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ABSTRACT 
In this paper, we introduce the notions of α*-γı-set, t-γı-set, s-γı-set, β*-γı-set, CγI-continuity, BγI-continuity, SγI-
continuity and βγI-continuity to obtain decompositions of  γ-continuity with respect to an operator in ideal topological 
spaces. 
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1. INTRODUCTION AND PRELIMINARIES 
 
Kasahara [12] defined the concept of an operation on topological space and introduced α-closed graphs of an operation. 
Ogata [8] called the operation α as γ operation and introduced the notion of τγ which is the collection of all γ-open sets 
in a topological space (X,τ). In [10], the authors introduced the notions of α-γ-open sets and τα-γ which is the collection 
of all α-γ-open sets in a topological space (X,τ). In [6,7], the authors introduced and studied the notions of semi-γ-open 
set, pre-γ-open set and β-γ-open set. In [11] , the authors introduced the notions of α-γı- open sets and τα-γ-ı  which is the 
collection of all α-γı-open sets and also studied the notions of semi-γı-open set, pre-γı-open set, β-γı-open set in ideal 
topological space. In this paper, we introduce the notions of α*-γı-set, t-γı-set, s-γı-set, β*-γı-set, CγI-continuity,          
BγI-continuity, SγI-continuity and βγI-continuity to obtain decompositions of γ-continuity in ideal topological spaces. 
 
An operation γ on a topology τ is a mapping from τ  on to power set P(X) of X such that V⊂γ(V) for each V ∈ τ, where γ 
(V) denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ-open if for each x∈A, there exists an 
open set U such that x ∈ U and γ(U)⊂A. τγ denotes the set of all γ-open sets in X. For any topological space (X,τ), τγ⊂τ 
[8]. Complements of γ-open sets are called γ-closed. The γ-closure of a subset A of X with an operation γ on τ is 
denoted by Clγ(A) and is defined to be the intersection of all γ-closed sets containing A. The γ-interior of a subset A of X 
with an operation γ on τ is denoted by Intγ(A) and is defined to be the union of all γ-open sets containing A. A 
topological space X with an operation γ on τ is said to be γ-regular if for each x∈X and for each neighborhood V of x, 
there exists an open neighborhood U of x such that γ(U) contained in V. It is also to be note that τ = τγ if and only if X is 
a γ-regular space [8]. An ideal on a topological space (X,τ) is a nonempty collection of subsets of X which is satisfies  
(i) A∈I and B⊂A implies B∈I, (ii) A∈I and B∈I implies A∪B∈I [9]. An ideal topological space is a topological space 
(X,τ) with an ideal I on X [9] and if P(X) is the set of all subsets of X, a set operator (.) : P(X) → P(X) called a local 
function of A with respect to τ and I is defined as follows: for A⊂X, A*(I,τ)={x∈X : U - A∉I for every U∈τ(x)} where 
τ(x)={U∈τ : x∈U}, simply write A* instead of A*(I,τ) [9]. For every ideal topological space, there exists a topology 
τ*(I) or briefly τ*, finer than τ, generated by β(I,τ)={U - W : U∈τ and W∈I}, but in general β(I,τ) is not always a 
topology [4]. Also Cl*(A)=A∪A* defines a Kuratowski closure operator for τ*(I) [4]. If A∈τ*, Int*(A)=A [4] and 
Int*(A) will denote the τ* interior of A. If I is an ideal on X then (X,τ,I) is called an ideal topological space [4]. 
 
Throughout this paper, (X,τ) and (Y,σ) represent topological space on which no separation axioms are assumed unless 
otherwise mentioned. Cl(A) and Int(A) denote the closure of A and the interior of A, respectively, in topological space 
(X,τ). Let us recall some of basic definitions used in the sequel. 
 

Corresponding Author: E. Hatır 
N. E. Universıty, A. K. Educatıon Faculty, Meram-Konya, Turkey. 

 
 

http://www.ijma.info/�


53 

E. Hatır / On Decomposıtıons of γ-Contınuıty wıth Respect to an Operator  in Ideal Topologıcal Spaces / IJMA- 9(6), June-2018. 
 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                         53  

 
Definition 1: Let (X,τ) be a topological space and A be a subset of X and γ be an operation on τ. Then A is said to be 

1. α-open set [10] if A ⊂ Intγ(Clγ(Intγ(A))), 
2. pre-γ-open set [7] if A ⊂ Intγ(Clγ(A)), 
3. semi-γ-open set [6] if A ⊂ Clγ(Intγ(A)), 
4. β -γ-open set [7] if A ⊂ Clγ(Intγ(Clγ(A))), 
5. γ-regular open set [1] if Intγ(Clγ(A)) = A. 

