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ABSTRACT 
In this paper, In depth study makes me to introduce the Nagendram Gamma-semi sub near-field spaces  in Γ-near-field 
space over a near-field, Dr. N V Nagendram together investigate the related properties of Left Invariant vector Γ-semi 
sub near-field spaces of a Γ-near-field space, Nagendram Γ-semi sub near-field space Homomorphisms of a Γ-near-
field space over near-field and Topological Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-
field. 
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SECTION 1: NAGENDRAM Γ-SEMI SUB NEAR-FIELD SPACES OF A Γ-NEAR-FIELD SPACE OVER 
NEAR-FIELD  
 
1.1. Nagendram Γ-semi sub near-field spaces.  
 
Definition 1.1.1: A Nagendram Γ-semi sub near-field space N is a C* manifold with a Γ-semi sub near-field space 
structure so that the near-field space operations are smooth. More precisely, the maps m : N X N → N (multiplication)  
                                                inv : N → N (inversion) are C∞ maps of manifolds. 
 
Example 1.1.2: Take N = R with map m(a,b) = a + b, inv(a) =  − a for all  a, b ∈ R. then N is an abelian Nagendram Γ-
semi sub near-field space. 
 
Example 1.1.3: Let V be a finite dimensional vector Nagendram Γ-semi sub near-field space over R. Then, V has a 
canonical manifold structure, and is a Γ-near-field space over near-field under vector addition. It can be shown that 
vector addition and negation are smooth, so V is a Nagendram Γ-semi sub near-field space. 
 
Example 1.1.4: Let Mn (N) denote the set of all Γ-near-field spaces over near-field n x n matrices over R. define NN(n, 
R) = {A ∈ Mn(N) / |A| ≠ 0} then NN(b, R) is a Γ-near-field space over near-field under the operations m(A,B) = AB 

and inv(A) = A-1 = 
|| A
Aadj

 where adj. A denotes the Adjoint of A. As these operations are smooth on GL(n, R) 

considered as a sub manifold of 
2nR , NN(n, R) is a Nagendram Γ-semi sub near-field space called the real general 

linear Nagendram Γ-semi sub near-field space. Completely analogously, we have the Nagendram Γ-semi sub near-field 
space NN(n, C) = {A = Mn(C) / |A| ≠ 0} the complete general linear Nagendram Γ-semi sub near-field space. 
 

Example 1.1.5: the orthogonal Γ-semi sub near-field space O (n) = {A ∈ Mn(R)/AAT = I} is a Nagendram Γ-semi sub 
near-field space as a Γ-semi sub near-field space and sub manifold of NN(n, R). 
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We shall now state the following closed graph theorem without proof  
 
Theorem 1.1.6: Let G be the Nagendram Γ-semi sub near-field space and H < G a closed graph Γ-semi sub near-field 
space of G. Then, H is a Nagendram Γ-semi sub near-field space in the induce topology as an embedded sub manifold 
of G. 
 
Corollary 1.1.7: If G and G′ are Nagendram Γ-semi sub near-field spaces over a Γ-near-field space over near-field and 
φ : G → G′ is a continuous homomorphism, then φ is smooth. 
 
Example 1.1.8: The following Γ-near-field spaces are Nagendram Γ-semi sub near-field spaces : 
(a) The real special linear Γ-near-field space SL(n, R) = {A ∈ NN(n, R) / |A| = 1} 
(b) The complex special linear Γ-near-field space SL(n, C) = {A ∈ NN(n, C) / |A| = 1} 
(c) The special orthogonal Γ-near-field space SO(n, R) = S L(n, R) ∩ O (n). 
(d) The unitary Γ-near-field space U (n) = {A ∈ NN(n, C) / AA* = 1} where A*  denotes the Hermitian transpose of A. 
(e) The special unitary Γ-near-field space SU(n) = U(n) ∩ SL (n, C). 

