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ABSTRACT 
Let 𝐺 = (𝑉,𝐸) be a graph.  The maximum order of a partition of 𝑉 into (𝐺,𝐷)-sets of 𝐺 is called the 𝐺-domatic 
number of 𝐺 and is denoted by 𝑑𝐺(𝐺).  In this paper we initiate the study of this parameter. 
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1. INTRODUCTION 
 
Throughout this paper, we consider the graph G as a finite undirected simple graph with no loops and multiple edges.  
The study of domination in graphs was begun by Ore and Berge[6].  Let G = (V, E) be any graph.  A dominating set of 
a graph G is a set D of vertices of G such that every vertex in V–D is adjacent to atleast one vertex in D and the 
minimum cardinality among all dominating sets is called the domination number 𝛾(G).  The concept of geodominating   
(or geodetic) set was introduced by Buckley and Harary in [1] and Chartrand, Zhang and Harary in [2, 3, 4].  Let u, v ∈ 
V(G).  A u-v geodesic is a u-v path of length d(u, v).  A vertex x ∈ V(G) is said to lie on a u-v geodesic P if x is a 
vertex of P including the vertices u and v.  A set S of vertices of G is a geodominating (or geodetic) set if every vertex 
of G lie on an x-y geodesic for some x, y in S. The minimum cardinality of a geodominating set is the geodomination 
(or geodetic) number of G and is denoted as g(G)[1, 2, 3, 4].  A (G, D)-set of G is a subset S of V(G) which is both a 
dominating and geodetic set of G.  A (G, D)-set S of G is said to be a minimal (G, D)-set of G if no proper subset of  S 
is a (G, D)-set of G.  The minimum cardinality of all (G, D)-sets of G is called the (G, D)-number of G and it is denoted 
by 𝛾G(G).  Any (G, D)-set of G of cardinality 𝛾G is called a 𝛾G-set of G [8, 9, 10]. 
 
An excellent treatment of fundamentals of domination is given in [6] by Haynes et al. and survey papers on several 
advanced topics are given in [7] edited by Haynes et al.. A domatic partition of G is a partition of V(G) into classes that 
are pairwise disjoint dominating sets.  The domatic number of G is the maximum cardinality of a domatic partition of G 
and it is denoted by d(G).  The domatic number was introduced by Cockayne and Hedetniemi [5] and we extend the 
definition of domatic number as follows: Let 𝐺 = (𝑉,𝐸) be a graph. The maximum order of a partition of 𝑉 into 
(𝐺,𝐷)-sets of 𝐺 is called the 𝐺-domatic number of 𝐺 and is denoted by 𝑑𝐺(𝐺). A vertex 𝑣 in 𝐺 is an extreme (or 
simplicial or link complete) vertex of 𝐺 if the subgraph induced by its neighbours is complete.  A dominating vertex is a 
vertex which forms a dominating set, i.e. a vertex adjacent to all other vertices.  The complement 𝐺̅ of a graph 𝐺 is the 
graph with vertex set 𝑉(𝐺) such that two vertices are adjacent in 𝐺̅ if and only if they are not adjacent in 𝐺.  A perfect 
matching of a graph is a matching (ie, an independent edge set) in which every vertex of the graph is incident to exactly 
one edge of the matching.  A graph 𝐺 is called acyclic if it has no cycles.  A connected acyclic graph is called a tree.  
 
Theorem 1.1: [8] Let 𝐺 = (𝑉,𝐸) be any graph. Then, every (𝐺,𝐷)-set of 𝐺 contains all the extreme vertices of 𝐺. 
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2. 𝑮-DOMATIC NUMBER OF GRAPHS 
 
Definition 2.1: Let 𝐺 = (𝑉,𝐸) be a graph.  The maximum order of a partition of 𝑉 into (𝐺,𝐷)-sets of 𝐺 is called the 𝐺-
domatic number of 𝐺 and is denoted by 𝑑𝐺(𝐺). 
 
