse is obvious.
© 2018, IJMA. All Rights Reserved 54
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Proposition 3: Let (X,7,1) be an ideal topological space with an operation y and A a subset of X. Then the following
hold:

If Aisat-yz-set, then A is an o*-yr-set,

If Ais a s-y1-set, then A is an a*-yr-set,

If Ais a fS*-yi-set, then A is both t-yz-set and s-yz-set. 55

t-y1-set and s-yu-set are independent.

Eal A o

Proof: Straightforward from the definitions of y -interior and 7"~ closure.
Remark 3: The converses of the statements in Proposition 3 are false as seen in the followig examples.

Example 1: Let X = {a,b,c,d}, 7= {6, X, {a}.{b}{c}{a,b},{a,c}{b,c}{ab,c}, {a,b,d}} and I = {o, {a}}. We define
an operator y : 7 —P(X) by MA) = CI(A) if A ={a} and YA) = Int(CI(A)) if A = {a}. Then 7, =
{¢ {a}{c}{ac}{ab.d}X}.

If we take A = {a,b}, it is both s-yz-set and a*-yr1-set, but not a t-yz-set and not a g*- yr-set.

Example 2: Let X = {a,b,c}, == {¢, X,{a}.{c}.{a.c}.{a,b}} and | ={¢,{c}}. We define an operator y: z— P(X) by
HA) =Au{ac}ifA={a}and Y A) =Aif A={a} Then 7, = {$,X,{a},{c}.{a,c}}. If we take A = {a,b}, then A is
both a*-yr-set and t-yz-set, but it is not a s-yz-set and not a f*- yr-set.

Definition 9: A subset A of an ideal topological space (X, z1) with an operation yis called
1. C,l-setif A=U-V,where U er,and V is an o*-yr-set,
2. B,l-setifA=U-V,whereU er,and V is a t-yr-set,
3. S,)l-setif A=U -V, where U e, and V is a s-y1-set,
4. pl-setifA=U-V,whereU eg,and Vis a g*-yr-set.

Proposition 4: Let (X,7,1) be an ideal topological space with an operation y and A a subset of X. Then the following
hold:

If Ais an a*-yi-set, then A is C, | -set,

If Ais a t-pz-set, then A is B, I -set,

If Ais as-yi-set, then A is S, | -set,

If Alisa f*-yi1-set, then A is S3,1-set.

PN PE

Proof: 1. Let A be an a*-yz-set. If we take U =X € 7, then A=U-Aand hence AisaC,l-set.
The proof of (2), (3) and (4) are same.

Remark 4: The converses of the statements in Proposition 4 are false as seen in the following example.

Example 3: In Example 1, let us take | = {¢}. Then if we take A = {a,c}, since {a,c} e, and {a,c} =An X, AisC,l-
set (resp. B, I-set, S,I-set and g,1-set), but it is not an o*-yz-set (resp. a t-yz-set, a s-y-set and a f*-yr-set).

Proposition 5: Let (X,7,1) be an ideal topological space with an operation y and A a subset of X. Then the following
hold:

1. AB,l-setisaC,l-set,

2. AS,l-setisaC,l-set,

3. Apl-setisbothaB,l-setandaS,I-set.

Remark 5: The converses of the statements in Proposition 5 are false and B,l-set and S,I-set are independent notions
as seen in the following examples.

Example 4: In Example 2, if we take A = {a,b}, then A is both B, I-set and C,I-set, but it is not S,I-set and not g,1-
set.

Example 5: Let X = {a,b,c}, = {0,X,{a}, {a,b}} and | = {$}. We define an operator y:t—->PX)by nMA)=Aif

A={ac}orA=¢ and pA)= X if otherwise. Then 7, = {¢, X}. If we take A = {b}, then Aisa S,I-set and a C,I-set,
but not a B,I-set and not a S,1-set.
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Proposition 6: Let (X,z, 1) be an ideal topological space with an operation y and A a subset of X. Then the following
hold:

A B, setisaB,l-set,

AC,setisaC,l-set,

AS, -setisasS,l-set, 56

A B, -setisa f,l-set.

Hown PR

Proof: It follows from #c77".0

Remark 6: The converses of the statements in Proposition 6 are false as seen in the following examples.
Example 6: In Example 1, if we take A = {a,b}, itisa C,I-set, but not a C, -set.
Example 7: In Example 2, let us take | = {¢, {a}}. Then if we take A = {a,b}, then Alisa S,I-set, but not a S, -set.

Example 8: Let X = {a,b,c}, 7= {¢, X, {a},{a,b}} and | = {$,{b}}. We define an operator y: z— P(X) by y(A) =Aif
A={ac}orA=¢ and HA)=X if otherwise. Then 7, = {9, X}. If we take A = {b} isa B,I-set and a S,1-set, but it is
nota B,-setand a g, -set.

