Applications of b^\sharp-Open set

R. USHA PARAMESWARI*1 AND P. AZHAGUESWARI2

1,2Department of Mathematics,Govindammal Aditanar College for Women, Tiruchendur-628215, India.

(Received On: 13-04-18; Revised & Accepted On: 01-06-18)

ABSTRACT

Using the concept of b^\sharp-open sets we introduce and study topological properties of b^\sharp-limit points, b^\sharp-derived sets, b^\sharp-closure, b^\sharp-border, b^\sharp-Frontier and Db^\sharp- exterior and discuss their relations with one another.

Keywords: b^\sharp-limit points, b^\sharp-derived sets, b^\sharp-closure, b^\sharp-border, b^\sharp-Frontier and Db^\sharp- exterior.

AMS Subject Classification Nos. 2000: 54A05, 54A10.

1. INTRODUCTION

In the year 1996, Andrijivic introduced [1] and studied b-open sets. Following this Usha Paraeswari et.al [2] introduced the concept of b^\sharp-open sets. In this paper we introduce the notions of b^\sharp-limit points, b^\sharp-derived sets, b^\sharp-closure, b^\sharp-border, b^\sharp-Frontier and Db^\sharp- exterior by using the concept of b^\sharp-open set.

2. PRELIMINARIES

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, $cl(A)$ denotes the closure of A and $int(A)$ denotes the interior of A in the topological space X. Further $X \setminus A$ denotes the complement of A in X. The following definitions and results are very useful in the subsequent sections.

Definition 2.1 [2]: A subset A of a space X is called b^\sharp-open if $A = cl(int(A)) \cup int(cl(A))$ and their complement is called b^\sharp-closed. That is A is b^\sharp-closed if $A = cl(int(A)) \cap int(cl(A))$.

Definition 2.2[3]: The b^\sharp-interior of A, denoted by $b^\sharp-int(A)$, is defined to be the union of all b^\sharp-open sets contained in A. That is $b^\sharp-int(A) = \bigcup \{B: B \subseteq A \text{ and } B \text{ is } b^\sharp\text{-open}\}$.

The next Lemma gives the properties of b^\sharp-interior.

Lemma 2.3[3]:

(i) $b^\sharp-int(\emptyset) = \emptyset$.

(ii) $b^\sharp-int(X) = X$.

(iii) $b^\sharp-int(A) \subseteq A$.

(iv) b^\sharp-interior of a set A is not always b^\sharp-open.

(v) If A is b^\sharp-open then $b^\sharp-int(A) = A$.

Lemma 2.4[3]: Let X be a space. Then for any two sub sets A and B of X we have

(i) If $A \subseteq B$ then $b^\sharp-int(A) \subseteq b^\sharp-int(B)$.

(ii) $b^\sharp-int(b^\sharp-int(A)) = b^\sharp-int(A)$.

(iii) $b^\sharp-int(A \setminus B) \subseteq b^\sharp-int(A) \cap b^\sharp-int(B)$.

(iv) $b^\sharp-int(A \cup B) \supseteq b^\sharp-int(A) \cup b^\sharp-int(B)$.

Corresponding Author: R. Usha Parameswari*1, 1Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India.
Definition 2.5[3]: The b^s-closure of A, denoted by b^s-cl(A), is defined to be the intersection of all b^s-closed sets containing A. That is b^s-cl(A)=$\bigcap \{B: A \subseteq B$ and B is b^s-closed$\}$.

Lemma 2.6[3]: Let X be a space. Then for any sub set A of X we have
(i) $X \setminus b^s$-int(A) = b^s-cl$(X \setminus A)$.
(ii) $X \setminus b^s$-cl(A) = b^s-int$(X \setminus A)$.

Remarks 2.7[3]:
(i) b^s-cl(\emptyset) = \emptyset.
(ii) b^s-cl(X) = X.
(iii) A is b^s-closed if and only if b^s-cl(A) = A.
(iv) b^s-closure of a set A is not always b^s-closed.
(v) If A is b^s-closed then b^s-cl(A) = A.