Example 2.2: (i) If 𝐺 ≅ 𝐾𝑛, then  𝑑𝐺(𝐺) = 1. (ii) Consider the graph G as in figure (2.1). In G, 𝑋 = {𝑣1, 𝑣4,𝑣7} and 
𝑌 = {𝑣2, 𝑣3, 𝑣5, 𝑣6} are disjoint (𝐺,𝐷)-sets and 𝑋 ∪ 𝑌 = 𝑉(𝐺).  Also, {X, Y} is the unique G-domatic partition of G  
and  hence 𝑑𝐺(𝐺) = 2. 

 
Figure-2.1 

 
Proposition 2.3: If 𝐺 ≅ 𝐾2𝑛 − 𝑋,𝑛 ≥ 2 where 𝑋 is a perfect matching, then 𝑑𝐺(𝐺) = 𝑛.  
 
Proof: Let 𝑉(𝐾2𝑛) = {𝑣1, 𝑣2, … , 𝑣2𝑛} and 𝑋 = {𝑒1, 𝑒2, … , 𝑒𝑛}. Suppose 𝑒𝑘 = 𝑣𝑖𝑣𝑗 ∈ 𝑋. Let 𝑆𝑘 = {𝑣𝑖 , 𝑣𝑗}. Then, 𝑣𝑖 is 
not adjacent to 𝑣𝑗 in 𝐾2𝑛 − 𝑋. Clearly, both 𝑣𝑖 and 𝑣𝑗 are adjacent to all other vertices and each vertex in the set 
{𝑉(𝐾2𝑛 − 𝑋) − �𝑣𝑖 , 𝑣𝑗�} lie in a geodesic joining 𝑣𝑖 and 𝑣𝑗 .  So, for every 𝑘 = 1, 2, … ,𝑛, 𝑆𝑘 is a (G,D)-set of 𝐾2𝑛 − 𝑋.  
Further, since 𝑋 is a perfect matching, 𝐺(𝑋) is a spanning subgraph of 𝐺. Therefore, {𝑆𝑘: 1 ≤ 𝑘 ≤ 𝑛} forms a partition 
of 𝑉(𝐺) into (G,D)-sets. Since |Sk|=2 for every k=1 to n, {Sk : k=1 to n} is a G-domatic partition of G with maximum 
cardinality.  Hence, 𝑑𝐺(𝐺) = 𝑛. 
 
Lemma 2.4: 𝛾𝐺( 𝐶𝑛���) = 3. 
 
Proof: Let 𝑉(𝐶𝑛���) = {𝑣1, 𝑣2, … , 𝑣𝑛}. Then, 𝐸(𝐶𝑛���) = 𝐸(𝐾𝑛) − 𝐸(𝐶𝑛). For any graph 𝐺, 2 ≤ 𝛾𝐺(𝐺) ≤ 𝑛. Suppose 
𝛾𝐺( 𝐶𝑛���) = 2.  For any two consecutive vertices 𝑣𝑖 and 𝑣𝑗, 𝑑�𝑣𝑖 , 𝑣𝑗� = 2 and any two non-consecutive vertices 𝑣𝑖 and 
𝑣𝑗, 𝑑�𝑣𝑖 , 𝑣𝑗� = 1.  For 1 ≤ 𝑖 ≤ 𝑛, take Si = {𝑣𝑖 , 𝑣𝑖+1} where 𝑣𝑛+1 = 𝑣1.  Then, 𝑆i dominate all the vertices of 𝑉(𝐶𝑛���) −
𝑆i. But, 𝑆i geodominate only the vertices of ( 𝑉(𝐶𝑛���) − Si )– {𝑣𝑖−1,  𝑣𝑖+2}. That is, exactly two vertices in 𝑉(𝐶𝑛���) − 𝑆i 
does not lie on any geodesic joining the vertices of 𝑆i.  Clearly, Xi = Si ∪ {𝑣𝑖−1} or Yi = Si ∪ {𝑣𝑖+2} dominate and 
geodominate all the vertices of 𝑉(𝐶𝑛���) − Si. Therefore, 𝑋i or 𝑌i are minimum (𝐺,𝐷)-sets of  𝐶𝑛��� for every i=1 to n.  
Hence, 𝛾𝐺( 𝐶𝑛���) = |𝑋𝑖| = |𝑌𝑖| = |𝑆𝑖| + 1 = 3. 