Theorem 3: For a subset A of a space (X, ;1) with an operation y, the following properties are equivalent:
1. Ais yp-open,

A'is an a-y-open set and a C, | -set,

Ais a pre-y-open set and a B, | - set,

A'is a semi-y-open set and a S, I -set,

A'is a f-yr-open set and a S, -set.

gk~ w

Proof: The proof of (1)=(2), (1) = (3), (1) = (4), (1) = (5) are obvious.
(5) = (1) Let A be a p-p1-open set and a 5, 1-set. Since A is a B,1-set, we have A=U NV, where U isa )-open set and
V is a g*-yi-set. By the hypothesis, A isalso  f-y-open and we have
A < CIInt(CI'(A))) = Cl(Int(CIV'(UNV))) < Cl(Int(Cl1Y"(U)NCI¥(V)))
= Cl(Int,{C1Y"(CIY*((U))NInt,{C1Y"(V))) < Cl(Int{C1Y"(U)))NCl,(Int(ClY" (V)))
< Cl{Int{CI¥"(U))) N Int(V). Hence A= UnV = (U N V) U
< (CLnt(CIY" (U))) N IntAV)) N U = (CILINt(CIY'(U))) N U) N IntV).

Notice A=U NV oU N Int(V). Therefore, we obtain A = U N Int,(V).
(2)=(1), (3)=(1), (4)=(1) are shown similarly.

DECOMPOSITIONS OF GAMMA CONTINUITY

Definition 10: Let (X,71) be an ideal topological space and (Y,o) be a topological space and let y: z— P(X) be the
operation on z Let f: (X,7,1) — (Y,0) be a function. If for each V e o, f (V) is a C,I-set (resp. B,I-set, S,1-set, B)-
set), then f is said to be C,I-continuous (resp. B,l-continuous, S,I-continuous, S,1-continuous). By Proposition 5, we
obtain the following proposition.

Proposition 6:
1. A B,l-continuous function is C,I-continuous,
2. AS,l-continuous function is C,I-continuous,
3. A g,l-continuous is both B,Icontinuous and S,I-continuous.

By Theorem 3, we have the following main theorem.

Theorem 4: Let (X, 1) be an ideal topological space and (Y,o) be a topological
space and let y: = — P(X) be the operation on z. For a function f : (X,z1) — (Y,0), the following properties are
equivalent:
1. Ais y-continuous
A is a- y1- continuous and C, I -continuous,
A is pre-yi- continuous and B, I -continuous,
A is semi-y1- continuous and S, I -continuous,
A is S-y1- continuous and S, -continuous.

akrown

Proof: This is an immediate consequence of Theorem 3.
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Remark 7: a-yz-continuity and C,l-continuity, pre-yz-continuity and B,l-continuity, semi-yz-continuity and S,I-
continuity, S-y1-continuity and g,1-continuity are independent notions of each other as seen in the following examples.

Example 9: Let X =Y = {ab,c}, 7= {¢,X,{a}.{c}, {ac}{ab}} and | = {¢,{c}} and o= {$,Y.{a}}. We define an
operator y:7—P(X) by MA) =A{ac}if A ={a}and pA)=Aif A={a}. Then ¢, = {¢ ,X,{a}.{c}.{a,c}}. Define a
function f : (X,7, I) = (Y,0) as f(a) = f(b) = a, f(c) = c. Then f is C,I-continuous (resp. B,l-continuous, pS-yi-
continuous and semi-yz-continuous), but it is not a- yz-continuous (resp. pre-yz-continuous S,l-continuous and S,I-
continuous)

Example 10: Let X =Y = {a,b,c},z= {¢, X,{a}.{a.b}} and | = {¢} and o= {¢,Y,{b}}. We define an operator
y:t—>PX)by YA) =Aif A={ac}or A= ¢ and ®(A) = X if otherwise. Then 7, = {¢, X}. Define a function
f:(X,1) > (Y,0) as f(a) = f(c) = a, f(b) = b. Then f is both S,!-continuous and pre-yz-continuous, but it is neither semi-
y1-continuous nor B,l-continuous. In this example, take | = {¢,{b}}. Then A = {b} is g,I-continuous, but it is not S-
yI1- continuous.

Example 11: Let X =Y = {a,b,c}, 7= {¢.X, {a}.{c}.{ac}.{b.c}} and | = {4, {c}} and c = {¢,Y {a}}. We define an
operator y : t — P(X) by y (A) = Int(CI(A)) if A={a} and y(A) = X if A = {a}. Then 1, = {¢{a},X}. Define a
function f: (X, 7,1) — (Y,0) as f(a) = f(c) = a, f(b) = b. Then fis a-y1-continuous, but it is not C, | -continuous.

Corollary 1: Let (X, 7,1) be an ideal topological space with an operator y and | = {¢} and (Y,o) be a topological
space. For a functionf: (X, z,1) —> (Y, o), the following properties and the properties of Theorem 3 are equivalent:
is y-continuous,

is pre- y-continuous and B, -continuous [5],

is a-y-continuous and C, -continuous [5],

is semi-y-continuous set and S, -continuous [5],

is - y-continuous set and f,-continuous [5].

agkrwdE
—h —h —h —h —h

Proof: It follows from A ¥ ({¢}) = CI,(A) forevery A c X.
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