 
Definition 2: [11] Let (X,τ,I) be an ideal topological space and A be a subset of X and γ be an operation on τ. Then A is 
said to be 

1. α-γı-open set if A ⊂ Intγ(Cl γ*(Intγ(A))), 
2. pre-γı-open set if A ⊂ Intγ(Cl γ*(A)), 
3. semi- γı- open set if A ⊂ Clγ*(Intγ(A)), 
4. β-γı-open set if A ⊂ Clγ(Intγ(Clγ*(A))). 

 
Definition 3: [5] A subset A of a topological space (X,τ) with an operation γ is called 

1. α*-γ-set if Intγ(Clγ(Intγ(A))) = Intγ(A), 
2. t-γ-set if Intγ(Clγ(A)) = Intγ(A), 
3. s-γ-set if Clγ(Intγ(A)) = Intγ(A), 
4. β*-γ-set if Clγ(Intγ(Cl γ*(A))) = Intγ(A). 

 
Definition 4:[5] A subset A of a topological space (X,τ) with an operation γ is called 

1. Cγ-set if A = U - V, where U∈ τγ and V is an α*-γ-set, 
2. Bγ-set if A = U - V, where U∈ τγ and V is a t-γ-set, 
3. Sγ-set if A = U - V, where U∈ τγ and V is a s-γ-set, 
4. βγ-set if A = U - V, where U∈ τγ and V is a β*-γ-set. 

 
Definition 5: Let (X,τ) and (Y,σ) be two topological spaces and let γ be an operation on τ. A mapping f : (X,τ) → (Y,σ) 
is said to be γ-continuous [3] (resp. α-γ-continuous [10], pre-γ-continuous [7], semi-γ-continuous [6], β-γ-continuous 
[7]) if for each x ∈ X and each open set V of Y containing f(x), there exists a γ-open set U containing x (resp. α-γ-open 
set, pre-γ-open set, semi-γ-open set, β-γ-open set) such that f(U) ⊂ V. 
 
Definition 6: [11] Let (X,τ,I) be an ideal topological space and (Y,σ) be a topological space and γ: τ → P(X) be the 
operation on τ. A mapping f : (X,τ,I) → (Y,σ) is said to be α-γı-continuous (resp. pre-γ-continuous, semi-γı-continuous, 
β-γı-continuous) if for each x∈ X and each open set V of Y containing f(x), there exists an α-γı-open set U containing x 
(resp. pre-γ-open set, semi-γı-open set, β-γı-open set) such that f(U) ⊂V. 
 
Definition 7: [5] Let (X,τ) and (Y,σ) be two topological spaces and let γ : τ → P(X) be the operation on τ. Let f : (X,τ) 
→ (Y,σ) be a function. If for each V ∈ σ, f -1(V) is a Cγ-set (resp. Bγ-set, Sγ-set, βγ-set), then f is said to be Cγ-continuous 
(resp. Bγ-continuous, Sγ-continuous, βγ-continuous). 
 
2. γ-local FUNCTION 

 
In [11], the authors defined Kuratowski* closure operator as Clγ*(A) = A∪A*. According to this definition, we can 
explain that an ideal topological space with an operation γ is a topological space (X,τ) with an ideal I and an operation γ 
on X. Therefore, if P(X) is the set of all subsets of X, a set operator (.)γ* : P(X) → P(X) called a γ-local function of A 
with respect to τ, an operator γ and I is defined as follows: for A ⊂ X, Aγ*(I,τ) ={x∈X : U - A ∉  I for every U∈τγ(x)} 
where τγ(x) = {U∈τγ : x∈U}, simply write A γ* instead of A γ*(I,τ). Therefore, we can give some properties of γ-local 
function in the following. 
 
Remark 1:  

1 .  The minimal ideal is {φ} and the maximal ideal is P(X) in any ideal topological space (X,τ,I) with an operation 
γ. Then A γ*({φ}) = Clγ(A) ≠ Cl(A) and A γ*(P(X)) = φ  for every A ⊂ X. 