 
Figure-2.2 
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Proposition 2.5: For n≡ 0(𝑚𝑜𝑑 3) and  𝑛 ≠ 3, 𝑑𝐺( 𝐶𝑛���) = 𝑛

3
, where  𝐶𝑛��� denote the complement of 𝐶𝑛. 

 
Proof: Let 𝑉(𝐶𝑛���) = {𝑣1, 𝑣2, … , 𝑣3𝑘}. By lemma (2.4), 𝛾𝐺( 𝐶𝑛���) = 3.  Therefore, 𝑋 = {{𝑣1, 𝑣2, 𝑣3}, {𝑣4, 𝑣5, 𝑣6}, …,  
{𝑣3𝑘−2, 𝑣3𝑘−1, 𝑣3𝑘}}  is a maximum partition of 𝑉(𝐶𝑛���) into (𝐺,𝐷)-sets..  Therefore,  𝑑𝐺(𝐶𝑛���) = |𝑋| = 3𝑘

3
= 𝑛

3
. 

 
Proposition 2.6: If 𝐺 is any connected graph which contains atleast one pendant vertex, then 𝑑𝐺(𝐺) = 1. 
 
Proof: Let  𝐴 ⊂ 𝑉(𝐺) be a set of pendant vertices of 𝐺. Then, the set 𝐴 must be contained in every (𝐺,𝐷)-set of 𝐺.  
Therefore, 𝑉 − 𝑆 cannot contain any (𝐺,𝐷)-set of 𝐺. But, 𝑉 is always a (𝐺,𝐷)-set of 𝐺. Therefore, {𝑉} forms a 
partition of 𝑉(𝐺).  Hence, 𝑑𝐺(𝐺) = 1. 
 
Corollary 2.7: For any tree 𝑇, 𝑑𝐺(𝑇) = 1. 
 
Proof: Since any tree contains atleast two end vertices, the proof follows by proposition 2.6. 
 
Theorem 2.8: If 𝐺 is a graph which contains atleast one extreme vertex, then 𝑑𝐺(𝐺)=1. 
 
Proof: By theorem (1.1), every extreme vertex lie in every (𝐺,𝐷)-set. Therefore, the proof follows the lines of 
proposition 2.6. 
 
Remark 2.9: (i) If 𝐺 is a graph with an isolated vertex, then 𝑑𝐺(𝐺) = 1.(ii) 𝑑𝐺(𝑃𝑛) = 1 and  
(iii) 𝑑𝐺(𝐾𝑛) = 1 = 𝑑𝐺(𝐾𝑛����). 
 
Theorem 2.10: For any graph 𝐺, 1 ≤ 𝑑𝐺(𝐺) ≤ �𝑛

2
�. 

 
Proof: Since the vertex set itself is a (𝐺,𝐷)-set, {𝑉} forms a partition of 𝑉(𝐺).  Therefore, 1 ≤ 𝑑𝐺(𝐺).  Since minimum 
value of 𝛾𝐺(𝐺) is 2, the maximum partition of 𝑉(𝐺) contains �𝑛

2
� elements.  Therefore, 𝑑𝐺(𝐺) ≤ �𝑛

2
�.   

Hence, 1 ≤ 𝑑𝐺(𝐺) ≤ �𝑛
2
�. 

 
Remark 2.11: In the above inequality, the bounds are sharp for 𝑑𝐺(𝐾𝑛) = 1 and 𝑑𝐺(𝐾𝑛 − 𝑋) = �𝑛

2
� = 𝑛

2
, where 𝑛 ≥ 4 

is even and 𝑋 is a perfect matching of 𝐾𝑛. 
 