Lemma 2.8[3]: Let X be a space. Then for any two sub sets A and B of X we have
(i) If $A \subseteq B$ then b^s-cl(A) \subseteq b^s-cl(B).
(ii) b^s-cl$(b^s$-cl$(A))$ = b^s-cl(A).
(iii) b^s-cl$(A \cup B)$ \supseteq b^s-cl$(A) \cup b^s$-cl(B).
(iv) b^s-cl$(A \cap B)$ \subseteq b^s-cl$(A) \cap b^s$-cl(B).

3. b^s- limit points

Definition 3.1: Let A be a subset of a topological space (X, τ) and x be a point of X. A point $x \in X$ is said to be a b^s-limit point of A if every b^s-neighborhood of x intersects A in some point other than x itself. That is $U \cap (A \setminus \{x\}) \neq \emptyset$ for all $U \in b^s$-$O(X, \tau)$.

The set of all b^s-limit points of A is called the b^s-derived set of A and is denoted by $D_{b^s}$$(A)$.

Remark 3.2: A subset A of X, a point $x \in X$ is not a b^s-limit point of A if and only if there exists a b^s-open set G in X such that $x \in G$ and $G \cap (A \setminus \{x\}) = \emptyset$ that is $x \in G$ and $G \cap A = \emptyset$ or $G \cap A = \{x\}$ that is $x \in G$ and $G \cap A \subseteq \{x\}$.

Theorem 3.3: Let τ_1 and τ_2 be topologies on X such that τ_1 \subseteq τ_2. For any subset A of X, every b^s-limit point of A with respect to τ_2 is a b^s-limit point of A with respect to τ_1.

Proof: Let x be a b^s-limit point of A with respect to τ_2. Then $U \cap (A \setminus \{x\}) \neq \emptyset$ for every $U \in \tau_2$ such that $x \in U$. But τ_1 \subseteq τ_2, we have $U \cap (A \setminus \{x\}) \neq \emptyset$ for every $U \in \tau_1$ such that $x \in U$. Hence x is a b^s-limit point of A with respect to τ_1.

Theorem 3.4: For any sub sets A and B of (X, τ) the following holds.
(i) If $A \subseteq B$ then $D_{b^s}$$(A)$ \subseteq $D_{b^s}$$(B)$.
(ii) $D_{b^s}$$(A \cup B)$ \subseteq $D_{b^s}$$(A) \cup D_{b^s}$$(B)$.
(iii) $D_{b^s}$$(A \cap B)$ \subseteq $D_{b^s}$$(A) \cap D_{b^s}$$(B)$.
(iv) $D_{b^s}$$(D_{b^s}$$(A))/A$ \subseteq $D_{b^s}$$(A)$.
(v) $D_{b^s}$$(A \cup D_{b^s}$$(A))$ \subseteq $A \cup D_{b^s}$$(A)$.

Proof: Let $x \in D_{b^s}$$(A)$ and let $U \in \tau$ with $x \in U$. Then $U \cap (A \setminus \{x\}) \neq \emptyset$. Since $A \subseteq B$, we have $U \cap (B \setminus \{x\}) \neq \emptyset$. This implies that $x \in D_{b^s}$$(B)$. This proves (i).

Now to prove (ii). Since $A \cup B \subseteq A \cup B$ and $B \subseteq A \cup B$. Using (i), $D_{b^s}$$(A \cup B)$ \subseteq $D_{b^s}$$(A \cup B)$ and $D_{b^s}$$(B)$ \subseteq $D_{b^s}$$(A \cup B)$ that is $D_{b^s}$$(A \cup B)$ \subseteq $D_{b^s}$$(A \cup B)$. This proves (ii).

