International Journal of Mathematical Archive-9(6), 2018, 150-154 MAAvailable online through www.ijma.info ISSN 2229 - 5046

Applications of b#-Open set

R. USHA PARAMESWARI*1 AND P. AZHAGUESWARI2

^{1,2}Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India.

(Received On: 13-04-18; Revised & Accepted On: 01-06-18)

ABSTRACT

U sing the concept of $b^{\#}$ -open sets we introduce and study topological properties of $b^{\#}$ -limit points, $b^{\#}$ -derived sets, $b^{\#}$ -closure, $b^{\#}$ -border, $b^{\#}$ -Frontier and $Db^{\#}$ - exterior and discuss their relations with one another.

Keywords: $b^{\#}$ -limit points, $b^{\#}$ -derived sets, $b^{\#}$ -closure, $b^{\#}$ -border, $b^{\#}$ -Frontier and $Db^{\#}$ - exterior.

AMS Subject Classification Nos. 2000: 54A05, 54A10.

1. INTRODUCTION

In the year 1996, Andrijivic introduced [1] and studied b-open sets. Following this Usha Paraeswari *et.al* [2] introduced the concept of $b^{\#}$ - open sets. In this paper we introduce the notions of $b^{\#}$ -limit points, $b^{\#}$ -derived sets, $b^{\#}$ -closure, $b^{\#}$ -border, $b^{\#}$ -Frontier and $b^{\#}$ - exterior by using the concept of $b^{\#}$ -open set.

2. PRELIMINARIES

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, cl(A) denotes the closure of A and int(A) denotes the interior of A in the topological space X. Further $X \setminus A$ denotes the complement of A in X. The following definitions and results are very useful in the subsequent sections.

Definition 2.1 [2]: A subset A of a space X is called $b^{\#}$ - open if $A = cl(int(A)) \cup int(cl(A))$ and their complement is called $b^{\#}$ - closed. That is A is $b^{\#}$ -closed if $A = cl(int(A)) \cap int(cl(A))$.

Definition 2.2[3]: The $b^{\#}$ -interior of A, denoted by $b^{\#}$ -int(A), is defined to be the union of all $b^{\#}$ -open sets contained in A. That is $b^{\#}$ - $int(A) = \bigcup \{B: B \subset A \text{ and } B \text{ is } b^{\#}$ -open \}.

The next Lemma gives the properties of b[#]-interior.

Lemma 2.3[3]:

- (i) $b^{\#}-int(\phi) = \phi$.
- (ii) $b^{\#}$ -int(X)= X.
- (iii) $b^{\#}$ -int(A) \subseteq A.
- (iv) b[#]-interior of a set A is not always b[#]-open.
- (v) If A is $b^{\#}$ -open then $b^{\#}$ -int(A)=A.

Lemma 2.4[3]: Let X be a space. Then for any two sub sets A and B of X we have

- (i) If $A \subseteq B$ then $b^{\#}$ -int(A) $\subseteq b^{\#}$ -int(B).
- (ii) $b^{\#}$ -int($b^{\#}$ -int(A))= $b^{\#}$ -int(A).
- (iii) $b^{\#-}int(A \cap B) \subseteq b^{\#-}int(A) \cap b^{\#-}int(B)$.
- (iv) $b^{\#}$ -int($A \cup B$) $\supset b^{\#}$ -int(A) $\cup b^{\#}$ -int(B).

Corresponding Author: R. Usha Parameswari*1, ¹Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India.

Definition 2.5[3]: The $b^{\#}$ -closure of A, denoted by $b^{\#}$ -cl(A), is defined to be the intersection of all $b^{\#}$ -closed sets containing A. That is $b^{\#}$ - $cl(A) = \bigcap \{B: A \subseteq B \text{ and } B \text{ is } b^{\#}$ -closed $\}$.

Lemma 2.6[3]: Let X be a space. Then for any sub set A of X we have

- (i) $X \setminus b^{\#}$ -int(A)= $b^{\#}$ -cl(X\A).
- (ii) $X \setminus b^{\#}-cl(A) = b^{\#}-int(X \setminus A)$.

Remarks 2.7[3]:

- (i) $b^{\#}-cl(\phi)=\phi$,
- (ii) $b^{\#}-cl(X)=X$.
- (iii) $A \subseteq b^{\#}$ -cl(A).
- (iv) b*-closure of a set A is not always b*-closed.
- (v) If A is $b^{\#}$ -closed then $b^{\#}$ -cl(A)=A.