2 .  If A∈I, then Aγ* = φ. 
3 .  Neither A ⊂ Aγ* nor Aγ* ⊂ A in general. 

 
Theorem 1: Let (X,τ,I) be an ideal topological space with an operation γ  on τ and A, B subsets of X. The following 
properties hold: 

1. (φ)γ* = φ, 
2. If A ⊂ B, then A γ* ⊂ B γ*, 
3. J ⊃ I on X,  A γ*(J) ⊂ A γ*(I), J another ideal, 
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4. A γ*⊂ Clγ(A), 
5. A γ* = Clγ(A γ*) ⊂ Clγ(A) and A γ*  is γ - closed, 
6. (A γ*) γ* ⊂ A γ*, 
7. (A ∪ B) γ* = A γ* ∪ B γ*, 
8. Aγ*  - B γ*  = (A - B) γ*  - B γ*  ⊂ (A - B) γ*, 
9. If U∈τ γ, then U ∩ A γ* = U ∩ (U ∩ A) γ*⊂ (U ∩ A) γ*, 
10. If U∈I, then (A - U) γ*⊂ A γ*  = (A ∪ U) γ*. 

Proof: Straightforward.□ 
 
Now we define τ γ*  in terms of the closure operator Cl γ*(A) = A ∪ A γ*. 
 
Theorem 2: Let (X,τ,I) be an ideal topological space with an operation γ on τ, Cl γ*(A) = A ∪ A γ*  and A, B subsets of X. 
Then 

1. Cl γ*(φ)= φ , 
2. A ⊂ Cl γ*(A), 
3. Cl γ* (A ∪ B)= Cl γ*(A) ∪ Cl γ*(B), 
4. Cl γ*(A)= Cl γ*(Cl γ*(A)). 

 
Proof: (1) and (2) are obvious by Theorem 1. 
3. Cl γ*(A∪ B) = (A ∪ B) γ* ∪ (A∪ B) = (A γ* ∪ B γ*) ∪ (A ∪B)  
                          =Cl γ* (A) ∪ Cl γ*(B). 
4. Cl γ*(Cl γ*(A)) = Cl γ*(A γ* ∪ A) = (A γ* ∪ A) γ* ∪ (A γ* ∪ A)  
                          = ((A γ*) γ* ∪ A γ*) ∪ (A γ*   ∪ A) = Aγ* ∪ A = Clγ* (A).□ 
 
A basis for γ-open sets of τ γ* described as follows: 
Then, for A ⊂ X, A is τγ*-closed if and only if Aγ* ⊂ A. Thus we have U ∈τγ* if and only if X- U is τγ*- closed if and 
only if U ⊂ X - (X - U)γ*. Thus if x ∈ U, x ∉ (X - U)γ* , that is, there exists a γ-open set V such that V∩(X - U) ∈ I. 
Hence let Io = V∩(X - U) and we have x ∈V - Io ⊂ U, where V is γ-open set containing x and Io ∈ I. Let us denote 
β(I,τγ) = {V - Io : V is γ-open, Io ∈ I }, simplicity β(I,τγ) for β. Therefore, β is a basis for τγ*. 
 
Remark 2: The topology  τγ*  finer than τγ. If A ∈ τγ* , Intγ*(A) = A and Intγ*(A) will denote the τγ* interior of A. If I is 
an ideal on X, then (X,τ,I) is called an ideal topological space with an operation γ. 
Now, we can give the following definitions to obtain new decompositions of γ-continuity. 
 
3. CγI-sets, BγI-sets, SγI-sets AND  βγI-sets 
 
Definition 8: A subset A of an ideal topological space (X,τ, I) with an operation γ is called 

1. α*-γı-set if Intγ(Clγ*(Intγ (A))) = Intγ(A), 
2. t-γı-set if Intγ (Clγ*(A)) = Intγ(A), 
3. s-γı-set if Clγ*(Intγ (A)) = Intγ(A), 
4. β*-γı-set if Clγ(Intγ(Clγ*(A))) = Intγ(A), 
5. weak β-γı-open set if A ⊂ Clγ(Intγ*(Clγ(A))) and the complement of weak β-γı-open set is a weak β-γı-closed 

set if Intγ (Clγ*(Intγ(A)) ⊂ A. 
6. γı-regular open set if Intγ(Clγ*(A)) = A. 