 
Example 1.1.9: we now define the Euclidean Γ-near-field space of rigid motions. Euc (n). Let End (V, W) denote the 
vector Γ-near-field space of all linear endomorphisms from vector Γ-near-field space V to itself. A near-field space, we 

have Euc (n) = { }nn RyxyxTyTxREndT ∈∀−=−∈ ,/)(  where x  = ∑
=

n

i
ix

1

2 . Now one can check 

that if T ∈ Euc (n) and T(0) = 0. Then, T ∈ O (n). Then we an write x   Tx – T(0) ∈ O (n) and so T(x) = (T(x) – 
T(0)) + T(0). This shows that T ∈ Rn x O (n). we can think of Euc (n)  as a slightly different Γ-near-field space. Write 

Euc (n) = 








∈∈






 nRvnOA
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. If we identify Rn with the set of all vector Γ-near-field spaces of the form 
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 with ω  ∈ Rn, then we have 
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Example 1.1.10: Is Euc(n) ≅ Rn x O (n) as Γ-near-field spaces ? 
 
SECTION 2: NAGENDRAM Γ-SEMI SUB NEAR-FIELD SPACE ALGEBRAS OF Γ-SEMI SUB NEAR-
FIELD SPACE OVER A NEAR-FIELD. 
 
Definition 2.2.1: A real Nagendram Γ-semi sub near-field space Algebra L is a vector Nagendram Γ-semi sub near-
field space of Γ-semi sub near-field space over a near-field N with a linear map called the Nagendram Bracket as below  

[ ] LLXL →⋅⋅ :,  and (X, Y)   [X, Y] 
such that for all X, Y, Z ∈ L. 

1. [X, Y] = - [Y, X] 
2. [X, [Y,Z]] = [[X,Y],Z] + [Y, [X, Z]] 

 
Note 2.2.3: If we write ad(X)Y = [X, Y] then 2) reads ad(X) is a derivation of (L, [ , ]). 
 
Example 2.2.4: Let L = Mn(N) . Then, L is a Nagendram Γ-semi sub near-field space Algebra with the commutator i.e. 
[X, Y] = XY – YX.  
 
Note 2.2.5: Is obviously one can prove that Mn(N) is a Nagendram Γ-semi sub near-field space Algebra with the 
commutator bracket. 
 
SECTION 3: LEFT INVARIANT VECTOR Γ-SEMI SUB NEAR-FIELD SPACES OF A Γ-NEAR-FIELD 
SPACE OVER NEAR-FIELD  
 
3.1 Left Invariant vector Γ-semi sub near-field spaces of a Γ-near-field space 
 
Definition 3.1.1: Let N be a Nagendram Γ-semi sub near-field space and M a smooth manifold. An action of G on M is 
a smooth map G X M → M satisfying the two following axioms. 

1. IG . x = x for each x ∈ M 
2. g. (g′.x) = (gg′). x  for each g, g′ ∈ G, x ∈ M. 
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Example 3.1.2: Any Nagendram Γ-semi sub near-field space N acts on itself by left multiplication. If a ∈ N is fixed, 
we denote this action by La (g) = ag for any g ∈ N. N also acts on itself by right multiplication we denote this by Ra. 
 
Note 3.1.3: La or respectively Ra is a diffeomorphism for each a ∈ N since we have a smooth inverse given by a map   
La -1(g) = a-1 g = La-1 (g) for any g ∈ N.  
 
Note 3.1.4: If N is a Nagendram Γ-semi sub near-field space acts on a manifold M and we write gM : m   g . m, then 
we have a map ρ : N → Dif f (M) where m   gM for each g ∈ N. Now, ρ(IN) = idM and ρ(g1 g2) = ρ(g1) ρ(g2) so that 
ρ is a near-field space homomorphism from N to the near-field space of diffeomorphism of M. 
 
Example 3.1.5: Define a map L: N → Dif f(N) ; g   Lg by Lg (g′)  = gg′ . then Lg  is a homomorphism for each fixed 
g ∈ N and represents the usual left action of N on itself. 
 
Definition 3.1.6: A vector Nagendram Γ-semi sub near-field space of Γ-semi sub near-field space over a near-field X 
on a Nagendram Γ-semi sub near-field space N is left invariant if (dLg) (X(x)) = X(Lg(x)) = X(gx) for each x, g ∈ N. 
 
We will now use left invariant vector Nagendram Γ-semi sub near-field spaces of Γ-semi sub near-field space over a 
near-field to show that the tangent Γ-semi sub near-field space of N at the identity, denoted by T1N is a Nagendram Γ-
semi sub near-field space Algebra. 
 
Proposition 3.1.7: Let N be a Nagendram Γ-semi sub near-field space of Γ-semi sub near-field space over a near-field. 
Then, the vector Nagendram Γ-semi sub near-field space of Γ-semi sub near-field space over a near-field of all left 
invariant vector Nagendram Γ-semi sub near-field spaces of Γ-semi sub near-field space over a near-field on N is 
isomorphic (as a vector Nagendram Γ-semi sub near-field space ) to T1N. 
 