Next we have to prove (iii). Since $A \cap B \subseteq A \cap B$ and $B \subseteq A \cap B$. Using (i), $D_{b^s}$$(A \cap B)$ \subseteq $D_{b^s}$$(A \cap B)$ and $D_{b^s}$$(B)$ \subseteq $D_{b^s}$$(A \cap B)$ that is $D_{b^s}$$(A \cap B) \subseteq D_{b^s}$$(B)$. Thus we get $D_{b^s}$$(A \cap B)$ \subseteq $D_{b^s}$$(A) \cap D_{b^s}$$(B)$. Hence (iii). Next to prove (iv). Let $x \in D_{b^s}$$(D_{b^s}$$(A))/A$ and let $U \in \tau$ with $x \in U$. Then $U \cap (D_{b^s}$$(A \setminus \{x\}) \neq \emptyset$. Let $y \in U \cap (D_{b^s}$$(A \setminus \{x\})$. Then $y \in U$ and $y \in D_{b^s}$$(A)$ and $U \cap (A \setminus \{y\}) \neq \emptyset$. If we take $z \in U \cap (A \setminus \{y\})$, then $x \neq z$ because $x \notin A$. Hence $U \cap (A \setminus \{x\}) \neq \emptyset$. Therefore $x \in D_{b^s}$$(A)$. Hence (iv).
Next to prove (v). Let \(x \in D b^\# (A \cup D b^\# (A)) \). If \(x \in A \), the result is obvious. Assume that \(x \notin A \). Then \(U \cap (A \cup D b^\# (A)) \neq \emptyset \) for all \(U \in \tau^{b^\#} \) with \(x \in U \). Hence \(U \cap (A \cup D b^\# (A)) \neq \emptyset \). The first case implies \(x \in D b^\# (A) \). Then the second case implies \(x \in D b^\# (D b^\# (A)) \). Since \(x \notin A \), by (iv) \(x \in D b^\# (D b^\# (A)) / A \subseteq D b^\# (A) \). This proves (v).

The reverse inclusion of (i) and the converse of (ii), (iii) and (iv) are not true as shown by the following examples.

Example 3.5: Let \(X = \{a, b, c, d\} \). Consider the topology \(\tau = \{\emptyset, X, \{a, b, c\}, \{a\}, \{b, c\}\} \). The \(b^\# \)-open sets are \(\emptyset, X, \{d, b, c\}, \{a, d\} \) and the \(b^\# \)-closed sets are \(\emptyset, X, \{a\}, \{b, c\} \). Let \(A = \{a, d\} \) and \(B = \{b, c\} \). Then \(D b^\# (A) = \{a, b, c\} \) and \(D b^\# (B) = \{b, c\} \). So \(D b^\# (B) \subseteq D b^\# (A) \) but \(B \not\subseteq A \).

Also \(D b^\# (A \cup B) = \{b, d\} \). Again let \(A_1 = \{a, b\} \) and \(B_1 = \{a, c\} \). Then \(D b^\# (A_1) = \{c, d\} \) and \(D b^\# (B_1) = \{b, d\} \). Therefore \(D b^\# (A) \cap D b^\# (B) \subseteq D b^\# (A \cap B) \).

Theorem 3.6: Let \(A \) be a sub set of \((X, \tau)\) and \(x \in X \). Then the following are equivalent.

(i) If for all \(U \in \tau^{b^\#} \), \(x \in U \) then \(A \cap U \neq \emptyset \).

(ii) \(x \in b^\# \text{-cl}(A) \).

Proof: Suppose (i) holds. If \(x \notin b^\# \text{-cl}(A) \), then there exists a \(b^\# \)-closed set \(F \) such that \(A \subseteq F \) and \(x \notin F \). Hence \(X/F \) is a \(b^\# \)-open set containing \(x \) and \(A \cap (X/F) = \emptyset \). This is a contradiction to our assumption. This proves (i) \(\Rightarrow \) (ii). The proof of (ii) \(\Rightarrow \) (i) is from the Definition 3.1.

Corollary 3.7: For any sub set \(A \) of \(X \) we have \(D b^\# (A) \subseteq b^\# \text{-cl}(A) \).

Proof: Let \(x \in D b^\# (A) \). By Definition 3.1, there exists \(x \in U \) such that \(U \cap (A/{x}) \neq \emptyset \). So by Theorem 3.6, \(x \in b^\# \text{-cl}(A) \).

Theorem 3.8: For any sub set \(A \) of \(X \), \(b^\# \text{-cl}(A) = A \cup D b^\# (A) \).

Proof: Let \(x \in b^\# \text{-cl}(A) \). Assume that \(x \notin A \) and let \(U \in \tau^{b^\#} \) with \(x \in U \). Then \(U \cap (A/{x}) \neq \emptyset \) and so \(x \in D b^\# (A) \). Hence \(b^\# \text{-cl}(A) \subseteq A \cup D b^\# (A) \). Conversely since \(A \subseteq b^\# \text{-cl}(A) \) and \(D b^\# (A) \subseteq b^\# \text{-cl}(A) \). This proves the theorem.