Lemma 2.8[3]: Let X be a space. Then for any two sub sets A and B of X we have

- (i) If $A \subseteq B$ then $b^{\#}-cl(A) \subseteq b^{\#}-cl(B)$.
- (ii) $b^{\#}-cl(b^{\#}-cl(A))=b^{\#}-cl(A)$.
- (iii) $b^{\#}$ - $cl(A \cup B) \supset b^{\#}$ - $cl(A) \cup b^{\#}$ -cl(B).
- (iv) $b^{\#}$ - $cl(A \cap B) \subseteq b^{\#}$ - $cl(A) \cap b^{\#}$ -cl(B).

3. b[#]- limit points

Definition 3.1: Let A be a subset of a topological space (X, τ) and x be a point of X. A point $x \in X$ is said to be a $b^{\#}$ -limit point of A if every $b^{\#}$ -neighborhood of x intersects A in some point other than x itself. That is $U \cap (A/\{x\}) \neq \emptyset$ for all $U \in b^{\#}$ -O(X, τ).

The set of all b*-limit points of A is called the b*-derived set of A and is denoted by Db*-(A).

Remark 3.2: A subset A of X, a point $x \in X$ is not a $b^{\#}$ -limit point of A if and only if there exists a $b^{\#}$ -open set G in X such that $x \in G$ and $G \cap (A/\{x\}) = \phi$ that is $x \in G$ and $G \cap A = \{x\}$ that is $x \in G$ and $G \cap A \subseteq \{x\}$.

Theorem 3.3: Let τ_1 and τ_2 be topologies on X such that $\tau_1^{b\#} \subseteq \tau_2^{b\#}$. For any subset A of X, every $b^\#$ -limit point of A with respect to τ_2 is a $b^\#$ -limit point of A with respect to τ_1 .

Proof: Let x be a b*-limit point of A with respect to τ_2 . Then $U \cap (A/\{x\}) \neq \phi$ for every $U \in \tau_2^{b^\#}$ such that $x \in U$. But $\tau_1^{b^\#} \subseteq \tau_2^{b^\#}$, we have $U \cap (A/\{x\}) \neq \phi$ for every $U \in \tau_1^{b^\#}$ such that $x \in U$. Hence x is a b*-limit point of A with respect to τ_1 .

Theorem 3.4: For any sub sets A and B of (X, τ) the following holds.

- (i) If $A \subseteq B$ then $Db^{\#}$ -(A) $\subseteq Db^{\#}$ -(B).
- (ii) $Db^{\#}$ (A) $\bigcup Db^{\#}$ (B) $\subseteq Db^{\#}$ (A $\bigcup B$).
- (iii) $Db^{\#}$ $(A \cap B) \subset Db^{\#}$ $(A) \cap Db^{\#}$ (B).
- (iv) $Db^{\#}$ $(Db^{\#}$ $(A))/A \subset Db^{\#}$ (A).
- (v) $Db^{\#}$ (A $\bigcup Db^{\#}$ (A)) \subset A $\bigcup Db^{\#}$ (A).

Proof: Let $x \in Db^{\#}$. (A) and let $U \in \tau^{b\#}$ with $x \in U$. Then $U \cap (A/\{x\}) \neq \phi$. Since $A \subseteq B$, we have $U \cap (B/\{x\}) \neq \phi$. This implies that $x \in Db^{\#}$ -(B). This proves (i).

Now to prove (ii). Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$. Using (i), $Db^{\#}$ - (A) $\subseteq Db^{\#}$ - (A $\cup B$) and $Db^{\#}$ - (B) $\subseteq Db^{\#}$ - (A $\cup B$) that is $Db^{\#}$ - (A) $\cup Db^{\#}$ - (B) $\subseteq Db^{\#}$ - (A $\cup B$). This proves (ii).

Next we have to prove (iii). Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Using (i), $Db^{\#}$ - $(A \cap B) \subseteq Db^{\#}$ - (A) and $Db^{\#}$ - $(A \cap B) \subseteq Db^{\#}$ -

Hence $U \cap (A/\{x\}) \neq \emptyset$. Therefore $x \in D$ $b^{\#}$ - (A). Hence (iv).