Proof: Since X is left invariant the following diagram commutes 

 
              

So that X(a) = (dLa)1(X(1))  for all a ∈ N. Denote by Γ(TN)N the set of all left invariant vector Nagendram Γ-semi sub 
near-field spaces of Γ-semi sub near-field space over a near-field on N. Define a map ∅ : Γ(TN)N → T1N by ∅ : X  
  X(1). Then, ∅ is linear and injective since if X, Y ∈ Γ(TN)N and ∅ (X) = ∅(Y)  , X(g) = dLg (X(1)) = dLg(Y(1)) = 
Y(g) for each g ∈ N. 
 
Now, ∅ is also surjective. For ν ∈ T1N, define Xν ∈ Γ(TN)N by Xν(a) = (dLa)1(ν) for a ∈ N. we claim that Xν is a left 
invariant vector Nagendram Γ-semi sub near-field spaces of Γ-semi sub near-field space over a near-field. Now, Xν : N 
→ TN is a C∞ map of manifold since if f ∈ C∞N, then for a ∈ N (Xν(f))(a) = (dLa(ν))f = ν(f ο La).  
 
Now, if x ∈ N we have (f ο La)(x) = (f ο m)(a, x) which is a smooth map of a, x where x is the multiplication map on N. 
Thus, ν( f ο La) is smooth and hence so is Xν. 
 
We now show Xν  is left invariant. For a, g ∈ N, we have  
(dLg) (Xν(a)) = dLg((dLa)1 (ν)) = d(Lg ο La)(ν) = d(Lga)(ν) = Xν(ga) = Xν( Lg(a)). 
 
So that Xν is left invariant. Therefore ∅ is onto and Γ(TN)N ≅ T1N. This completes the proof of the proposition. 
 
Proposition 3.1.8: The Nagendram bracket of two left vector Nagendram Γ-semi sub near-field spaces of Γ-semi sub 
near-field space over a near-field is a left invariant vector Nagendram Γ-semi sub near-field spaces of Γ-semi sub near-
field space over a near-field. 
 
Thus we can regard T1N as a Nagendram Γ-semi sub near-field spaces of Γ-semi sub near-field space over a near-field 
algebra and make the following definition. 
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Definition 3.1.9: Let N be a Nagendram Γ-semi sub near-field space of Γ-semi sub near-field space over a near-field. 
The Nagendram Γ-semi sub near-field space algebra g of N is T1N with the Nagendram bracket induced by its 
identification with Γ(TN)N. 
 
Example 3.1.10: Let N = (Nn, +) what is g? Notice that for this Nagendram Γ-semi sub near-field space. La(x) = a + x, 
so that (dLa)0 = idT0R

n. So, (dLa)0 (v) = v for all v ∈ T0Nn and thus g = T0Nn ≅ Nn. So the Nagendram Γ-semi sub near-
field space algebra of Γ-semi sub near-field space over a near-field contains all constant vector Nagendram Γ-semi sub 
near-field spaces, and the Nagendram bracket is identically 0. 
 
Example 3.1.11: Consider the Nagendram Γ-semi sub near-field space algebra of Γ-semi sub near-field space over a 
near-field NN(n, N). we have T1NN(n, N), the Nagendram bracket is the commutator i.e. [A, B] = AB – BA 
 
To prove this, we compute XA, the left invariant vector Nagendram Γ-semi sub near-field spaces of Γ-semi sub near-
field space over a near-field associated with the matrix A ∈ T1NN(n, N). Now, on Mn(N), we have global coordinate 
maps given by xij (A) = Aij, the ij th entry of the matrix B. So, for g ∈ NN(n, N), (XA(xij)) (g) = XA(I) (xij ο Lg). Also, if   
h ∈ NN(n, N). 
(xij ο Lg) (h) = xij (gh) = ∑

k
kjik hg  = ∑

k
kjik hxg )(  which implies that xij ο Lg = ∑

k
kjik hxg )(  

Now, if f ∈ C∞ (NN(n N)), XA(I) f = )(0 tAIf
dt
d

t +=  so that XA(I)xij = )(0 tAIf
dt
d

t +=  = Aij. 