Definition 3.9[3]: A space \(X \) is said to be \(b^\# \)-closed preserving if every \(b^\# \)-closure of a subset is \(b^\# \)-closed.

Theorem 3.10: Let \(A \) and \(B \) be a sub sets of \((X, \tau)\). If \(A \) is \(b^\# \)-closed preserving then \(b^\# \text{-cl}(A \cup B) \subseteq A \cup b^\# \text{-cl}(B) \).

Proof: If \(A \) is \(b^\# \)-closed preserving then \(b^\# \text{-cl}(A) = A \) and so \(b^\# \text{-cl}(A \cup B) \subseteq b^\# \text{-cl}(A) \cup b^\# \text{-cl}(B) = A \cup b^\# \text{-cl}(B) \).

Theorem 3.11: For every sub set \(A \) of \(X \) we have \(A \) is \(b^\# \)-closed then \(D b^\# (A) \subseteq A \).

Proof: Assume that \(A \) is \(b^\# \)-closed. Let \(x \in X/A \). Then \(X/A \) is \(b^\# \)-open, \((X/A) \cap (A/{x}) = \emptyset \). Therefore \(x \) is not a \(b^\# \)-limit point of \(A \). Hence \(D b^\# (A) \subseteq A \).

Corollary 3.12: The converse of the above theorem is true if \(A \) is \(b^\# \)-closed preserving.

Theorem 3.13: Let \(A \) be a sub set of \((X, \tau)\). If a point \(x \in A \) is a \(b^\# \)-limit point of \(A \setminus B \) then \(x \) is also a \(b^\# \)-limit point of \(A \).

Proof: If \(x \) is a \(b^\# \)-limit point of \(A \) then by Definition 3.1, there exists a \(b^\# \)-open set \(U \) such that \(x \in U \) and \(U \cap [(A/{x})/{x}] \neq \emptyset \). That is \(x \) is a \(b^\# \)-limit point of \(A \).

4. \(b^\# \)-interior, \(b^\# \)-border and \(b^\# \)-Frontier

Definition 4.1: Let \(A \) be a sub set of a topological space \((X, \tau)\). A point \(x \in X \) is called a \(b^\# \)-interior point of \(A \) if there exists a \(b^\# \)-open set \(U \) such that \(x \in U \subseteq A \). The set of all \(b^\# \)-interior points of \(A \) is called \(b^\# \)-interior of \(A \) and is denoted by \(b^\# \text{-int}(A) \).
Definition 4.2: For any sub set A of X, the set $b^#\text{-}\text{b}(A) = A/ b^#\text{-}\text{int}(A)$ is called the $b^#\text{-}\text{border}$ of A and the set $b^#\text{-}\text{Fr}(A) = b^#\text{-}\text{cl}(A)/ b^#\text{-}\text{int}(A)$ is called the $b^#\text{-}\text{Frontier}$ of A.

Remark 4.3: If A is a $b^#\text{-}\text{closed}$ preserving sub set of X then $b^#\text{-}\text{b}(A) = b^#\text{-}\text{Fr}(A)$.

Proposition 4.4: For a sub set A of X the following statements holds.

(i) $b^#\text{-}\text{int}(A) \cap b^#\text{-}\text{b}(A) = \phi$.

(ii) $b^#\text{-}\text{int}(b^#\text{-}\text{b}(A)) = \phi$.

(iii) $b^#\text{-}\text{b}(b^#\text{-}\text{b}(A)) = b^#\text{-}\text{b}(A)$.

(iv) $b^#\text{-}\text{b}(A) = A \cap b^#\text{-}\text{cl}(X/A)$.

Proof: By Definition of 4.2, (i) holds. Now to prove (ii).

If $x \in b^#\text{-}\text{int}(b^#\text{-}\text{b}(A))$ then $x \in b^#\text{-}\text{b}(A) \subseteq A$ and $x \in b^#\text{-}\text{int}(A)$. Thus $x \in b^#\text{-}\text{int}(A) \cap b^#\text{-}\text{b}(A) = \phi$ which is a contradiction. Hence $b^#\text{-}\text{int}(b^#\text{-}\text{b}(A)) = \phi$. This proves (ii).