R. Usha Parameswari * and P. Azhagueswari 2 / Applications of $b^\#$ -Open set / IJMA- 9(6), June-2018.

Next to prove (v). Let $x \in D$ $b^{\#}$ - $(A \bigcup D$ $b^{\#}$ - (A)). If $x \in A$, the result is obvious. Assume that $x \notin A$. Then $U \bigcap (A \bigcup Db^{\#}$ - $(A)/\{x\}) \neq \phi$ for all $U \in \tau$ $b^{\#}$ with $x \in U$. Hence $U \bigcap (A/\{x\}) \neq \phi$ or $U \bigcap (Db^{\#}$ - $(A)/\{x\}) \neq \phi$. The first case implies $x \in Db^{\#}$ - (A). Then the second case implies $x \in Db^{\#}$ - (D $b^{\#}$ -(A)). Since $x \notin A$, by (iv) $x \in Db^{\#}$ - $(Db^{\#}$ -(A))/ $A \subseteq D$ $b^{\#}$ -(A). This proves (v).

The reverse inclusion of (i) and the converse of (ii), (iii) and (iv) are not true as shown by the following examples.

Example 3.5: Let $X = \{a, b, c, d\}$. Consider the topology $\tau = \{\Phi, X, \{a, b, c\}, \{a\}, \{b, c\}\}$. The $b^{\#}$ -open sets are Φ , X, $\{d, b, c\}$, $\{a, d\}$ and $\{b, c\}$, and $\{b, c\}$, $\{a, d\}$ and $\{b, c\}$. Then $\{a, b, c\}$ and $\{b, c\}$. Then $\{b, c\}$ and $\{b, c\}$ and $\{b, c\}$ and $\{b, c\}$ but $\{b, c\}$

Also $Db^{\#}$ - $(A \cup B) = \{a, b, c, d\} \not\subset Db^{\#}$ - $(A) \cup Db^{\#}$ -(B). Again let $A_1 = \{a, b\}$ and $B_1 = \{a, c\}$. $Db^{\#}$ - $(A_1) = \{c, d\}$ and $Db^{\#}$ - $(B_1) = \{b, d\}$. Therefore $Db^{\#}$ - $(A) \cap Db^{\#}$ - $(B) \not\subset Db^{\#}$ - $(A \cap B)$.

Let $A_2 = \{a, c\}$. $Db^{\#}(A_2) = \{b, d\}$ and $Db^{\#}(Db^{\#}(A)) = \{a, b, c\}$. Thus $Db^{\#}(A) \not\subset Db^{\#}(Db^{\#}(A)) \setminus A$.

Theorem 3.6: Let A be a sub set of (X, τ) and $x \in X$. Then the following are equivalent.

- (i) If for all $U \in \tau^{b\#}$, $x \in U$ then $A \cap U \neq \phi$.
- (ii) $x \in b^{\#}$ -cl(A).

Proof: Suppose (i) holds. If $x \notin b^{\#}$ -cl(A), then there exists a $b^{\#}$ -closed set F such that $A \subseteq F$ and $x \notin F$. Hence X/F is a $b^{\#}$ -open set containing x and $A \cap (X/F) \subseteq A \cap (X/A) = \emptyset$. This is a contradiction to our assumption. This proves (i) \Rightarrow (ii). The proof of (ii) \Rightarrow (i) is from the Definition 3.1.

Corollary 3.7: For any sub set A of X we have $Db^{\#}$ (A) $\subset b^{\#}$ -cl(A).

Proof: Let $x \in Db^{\#}$ - (A). By Definition 3.1, there exists $x \in U$ such that $U \cap (A/\{x\}) \neq \phi$. That is $U \cap A \neq \phi$. So by Theorem 3.6, $x \in b^{\#}$ -cl(A).

Theorem 3.8: For any sub set A of X, $b^{\#}$ -cl(A)= A $\bigcup Db^{\#}$ - (A).

Proof: Let $x \in b^{\#}$ -cl(A). Assume that $x \notin A$ and let $U \in \tau^{b^{\#}}$ with $x \in U$. Then $U \cap (A/\{x\}) \neq \phi$ and so $x \in Db^{\#}$ -(A). Hence $b^{\#}$ -cl(A) $\subset A \cup Db^{\#}$ -(A). Conversely since $A \subset b^{\#}$ -cl(A) and $Db^{\#}$ -(A). This proves the theorem.