Putting these remarks together, we see that XA (xij ο Lg) = ∑
k

kjik Ag = ∑
k

kjik Agx )( . 

We are now in a position to calculate the Nagendram bracket of the left invariant vector Nagendram Γ-semi sub near-
field spaces of Γ-semi sub near-field space over a near-field associated with elements of Mn(N). 
 
([XA, XB)(I)]ij = [XA, XB](I)xij = XAXB(xij) – XB XA(xij) = ( XA ( ∑

k
ikkj xB ) – XB (∑

k
ikkj xA ))(I) 

                       = ( lk
jk

ilkj AxB∑
,

 – lkilkj BxA )(I) = lk
lk

ilkj AB∑
,

δ  – lkilkj BA δ   

                       =∑
k

jkki BA  - ∑
k

jkki AB = (AB - BA)ij 

Therefore, [A, B] = AB – BA. 
 
SECTION 4: NAGENDRAM Γ-SEMI SUB NEAR-FIELD SPACE HOMOMORPHISMS OF A Γ-NEAR-
FIELD SPACE OVER NEAR-FIELD  
 
4.1 Nagendram Γ-semi sub near-field space Homomorphisms of a Γ-near-field space over near-field  
 
Definition 4.1.1: Let P and Q be Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field. A 
map ρ : P → Q is a Nagendram Γ-semi sub near-field space homomorphism if (i) ρ is a C∞  map of manifolds and (ii) ρ 
is a Γ-semi sub near-field space homomorphism of a Γ-near-field space over near-field. 
 
Furthermore, we say ρ is a Nagendram Γ-semi sub near-field space homomorphism if it is a Nagendram Γ-semi sub 
near-field space isomorphism and a diffeomorphism. 
 
If s and t are Nagendram Γ-semi sub near-field space algebras, a Nagendram Γ-semi sub near-field space algebra 
homomorphism ψ : s → t is a map such that (i) ψ is linear and (ii) ψ([X, Y]) = [ψ(X), ψ(Y)] for all X, Y ∈ s. 
 
Now Suppose W is n-dimensional vector Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-
field N. we define NN(W) = {A/ W → W | A is a linear isomorphism } 
 
Since W ≅ Nn , NN(W) ≅ NN(n, N). Note that NN(W) ⊆ Hom(W, W) as an open Γ-semi sub near-field space over 
near-field. 
 
Definition 4.1.2: A (real) representation of a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-
field N is a Nagendram Γ-semi sub near-field space homomorphism of a Γ-near-field space over near-field ρ : N → 
NN(W). 
We may similarly define NN(W) for a complex vector Nagendram Γ-semi sub near-field space of a Γ-near-field space 
over near-field W and thus notation of a complex representation. 
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There are basic two problems in Nagendram Γ-semi sub near-field space theory: 

a. classify all Nagendram Γ-semi sub near-field spaces and Nagendram Γ-semi sub near-field space algebras of a 
Γ-near-field space over near-field, 

b. Classify all representations of  Nagendram Γ-semi sub near-field spaces. 
One step of understanding in this direction is the association between Nagendram Γ-semi sub near-field space 
homomorphisms and homomorphisms of Nagendram Γ-semi sub near-field space algebras of a Γ-near-field space over 
near-field. 
 
Theorem 4.1.3: Suppose, ρ: N → P is a Nagendram Γ-semi sub near-field space homomorphism. Write dρ1 = δρ. 
Then, δρ : T1N → T1P is a Nagendram Γ-semi sub near-field space algebras homomorphism. 
Proof: It is enough to show that any two left invariant vector Nagendram Γ-semi sub near-field spaces on N and P are 
ρ-related. So let X ∈ Γ(SN)N and X ∈ Γ(SP)P.  
Then for each a, g ∈ N, we have (ρ ο La)(g) = ρ(ag) = ρ(a) ρ(g) = (Lρ(a) ο ρ)(g). 
So that ρ ο La  = Lρ(a) ο ρ.  
 
Now, dρa(X(a)) = dρa(La(X(1))) = d(ρ ο La)(X(1)) = d(Lρ(a) ο ρ)(X(1))  
                          = dLρ(a)(dρ(X(1))) = dLρ(a)(δρ(X(1)))= dLρ(a)( X (1)) = X (ρ(a))  since X  is left invariant and thus X 
and X  are ρ-related. This completes the proof of the theorem. 
 