Now to prove (iii). By Definition 4.2, $b^#\text{-}\text{b}(b^#\text{-}\text{b}(A)) = b^#\text{-}\text{b}(A)/ b^#\text{-}\text{int}(b^#\text{-}\text{b}(A))$.

Using (ii), $b^#\text{-}\text{b}(b^#\text{-}\text{b}(A)) = b^#\text{-}\text{b}(A)$. This proves (iii). Now to prove (iv). Using Definition 4.2, $b^#\text{-}\text{b}(A) = A/ b^#\text{-}\text{int}(A) = A/ (X/b^#\text{-}\text{cl}(X/A)) = A \cap b^#\text{-}\text{cl}(X/A)$. This proves (iv).

Theorem 4.5: For a sub set A of (X, τ), the following conditions holds.

(i) $b^#\text{-}\text{int}(A) \cap b^#\text{-}\text{Fr}(A) = \phi$.

(ii) $b^#\text{-}\text{b}(A) \subseteq b^#\text{-}\text{Fr}(A)$.

(iii) $b^#\text{-}\text{Fr}(A) = b^#\text{-}\text{cl}(A)/ b^#\text{-}\text{int}(A) = (A/ b^#\text{-}\text{int}(A)) \cup (Db^#\text{-}(A)/ b^#\text{-}\text{int}(A))$.

(iv) $b^#\text{-}\text{Fr}(A) = b^#\text{-}\text{cl}(A) \cap b^#\text{-}\text{cl}(X/A)$.

(v) $b^#\text{-}\text{Fr}(A) = b^#\text{-}\text{Fr}(X/A)$.

(vi) $b^#\text{-}\text{Fr}(b^#\text{-}\text{int}(A)) \subseteq b^#\text{-}\text{Fr}(A)$.

(vii) $b^#\text{-}\text{int}(A) = A/ b^#\text{-}\text{Fr}(A)$.

Proof: Using Definition 4.2, $b^#\text{-}\text{int}(A) \cap b^#\text{-}\text{Fr}(A) = b^#\text{-}\text{int}(A) \cap (b^#\text{-}\text{cl}(A)/ b^#\text{-}\text{int}(A)) = \phi$. This proves (i). Now to prove (ii).

Since $A \subseteq b^#\text{-}\text{cl}(A)$ we have $b^#\text{-}\text{b}(A) = A/ b^#\text{-}\text{int}(A) \subseteq b^#\text{-}\text{cl}(A)/ b^#\text{-}\text{int}(A) = b^#\text{-}\text{Fr}(A)$. This proves (ii). Now to prove (iii).

By Definition 4.2, $b^#\text{-}\text{Fr}(A) = b^#\text{-}\text{cl}(A)/ b^#\text{-}\text{int}(A) = (A \cup Db^#\text{-}(A)/ b^#\text{-}\text{int}(A)) = (A/ b^#\text{-}\text{int}(A)) \cup (Db^#\text{-}(A)/ b^#\text{-}\text{int}(A)) = b^#\text{-}\text{b}(A) \cup (Db^#\text{-}(A)/ b^#\text{-}\text{int}(A))$. Hence (iii) is proved. Now to prove (iv).

Using Lemma 2.6, we have $b^#\text{-}\text{cl}(A) \cap b^#\text{-}\text{cl}(X/A) = b^#\text{-}\text{cl}(A) \cap (X/b^#\text{-}\text{cl}(A)) = b^#\text{-}\text{cl}(A) = b^#\text{-}\text{Fr}(A)$. This proves (iv). Using (iv), $b^#\text{-}\text{Fr}(X/A) = b^#\text{-}\text{cl}(X/A) \cap b^#\text{-}\text{cl}(X/A) = b^#\text{-}\text{Fr}(A)$. Hence (v) is proved.

Using Lemma 2.4, $b^#\text{-}\text{Fr}(b^#\text{-}\text{int}(A)) = b^#\text{-}\text{cl}(b^#\text{-}\text{int}(A))/ b^#\text{-}\text{int}(b^#\text{-}\text{int}(A)) \subseteq b^#\text{-}\text{cl}(A)/ b^#\text{-}\text{int}(A) = b^#\text{-}\text{Fr}(A)$. This proves (vi). Now $A/ b^#\text{-}\text{Fr}(A) = A/ (b^#\text{-}\text{cl}(A)/ b^#\text{-}\text{int}(A)) = A \cap ((X/b^#\text{-}\text{cl}(A)) \cup b^#\text{-}\text{int}(A)) = \phi \cup (A \cup b^#\text{-}\text{int}(A)) = b^#\text{-}\text{int}(A)$. This completes the proof.