Definition 3.9[3]: A space X is said to be b*-closed preserving if every b*-closure of a subset is b*-closed.

Theorem 3.10: Let A and B be a sub sets of (X, τ) . If A is $b^{\#}$ -closed preserving then $b^{\#}$ -cl $(A \cap B) \subseteq A \cap b^{\#}$ -cl(A).

Proof: If A is $b^{\#}$ -closed preserving then $b^{\#}$ -cl(A)=A and so $b^{\#}$ -cl(A \cap B) $\subset b^{\#}$ -cl(A) $\cap b^{\#}$ -cl(B)=A $\cap b^{\#}$ -cl(B).

Theorem 3.11: For every sub set A of X we have A is $b^{\#}$ -closed then $Db^{\#}$ - (A) \subset A.

Proof: Assume that A is $b^{\#}$ -closed. Let $x \in X/A$. Then X/A is $b^{\#}$ -open, $(X/A) \cap (A/\{x\}) = \phi$. Therefore x is not a $b^{\#}$ -limit point of A. That is $x \notin Db^{\#}$ - (A). Hence $Db^{\#}$ - (A) $\subseteq A$.

Corollary 3.12: The converse of the above theorem is true if A is b[#]-closed preserving.

Theorem 3.13: Let A be a sub set of (X, τ) . If a point $x \in X$ is a $b^{\#}$ -limit point of A\x then x is also a $b^{\#}$ -limit point of A.

Proof: If x is a $b^{\#}$ -limit point of $A/\{x\}$ then by Definition 3.1, there exists a $b^{\#}$ -open set U such that $x \in U$ and $U \cap [(A/\{x\})/\{x\}] \neq \phi$. That is x is a $b^{\#}$ -limit point of $A/\{x\}$.

4. b[#]-interior, b[#]-border and b[#]-Frontier

Definition 4.1: Let A be a sub set of a topological space (X, τ) . A point $x \in X$ is called a $b^{\#}$ -interior point of A if there exists a $b^{\#}$ -open set U such that $x \in U \subseteq A$. The set of all $b^{\#}$ -interior points of A is called $b^{\#}$ - interior of A and is denoted by $b^{\#}$ -int(A).

R. Usha Parameswari* and P. Azhagueswari / Applications of b*-Open set / IJMA- 9(6), June-2018.

Definition 4.2: For any sub set A of X, the set $b^{\#}$ - $b(A) = A/b^{\#}$ -int(A) is called the $b^{\#}$ -border of A and the set $b^{\#}$ -Fr(A) = $b^{\#}$ -cl(A)/ $b^{\#}$ -int(A) is called the $b^{\#}$ -Frontier of A.

Remark 4.3: If A is a $b^{\#}$ -closed preserving sub set of X then $b^{\#}$ -b(A) = $b^{\#}$ -Fr(A).

Proposition 4.4: For a sub set A of X the following statements holds.

- (i) $b^{\#}-int(A) \cap b^{\#}-b(A) = \phi$.
- (ii) $b^{\#}$ -int($b^{\#}$ -b(A))= ϕ .
- (iii) $b^{\#}-b(b^{\#}-b(A))=b^{\#}-b(A)$.
- (iv) $b^{\#}-b(A)=A \cap b^{\#}-cl(X/A)$.

Proof: By Definition of 4.2, (i) holds. Now to prove (ii).

If $x \in b^{\#}$ -int($b^{\#}$ -b(A)) then $x \in b^{\#}$ -b(A) \subseteq A and $x \in b^{\#}$ -int(A). Thus $x \in b^{\#}$ -int(A) $\cap b^{\#}$ -b(A) but by (i), $b^{\#}$ -int(A) $\cap b^{\#}$ -b(A)= ϕ which is a contradiction. Hence $b^{\#}$ -int($b^{\#}$ -b(A))= ϕ . This proves (ii).

Now to prove (iii). By Definition 4.2, $b^{\#}-b(b^{\#}-b(A)) = b^{\#}-b(A)/b^{\#}-int(b^{\#}-b(A))$.