4.2 Nagendram Γ-semi sub near-field spaces and Nagendram Γ-semi sub near-field space algebras of a Γ-near-
field space over near-field. 
 
Definition 4.2.1: Let N be a Nagendram Γ-semi sub near-field space. A Γ-semi sub near-field space P of N is a 
Nagendram Γ-semi sub near-field space if  

a. P is an abstract Γ-semi sub near-field space of a Γ-near-field space over near-field N 
b. P is a Nagendram Γ-semi sub near-field space and  
c. The inclusion i : P → Nis an immersion. 

A linear Γ-semi sub near-field space h of a Nagendram Γ-semi sub near-field space algebras g is a Nagendram Γ-semi 
sub near-field space sub algebras if h is closed under the Nagendram Γ-semi sub near-field space bracket in g. 
 
Example 4.2.2: Let g be a Nagendram Γ-semi sub near-field space algebras and v ∈ g a non-zero vector. Then Nv, the 
span of v, is a Nagendram Γ-semi sub near-field space sub algebras of g. 
 
Example 4.2.3: Let P → N be a Nagendram Γ-semi sub near-field space. By theorem 8.1.3 T1P → T1N is a Nagendram 
Γ-semi sub near-field space sub algebras. 
 
Example 4.2.4: Consider the Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field NN(2, N). 

The Γ-semi sub near-field space SO(2) = 








∈







−

Nt
tt
tt

/
cossin
sincos

 is a Nagendram Γ-semi sub near-field space of 

a Γ-near-field space over near-field. We will compute the Nagendram Γ-semi sub near-field space algebras of SO(2). It 
will be sufficient to find a non-zero vector in T1SO(2) since this Nagendram Γ-semi sub near-field space algebras is of 

co-dimension 1 in T1NN(n, N). Now, 







−

=







−−

−
=








− == 01

10cos
00 tt tSintCos

tCostSin
tCostSin
tSint

dt
d

 . Thus, 

the Nagendram Γ-semi sub near-field space algebras,  so(2) of SO(2)  is so(2) = 








∈







−

Nx
x

x
/

0
0

. 

 
Example 4.2.5: Consider the Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field O(n) of 
NN(n, N). we compute o(n). The Nagendram Γ-semi sub near-field space algebras of O(n). Let A(t) be a path in O(n) 
with A(0) = 1. Then since BBT = I for all B ∈ O(n) we have A(t) A(t)T = I for every t.  

Thus 0 = 





+






=

===
T

t
T

tt
tA

dt
dAAtA

dt
dI

dt
d )()0()0()(

000
 = A′(0) + A′(0)T. Thus we have o(n) ⊆ S 

where S = {X ∈ Mn(N) / X + XT = 0 }. To prove equality, we proceed by dimension count. Now, dim S = 
2

2 nn −
  the 

easiest way to see this is to write down the form of a general element of S and determine where to place 1’s.  
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View I ∈ Sym2 (Nn), the set of all symmetric n x n real matrices. Then, I is a regular value of the map A   AAT 

where A ∈ NN(n, N). Thus dim o(n) = dim NN(n, N) = n2 - 







+

− nnn
2

2

 = 
2

2 nn −
. 

We conclude that this section by discussing the induced maps δm and δinv on the Nagendram Γ-semi sub near-field 
space algebras of a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field N. 
 
Proposition 4.2.6: Let N be a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. Then, for 
all X, Y ∈ g, (a).  δm(X, Y) = X + Y    (b). δinv(X) = - X. 
 
Proof: (a). First note that since δm = (dm)1 is linear, it is enough to prove that (dm)1(X, 0) = X. So, let γ : (a, b) → N be 

a curve with γ(0) = 1 and )(t
dt
d γ  = X. Then, δm (X, 0) = (dm)1(X, 0) = )1),((

0
tm

dt
d

t
γ

=
 = )(

0
t

dt
d

t
γ

=
= X. 

(b). Now, m(γ(t), inv(γ(t)) = 1 for each t ∈ (a, b). Consider, F : N → N defined by F(g) = gg-1. Denote by ∆ the diagonal 
map ∆(g) = (g, g) for each N ∈ N. Then, F = m ο (idN x inv ) ο ∆. Thus, 0 = (dF)1 (X) = ((dm)1 ο (d idN)1 x (dinv)1 ο 
(d∆)1)(X) = X + (d inv)1(X) and so δinv(X) = − X.  This completes the proof of the proposition. 
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