Proposition 2.12: If 𝐺 contains a dominating vertex, then 𝑑𝐺(𝐺̅) = 1. 
 
Proof: Let 𝑣 be a dominating vertex of 𝐺. Then, 𝑣 is an isolated vertex in 𝐺̅.  So, 𝑣 belongs to every (𝐺,𝐷)-set of 𝐺̅.  
Thus, 𝐺̅ has {𝑉} as its only 𝐺-domatic partition.  Therefore, 𝑑𝐺(𝐺̅) = 1. 
 
Proposition 2.13: 𝑑𝐺(𝐺1 ∪ 𝐺2) = min {𝑑𝐺(𝐺1),𝑑𝐺(𝐺2)} for any two graphs 𝐺1 and 𝐺2. 
 
Proof: Let 𝐺1, 𝐺2 be two graphs with 𝑑𝐺(𝐺1) = 𝑚 and 𝑑𝐺(𝐺2) = 𝑛 with 𝑚 < 𝑛.  Let 𝐷1 = {𝑆1, 𝑆2, … , 𝑆𝑚} and 
𝐷2 = {𝑆1′ , 𝑆2′ , … , 𝑆𝑛′ } be maximum 𝐺-domatic partitions of 𝐺1 and 𝐺2 respectively.  Then, 𝑆1 ∪ 𝑆1′ , 𝑆2 ∪  𝑆2′ , … , 𝑆𝑚 ∪
(𝑆𝑚′ ∪ 𝑆𝑚+1

′ ∪ …∪ 𝑆𝑛′ ) is obviously a partition of 𝑉(𝐺1 ∪ 𝐺2).   
 
Hence, 𝑑𝐺(𝐺1 ∪ 𝐺2) ≥ 𝑚 − − −− − −(1) 
 
Further, it is obvious that corresponding to any partition of 𝑉(𝐺1 ∪ 𝐺2) into (𝐺,𝐷)-sets of 𝐺1 ∪ 𝐺2, there exist 
partitions of 𝑉(𝐺1) and 𝑉(𝐺2) into (𝐺,𝐷)-sets of 𝐺1 and 𝐺2 respectively and vice versa.  Therefore, 
 𝑑𝐺(𝐺1 ∪ 𝐺2) ≤ min {𝑚,𝑛}   = 𝑚 −−− − − −(2) 
 
Hence, by (1) and (2), 𝑑𝐺(𝐺1 ∪ 𝐺2) = 𝑚 = 𝑚𝑖𝑛{𝑚,𝑛} = 𝑚𝑖𝑛{𝑑𝐺(𝐺1),𝑑𝐺(𝐺2)}.  
 
Remark 2.14: Let 𝐺 ≅ 𝐺1, where 𝐺1 is given in figure (2.3).  Then, (𝑣1,𝑣6), (𝑣2, 𝑣5), (𝑣3, 𝑣8) and (𝑣4, 𝑣7) are (𝐺,𝐷)-
sets of 𝐺.  Therefore, 𝑑𝐺 (𝐺) = 4 = 𝛿(𝐺) + 1.       
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Figure-2.3 

 
Proposition 2.15: For 𝑛 ≡ 0(𝑚𝑜𝑑 3) and 𝑛 ≠ 3,  𝑑𝐺(𝐶𝑛) = 𝛿(𝐶𝑛) + 1.  
 
Proof: Let 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, … , 𝑣3𝑘}. Then, the sets 𝐴 = {𝑣1, 𝑣4, 𝑣7, … , 𝑣3𝑘−2},𝐵 = {𝑣2, 𝑣5, 𝑣8, … , 𝑣3𝑘−1} and  
𝐶 = {𝑣3,𝑣6, 𝑣9, . . . , 𝑣3𝑘} form  a maximum partition of  𝑉(𝐺) into (𝐺,𝐷)-sets and so, 𝑑𝐺(𝐶𝑛) = 3 = 𝛿(𝐶𝑛) + 1. 
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