The converse of (ii) and (vi) of Theorem 4.5 is not true in general as seen in the following Example.

Example 4.6: Consider the same topological space in Example 3.5. Let $A = \{c\}$. Then $b^#\text{-}\text{Fr}(A) = \{b, c\}$, $b^#\text{-}\text{b}(A) = \{c\}$, $b^#\text{-}\text{int}(A) = \phi$ and $b^#\text{-}\text{Fr}(b^#\text{-}\text{int}(A)) = \phi$. Thus $b^#\text{-}\text{Fr}(A) \subseteq b^#\text{-}\text{b}(A)$ and $b^#\text{-}\text{Fr}(A) \subseteq b^#\text{-}\text{Fr}(b^#\text{-}\text{int}(A))$.

5. $b^#\text{-}\text{exterior}$

Definition 5.1: For a sub set A of (X, τ), the $b^#\text{-}\text{interior}$ of X/A is called the $b^#\text{-}\text{exterior}$ of A and is denoted by $b^#\text{-}\text{ext}(A)$, that is $b^#\text{-}\text{ext}(A) = b^#\text{-}\text{int}(X/A)$.
Theorem 5.2: For sub sets A and B of X the following assertions are valid.

(i) b^s-ext$(A) = X/ b^s$-cl(A).

(ii) b^s-ext$(b^s$-ext$(A))= b^s$-int$(b^s$-cl$(A)) \supseteq b^s$-int(A).

(iii) $A \subseteq B$ implies b^s-ext$(A) \subseteq b^s$-ext(B).

(iv) b^s-ext$(A \cup B) \subseteq b^s$-ext$(A) \cap b^s$-ext(B).

(v) b^s-ext$(A \cap B) \supseteq b^s$-ext$(A) \cup b^s$-ext(B).

(vi) b^s-ext$(X) = \phi$, b^s-ext$(\phi) = X$.

(vii) $X = b^s$-int$(A) \cup b^s$-ext$(A) \cup b^s$-Fr(A).

Proof: By Definition 5.1 and Lemma 2.6, b^s-ext$(A) = b^s$-int$(X/A) = X/b^s$-cl(A). This proves (i). Now to prove (ii). Using Lemma 2.6, we get b^s-ext$(b^s$-ext$(A)) = b^s$-ext$(b^s$-int$(X/A)) = b^s$-ext$(b^s$-int$(X/b^s$-int$(X/A))) = b^s$-int$(b^s$-cl$(A)) \supseteq b^s$-int(A). This proves (ii).

Now to prove (iii). Assume that $A \subseteq B$. Then b^s-ext$(B) = b^s$-int$(X/B) \subseteq b^s$-int$(X/A) = b^s$-ext(A). Hence (iii) is proved.

Now to prove (iv), b^s-ext$(A \cup B) = b^s$-int$(X/(A \cup B)) = b^s$-int$(X/A \cap X/B) \subseteq b^s$-int$(X/A) \cap b^s$-int$(X/B) = b^s$-ext$(A) \cap b^s$-ext$(B)$. Hence (iv) is proved.

Now to prove (v), b^s-ext$(A \cap B) = b^s$-int$(X/A \cap X/B) = b^s$-int$(X/A) \cup b^s$-int$(X/B) = b^s$-ext$(A) \cup b^s$-ext(B). Thus (v) is proved. Using Definition 5.1, (vi) is proved.

Now to prove (vii), b^s-int$(A) \cup b^s$-ext$(A) \cup b^s$-Fr$(A) = b^s$-int$(A) \cup (b^s$-cl$(A)/ b^s$-int$(A)) \cup b^s$-ext$(A) = (b^s$-int$(A) \cup b^s$-cl$(A))/\cup b^s$-ext$(A) = b^s$-cl$(A) \cup b^s$-cl$(X/A) = X$ since by Definition 4.2 and Lemma 2.6.

Examples can be easily constructed for the reverse inclusion of Theorem 5.2(iii) and (iv).

REFERENCES