 
Proposition 1: The following are equivalent for a subset A of an ideal topological space (X,τ,I) with an operator γ, 

1. A is α*-γı-set, 
2. A is weak β-γı-closed set, 
3. Intγ(A) is beta-regular open set change with gammaI-regular open set. 

Proof: Straightforward. 
 
Proposition 2: Let A be a subset of an ideal topological space (X,τ,I) with an operator γ, 

1. A semi-γı-open set A is a t-γı- set if and only if A is an α*-γı-set. 
2. A is an α-γı-open set and A is an α*-γı-set if and only if A is γı-regular  open set. 

 
Proof:  

1. Let A be a semi-γı-open and an α*-γı-set. Since A is a semi-γı- open, Clγ*((Intγ(A)) = Clγ*(A) and Intγ(Cl γ*(A)) 
= Intγ(Clγ*(Int γ(A))) = Intγ(A). Therefore, A is a t-γı-set. 

2. Let A be an α-γı- open set and an α*-γı-set. By Proposition 1 and the definition of α-γı-open set, we have 
Intγ(Clγ*(A)) = A and hence Intγ (Cl γ*(A)) = Intγ (Cl γ*(Intγ(A))) = A. 
The converse is obvious. 
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Proposition 3: Let (X,τ,I) be an ideal topological space with an operation γ and A a subset of X. Then the following 
hold: 

1. If A is a t-γı -set, then A is an α*-γı-set, 
2. If A is a s-γı-set, then A is an α*-γı-set, 
3. If A is a β*-γı-set, then A is both t-γı-set and s-γı-set. 
4. t-γı-set and s-γı-set are independent. 

 
Proof: Straightforward from the definitions of  γ -interior and τγ*- closure.  
 
Remark 3: The converses of the statements in Proposition 3  are false as seen in the followig examples. 
 
Example 1: Let X = {a,b,c,d}, τ = {φ , X, {a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}, {a,b,d}} and I = {φ , {a}}. We define 
an operator  γ : τ →P(X) by  γ(A) = Cl(A) if A ≠{a} and γ(A) = Int(Cl(A)) if A = {a}. Then τγ = 
{φ ,{a},{c},{a,c},{a,b,d},X}. 
 
If we take A = {a,b}, it is both s-γı-set and α*-γı-set, but not a t-γı-set and not a β*-γı-set. 
 
Example 2: Let X = {a,b,c}, τ = {φ , X,{a},{c},{a,c},{a,b}} and I ={φ ,{c}}. We define an operator  γ : τ → P(X) by  
γ(A) = A ∪{a,c} if A ≠ {a} and  γ(A) = A if A = {a}. Then τγ = {φ ,X,{a},{c},{a,c}}. If we take A = {a,b}, then A is 
both α*-γı-set and t-γı-set, but it is not a s-γı-set and not a β*-γı-set. 
 
Definition 9: A subset A of an ideal topological space (X,τ,I) with an operation γ is called 

1. CγI -set if A = U - V, where U ∈τγ and V is an α*-γı-set, 
2. BγI -set if A = U - V, where U ∈τγ and V is a t-γı-set, 
3. SγI- set if A = U - V, where U ∈τγ and V is a s-γı-set, 
4. βγI -set if A = U - V, where U ∈τγ and V is a β*-γı-set. 

 
Proposition 4: Let (X,τ,I) be an ideal topological space with an operation γ and A a subset of X. Then the following 
hold: 

1. If A is an α*-γı-set, then A is CγI -set, 
2. If A is a t-γı-set, then A is BγI -set, 
3. If A is a s-γı-set, then A is Sγ I -set, 
4. If A is a β*-γı- set, then A is βγI-set. 

 
Proof: 1. Let A be an α*-γı-set. If we take U = X ∈ τγ , then  A = U - A and hence A is a CγI -set. 
The proof of (2), (3) and (4) are same. 
  
Remark 4: The converses of the statements in Proposition 4 are false as seen in the following example. 
 
Example 3: In Example 1 , let us take I = {φ}. Then if we take A = {a,c}, since {a,c} ∈τγ and {a,c} = A ∩ X,  A is CγI -
set (resp. BγI -set, SγI -set and βγI-set), but it is not an α*-γı-set (resp. a t-γı-set, a s-γ-set and a β*-γı-set). 
 