Using (ii), $b^{\#}$ -b($b^{\#}$ -b(A)) = $b^{\#}$ -b(A). This proves (iii). Now to prove (iv). Using Definition 4.2, $b^{\#}$ -b(A)=A/ $b^{\#}$ -int(A)=A/[X/ $b^{\#}$ -cl(X/A)]=A \bigcap $b^{\#}$ -cl(X/A). This proves (iv).

Theorem 4.5: For a sub set A of (X, τ) , the following conditions holds.

- (i) $b^{\#}$ -int(A) $\bigcap b^{\#}$ -Fr(A)= ϕ .
- (ii) $b^{\#}$ - $b(A) \subset b^{\#}$ -Fr(A).
- (iii) $b^{\#}$ -Fr(A)= $b^{\#}$ -b(A) \bigcup (Db#- (A)/ $b^{\#}$ -int(A)).
- (iv) $b^{\#}$ -Fr(A)= $b^{\#}$ -cl(A) $\cap b^{\#}$ -cl(X/A).
- (v) $b^{\#}-Fr(A)=b^{\#}-Fr(X/A)$.
- (vi) $b^{\#}$ -Fr($b^{\#}$ -int(A)) $\subseteq b^{\#}$ -Fr(A).
- $(vii)b^{\#}$ -int(A)=A/ $b^{\#}$ -Fr(A).

Proof: Using Definition 4.2, $b^{\#}$ -int(A) \bigcap $b^{\#}$ -Fr(A)= $b^{\#}$ -int(A) \bigcap [$b^{\#}$ -cl(A)/ $b^{\#}$ -int(A)]= ϕ . This proves (i). Now to prove (ii).

Since $A \subseteq b^{\#}$ -cl(A) we have $b^{\#}$ -b(A)= A/ $b^{\#}$ -int(A) $\subseteq b^{\#}$ -cl(A)/ $b^{\#}$ -int(A)= $b^{\#}$ -Fr(A). This proves (ii). Now to prove (iii).

By Definition 4.2, $b^{\#}$ -Fr(A)= $b^{\#}$ -cl(A)/ $b^{\#}$ -int(A) = $(A \bigcup Db^{\#}$ - (A))/ $b^{\#}$ -int(A) = $(A/b^{\#}$ -int(A)) $\bigcup (Db^{\#}$ - (A)/ $b^{\#}$ -int(A)) = $b^{\#}$ -b(A) $\bigcup (Db^{\#}$ - (A)/ $b^{\#}$ -int(A)). Hence (iii) is proved. Now to prove (iv).

Using Lemma 2.6, we have

 $b^{\#}$ -cl(A) $\bigcap b^{\#}$ -cl(X/A)= $b^{\#}$ -cl(A) $\bigcap (X/b^{\#}$ -int(A))= $b^{\#}$ -cl(A)/ $b^{\#}$ -int(A)= $b^{\#}$ -Fr(A). This proves (iv). Using (iv), $b^{\#}$ -Fr(X/A) = $b^{\#}$ -cl(X/A) $\bigcap b^{\#}$ -cl(A)= $b^{\#}$ -Fr(A). Hence (v) is proved.

Using Lemma 2.4, $b^\#$ -Fr($b^\#$ -int(A))= $b^\#$ -cl($b^\#$ -int(A))/ $b^\#$ -int($b^\#$ -int(A)) $\subseteq b^\#$ -cl(A)/ $b^\#$ -int(A)= $b^\#$ -Fr(A). This proves (vi). Now $A/b^\#$ -Fr(A)= $A/(b^\#$ -cl(A)/ $b^\#$ -int(A))= $A/(b^\#$ -cl(A)/ $b^\#$ -int(A))= $A/(b^\#$ -int(A))=

The converse of (ii) and (vi) of Theorem 4.5 is not true in general as seen in the following Example.

Example 4.6: Consider the same topological space in Example 3.5. Let $A = \{c\}$. Then $b^{\#}$ -Fr(A)= $\{b, c\}$, $b^{\#}$ -b(A)= $\{c\}$, $b^{\#}$ -int(A)= Φ and $b^{\#}$ -Fr($b^{\#}$ -int(A))= Φ . Thus $b^{\#}$ -Fr(A) $\not\subset b^{\#}$ -b(A) and $b^{\#}$ -Fr($b^{\#}$ -int(A)).