Proposition 5: Let (X,τ,I) be an ideal topological space with an operation γ and A a subset of X. Then the following 
hold: 

1. A BγI -set is a CγI -set, 
2. A SγI -set is a CγI -set, 
3. A βγI -set is both a BγI -set and a SγI -set. 

 
Remark 5: The converses of the statements in Proposition 5  are false and BγI -set and SγI -set are independent notions 
as seen in the following examples. 
 
Example 4: In Example 2 , if we take A = {a,b}, then A is both BγI -set and CγI -set, but it is not SγI -set and not βγI -
set. 
 
Example 5: Let X = {a,b,c}, τ = {φ ,X,{a}, {a,b}} and I = {φ}. We define an operator       γ : τ → P(X) by  γ(A) = A if  
A = {a,c} or A = φ  and  γ(A) = X if otherwise. Then τγ = {φ, X}. If we take A = {b}, then A is a SγI -set and a CγI -set, 
but not a BγI -set and not a βγI -set. 
 
 
 
 



56 

E. Hatır / On Decomposıtıons of γ-Contınuıty wıth Respect to an Operator  in Ideal Topologıcal Spaces / IJMA- 9(6), June-2018. 
 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                         56  

 
Proposition 6: Let (X,τ, I) be an ideal topological space with an operation γ and A a subset of X. Then the following 
hold: 

1. A Bγ  -set is a BγI -set, 
2. A Cγ -set is a CγI -set, 
3. A Sγ  -set is a SγI -set, 
4. A β γ -set is a βγI -set. 

 
Proof: It follows from τγ⊂τ γ*.□ 
 
Remark 6: The converses of the statements in Proposition 6 are false as seen in the following examples. 
 
Example 6: In Example 1 , if we take A = {a,b}, it is a CγI -set, but not a Cγ -set. 
 
Example 7: In Example 2 , let us take I = {φ, {a}}. Then if we take A = {a,b},  then A is a SγI -set, but not a Sγ -set. 
 
Example 8: Let X = {a,b,c}, τ = {φ , X, {a},{a,b}} and I = {φ,{b}}. We define an operator  γ : τ →  P(X) by  γ(A) = A if 
A = {a,c} or A = φ  and  γ(A) = X  if otherwise. Then τγ = {φ, X}. If we take A = {b} is a BγI-set and a βγI -set, but it is 
not a Bγ -set and a β γ  -set. 
 
Theorem 3: For a subset A of a space (X,τ,I) with an operation γ, the following properties are equivalent: 

1. A is  γ-open, 
2. A is an α-γı-open set and a Cγ I -set, 
3. A is a pre-γı-open set and a Bγ I -set, 
4. A is a semi-γı-open set and a SγI -set, 
5. A is a β-γı-open set and a βγI -set. 

 
Proof: The proof of (1)⇒(2), (1) ⇒ (3), (1) ⇒ (4), (1) ⇒ (5) are obvious. 
(5) ⇒ (1) Let A be a β-γı-open set and a βγI -set. Since A is a βγI -set, we have A = U ∩ V, where U is a  γ-open set and      
                V is a β*-γı-set. By the hypothesis, A is also      β-γı-open and we have 
                A ⊂ Clγ(Intγ(Clγ*(A))) = Clγ(Intγ(Clγ*(U∩V))) ⊂ Clγ(Intγ(Cl γ*(U)∩Cl γ*(V))) 
                    = Clγ(Intγ(Cl γ*(Cl γ*((U))∩Intγ(Cl γ*(V))) ⊂ Clγ(Intγ(Cl γ*(U)))∩Clγ(Intγ(Cl γ* (V))) 
                   ⊂ Clγ(Intγ(Cl γ*(U))) ∩ Intγ(V). Hence A = U∩V = (U ∩ V) ∩U  
                        ⊂ (Clγ(Intγ(Cl γ* (U))) ∩ Intγ(V)) ∩ U = (Clγ(Intγ(Cl γ*(U))) ∩ U) ∩ Intγ(V). 
 
Notice A = U ∩ V ⊃U ∩ Intγ(V). Therefore, we obtain A = U ∩ Intγ(V).  
(2)⇒(1), (3)⇒(1), (4)⇒(1) are shown similarly. 

 
DECOMPOSITIONS OF GAMMA CONTINUITY 
 
Definition 10: Let (X,τ,I) be an ideal topological space and (Y,σ) be a topological space and let  γ : τ → P(X) be the 
operation on τ. Let f : (X,τ,I) → (Y,σ) be a function. If for each V ∈ σ, f -1(V) is a CγI -set (resp. BγI -set, SγI -set, βγI-
set), then f is said to be CγI -continuous (resp. BγI -continuous, SγI-continuous, βγI-continuous). By Proposition 5, we 
obtain the following proposition. 
 
Proposition 6:  

1. A  BγI -continuous function is CγI -continuous, 
2. A SγI -continuous function is CγI -continuous, 
3. A βγI -continuous is both BγIcontinuous and SγI -continuous. 

 
By Theorem 3, we have the following main theorem. 
 
Theorem 4: Let (X,τ,I) be an ideal topological space and (Y,σ) be a topological 
space and let γ : τ  →  P(X) be the operation on τ. For a function f : (X,τ,I) → (Y,σ), the following properties are 
equivalent: 

1. A is  γ- continuous 
2. A is α-γı- continuous and CγI -continuous, 
3. A is pre-γı- continuous and Bγ I -continuous, 
4. A is semi-γı- continuous and SγI -continuous, 
5. A is β-γı- continuous and βγI -continuous. 

 
Proof: This is an immediate consequence of Theorem 3.  
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Remark 7: α-γı-continuity and CγI -continuity, pre-γı-continuity and BγI -continuity, semi-γı-continuity and SγI -
continuity, β-γı-continuity and βγI-continuity are independent notions of each other as seen in the following examples. 
 
Example 9: Let X = Y = {a,b,c}, τ = {φ ,X,{a},{c}, {a,c},{a,b}} and I = {φ ,{c}} and  σ = {φ ,Y,{a}}. We define an 
operator  γ :τ → P(X) by  γ(A) = A∪{a,c} if A ≠ {a} and  γ(A) = A if A ={a}. Then τγ = {φ ,X,{a},{c},{a,c}}. Define a 
function f : (X,τ, I) → (Y,σ) as f(a) = f(b) = a, f(c) = c. Then f is CγI -continuous (resp. BγI -continuous,  β-γı-
continuous and semi-γı-continuous), but it is not α-γı-continuous (resp. pre-γı-continuous βγI -continuous and SγI -
continuous) 
 
Example 10: Let X = Y = {a,b,c},τ = {φ , X,{a},{a,b}} and I = {φ} and σ = {φ ,Y,{b}}. We define an operator   
γ : τ → P(X) by  γ(A) = A if A = {a,c} or A = φ  and γ(A) = X if otherwise. Then τγ = {φ, X}. Define a function              
f :(X,τ) → (Y,σ) as f(a) = f(c) = a, f(b) = b. Then f is both SγI -continuous and pre-γı-continuous, but it is neither semi-
γı-continuous nor BγI -continuous. In this example, take I = {φ,{b}}. Then  A = {b} is βγI -continuous, but it is not β-
γı- continuous. 
 
Example 11: Let X = Y = {a,b,c}, τ = {φ ,X, {a},{c},{a,c},{b,c}} and I = {φ, {c}} and σ = {φ ,Y,{a}}. We define an 
operator  γ : τ → P( X )  by  γ (A) = Int(Cl(A)) if A={a} and  γ(A) = X if A ≠ {a}. Then τγ = {φ,{a},X}. Define a 
function f : ( X , τ , I )  → (Y,σ) as f(a) = f(c) = a, f(b) = b. Then f is α-γı-continuous, but it is not CγI -continuous. 
 
Corollary 1: Let ( X , τ , I )  be an ideal topological space with an operator γ and I = {φ} and (Y,σ) be a topological 
space. For a function f : ( X , τ , I )  → ( Y ,σ ) ,  the following properties and the properties of Theorem 3 are equivalent: 

1. f  is  γ-continuous, 
2. f  is pre-γ-continuous and Bγ -continuous [5], 
3. f  is α-γ-continuous and Cγ -continuous [5], 
4. f  is semi-γ-continuous set and Sγ  -continuous [5], 
5. f  is β-γ-continuous set and βγ -continuous [5]. 

 
Proof: It follows from  A  γ*( {φ} )  =  C l γ (A) for every A  ⊂ X .  
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