5. b[#]- exterior

Definition 5.1: For a sub set A of (X, τ) , the $b^{\#}$ -interior of X/A is called $b^{\#}$ - exterior of A and is denoted by $b^{\#}$ -ext(A), that is $b^{\#}$ -ext(A)= $b^{\#}$ -int(X/A).

Theorem 5.2: For sub sets A and B of X the following assertions are valid.

- (i) $b^{\#}$ -ext(A)= X/ $b^{\#}$ -cl(A).
- (ii) $b^{\#}$ -ext($b^{\#}$ -ext(A))= $b^{\#}$ -int($b^{\#}$ -cl(A)) $\supset b^{\#}$ -int(A).
- (iii) $A \subset B$ implies $b^{\#}$ -ext(A) $\subset b^{\#}$ -ext(B).
- (iv) $b^{\#}$ -ext(A $\bigcup B$) $\subset b^{\#}$ -ext(A) $\bigcap b^{\#}$ -ext(B).
- (v) $b^{\#}$ -ext(A \bigcap B) \supseteq $b^{\#}$ -ext(A) \bigcup $b^{\#}$ -ext(B).
- (vi) $b^{\#}$ -ext(X)= ϕ , $b^{\#}$ -ext(ϕ)= X.
- $(vii)X = b^{\#}-int(A) \bigcup b^{\#}-ext(A) \bigcup b^{\#}-Fr(A).$

Proof: By Definition 5.1 and Lemma 2.6, $b^{\#}$ -ext(A)= $b^{\#}$ -int(X/A)= $X/b^{\#}$ -cl(A). This proves (i). Now to prove (ii). Using Lemma 2.6, we get $b^{\#}$ -ext($b^{\#}$ -ext($b^{\#}$ -int(X/A))= $b^{\#}$ -int(X/B)= $b^{\#}$ -int(X/A)= $b^{\#}$ -int(A). This proves (ii).

Now to prove (iii). Assume that $A \subseteq B$. Then $b^{\#}$ -ext(B)= $b^{\#}$ -int(X/B) $\subseteq b^{\#}$ -int(X/A)= $b^{\#}$ -ext(A). Hence (iii) is proved.

Now to prove (iv). $b^\#$ -ext($A \cup B$)= $b^\#$ -int($X/(A \cup B)$) = $b^\#$ -int($(X/A) \cap (X/B)$) $\subseteq b^\#$ -int($(X/A) \cap b^\#$ -int((X/B)) = $b^\#$ -ext((X/B)) = b

Now to prove (v). $b^{\#}$ -ext($A \cap B$)= $b^{\#}$ -int($X/(A \cap B)$)= $b^{\#}$ -int($X/(A) \cup (X/B)$) $\supseteq b^{\#}$ -int($X/(A) \cup (X/(A))$) $\supseteq A$ -int($X/(A) \cup (X/(A))$ $\supseteq A$ -int($X/(A) \cup (X/(A))$) $\supseteq A$ -int($X/(A) \cup (X/(A))$ $\supseteq A$ -int($X/(A) \cup (X/(A)$

Now to prove (vii). $b^{\#}$ -int(A) $\bigcup b^{\#}$ -ext(A) $\bigcup b^{\#}$ -Fr(A)= $b^{\#}$ -int(A) $\bigcup (b^{\#}$ -cl(A)/ $b^{\#}$ -int(A)) $\bigcup b^{\#}$ -ext(A) = $(b^{\#}$ -int(A) $\bigcup b^{\#}$ -cl(A)/ $b^{\#}$ -cl(A) $\cup b^{\#}$ -cl(A)/ $b^{\#}$ -cl(A) $\cup b^{\#}$ -cl(A)/ $b^{\#}$ -cl(A)/ $b^{\#}$ -cl(B)/ $b^{\#}$ -cl(

Examples can be easily constructed for the reverse inclusion of Theorem 5.2(iii) and (iv).

REFERENCES

- 1. Andrijevic D. On b-open sets, Mat. Vesnik 1996; 48:59-64.
- 2. Usha Parameswari R, Thangavelu P. On b[#]-open sets, International Journal of Mathematics Trends and Technology. 2014; 5(3):202-218.
- 3. Usha Parameswari R, "A Study on Generalization of b-open sets and related concepts in topology" Ph. D Thesis, Manononmaniam Sundaranar University, Tirunelveli (2015).

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]