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ABSTRACT 
Using the concept of b#-open sets we introduce and study topological properties of b#-limit points, b#-derived sets,     
b#-closure, b#-border, b#-Frontier and Db#- exterior and discuss their relations with one another.  
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1. INTRODUCTION 
 
In the year 1996, Andrijivic introduced [1] and studied b-open sets. Following this Usha Paraeswari et.al [2] introduced 
the concept of b#- open sets. In this paper we introduce the notions of b#-limit points, b#-derived sets, b#-closure,         
b#-border, b#-Frontier and b#- exterior by using the concept of b#-open set. 
 
2. PRELIMINARIES 
 
Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, 
cl(A) denotes the closure of A and int(A) denotes the interior of A in the topological space X. Further X \ A denotes the 
complement of A in X. The following definitions and results are very useful in the subsequent sections. 
 
Definition 2.1 [2]: A subset A of a space X is called b#- open if A= cl(int (A)) ∪ int(cl(A)) and their complement is 
called b#- closed. That is A is b#-closed if A = cl(int (A))∩int(cl(A)). 
 
Definition 2.2[3]: The b#-interior of A, denoted by b#-int(A),  is defined to be the union of all b#-open sets contained in 
A. That is b#-int(A)= {B: B⊆A and B is b#-open}.  
 
The next Lemma gives the properties of b#-interior. 
 
Lemma 2.3[3]: 

(i) b#-int(φ )=φ . 
(ii) b#-int(X)= X. 
(iii) b#-int(A)⊆A. 
(iv) b#-interior of a set A is not always b#-open. 
(v) If A is b#-open then b#-int(A)=A. 

 
Lemma 2.4[3]: Let X be a space. Then for any two sub sets A and B of X we have  

(i) If A⊆B then b#-int(A)⊆  b#-int(B). 
(ii) b#-int(b#-int(A))= b#-int(A). 
(iii) b#-int(A∩B) ⊆ b#-int(A) b#-int(B). 
(iv) b#-int(A B)⊇  b#-int(A) b#-int(B). 
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Definition 2.5[3]: The b#-closure of A, denoted by b#-cl(A), is defined to be the intersection of all b#-closed sets 
containing  A. That is b#-cl(A)= {B: A⊆B and B is b#-closed}. 
 
Lemma 2.6[3]: Let X be a space. Then for any sub set A of X we have  

(i) X\ b#-int(A)= b#-cl(X\ A). 
(ii) X \ b#-cl(A)= b#-int(X\ A). 

 
Remarks 2.7[3]:  

(i) b#-cl(φ)= φ, 
(ii) b#-cl(X)= X. 

(iii) A⊆b#-cl(A). 
(iv) b#-closure of a set A is not always b#-closed. 
(v) If A is b#-closed then b#-cl(A)=A. 

 
Lemma 2.8[3]: Let X be a space. Then for any two sub sets A and B of X we have  

(i) If A⊆B then b#-cl(A)⊆ b#-cl(B). 
(ii) b#-cl(b#-cl(A))= b#-cl(A). 
(iii) b#-cl( A∪B)⊇ b#-cl(A)∪b#-cl(B).   
(iv) b#-cl(A∩B)⊆ b#-cl(A)∩ b#-cl(B). 

 
3. b#- limit points 
 
Definition 3.1: Let A be a subset of a topological space (X, τ ) and x be a point of X. A point x∈X is said to be a      
b#-limit point of A if every b#-neighborhood of x intersects A in some point other than x itself. That is 
U (A/{x}) ≠ φ  for all U∈b#-O(X, τ ). 
 
The set of all b#-limit points of A is called the b#-derived set of A and is denoted by Db#-(A). 
 
Remark 3.2: A subset A of X, a point x ∈  X is not a b#-limit point of A if and only if there exists a b#-open set G in X 
such that x ∈G and G (A/{x}) =  φ  that is x∈G and G A=φ  or G A={x} that is x∈G and G A⊆ {x}. 
 
Theorem 3.3: Let τ 1 and τ 2 be topologies on X such that #

2
#

1
bb ττ ⊆ . For any subset A of X, every b#-limit point of 

A with respect to τ 2 is a b#-limit point of A with respect to τ 1. 
 
Proof: Let x be a b#-limit point of A with respect to τ 2. Then U (A/{x}) ≠ φ  for every U∈ #

2
bτ  such that x∈U. 

But #
2

#
1

bb ττ ⊆ , we have U (A/{x}) ≠ φ  for every U∈ #
1
bτ  such that x∈U. Hence x is a b#-limit point of A with 

respect to τ 1. 
 
Theorem 3.4:  For any sub sets A and B of (X, τ ) the following holds. 

(i) If A⊆B then Db#-(A) ⊆  Db#- (B). 
(ii) Db#- (A)  Db#- (B) ⊆  Db#- (A B). 
(iii) Db#- (A B) ⊆  Db#- (A)   Db#- (B). 
(iv) Db#- (Db#- (A))/A⊆  Db#- (A). 
(v) Db#- (A  Db#- (A)) ⊆A  Db#- (A). 

 
Proof: Let x∈  Db#- (A) and let U∈τ b# with x∈U. Then U (A/{x})≠ φ . Since A⊆B, we have U (B/{x})≠ φ . 
This implies that x∈  Db#-(B). This proves (i).  
 
Now to prove (ii). Since A⊆A B and B⊆A B. Using (i), Db#- (A) ⊆Db#- (A B) and Db#- (B)⊆Db#- (A B) 
that is Db#- (A)  Db#- (B) ⊆Db#- (A B). This proves (ii).  
 
Next we have to prove (iii). Since A B⊆A and A B⊆B. Using (i), Db#- (A B) ⊆Db#- (A) and Db#- (A B) 
⊆Db#- (B). Thus we get Db#- (A B) ⊆Db#- (A)  Db#- (B). Hence (iii). Next to prove (iv). Let x∈Db#-(Db#-
(A))/A and let U∈τ b# with x∈U. Then U (Db#- (A)/{x})≠ φ . Let y∈  U (D b#- (A)/{x}). Then y ∈U and          
y ∈  D b#- (A) and U  (A/{y}) ≠ φ . If we take z∈  U (A/{y}), then x ≠ z because x∉A.  
Hence U (A/{x}) ≠ φ . Therefore x∈D b#- (A). Hence (iv).  



R. Usha Parameswari*1 and P. Azhagueswari2 / Applications of b#-Open set / IJMA- 9(6), June-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       152  

 
Next to prove (v). Let x∈D b#- (A D b#- (A)). If x∈A, the result is obvious. Assume that x∉A. Then 
U (A Db#- (A)/{x})≠ φ  for all U∈τ b#  with x∈U. Hence U (A/{x})≠  φ  or U (Db#-(A)/{x}) ≠  φ . The 
first case implies x∈Db#- (A). Then the second case implies x∈  Db#- (D b#-(A)). Since x ∉A, by (iv)  
x ∈  Db#-(Db#- (A))/A⊆D b#- (A). This proves (v). 
 
The reverse inclusion of (i) and the converse of (ii), (iii) and (iv) are not true as shown by the following examples. 
 
Example 3.5: Let X= {a, b, c, d}. Consider the topology τ={Φ, X, {a, b, c}, {a}, {b, c}}. The b#-open sets are Φ, X, 
{d, b, c}, {a, d} and  b#-closed sets are Φ, X, {a}, {b, c}. Let A= {a, d} and B= {b, c}. Then Db#-(A) = {a, b, c} and 
Db#-(B) = {b, c}. So Db#-(B)⊆ Db#-(A) but B⊄A. 
 
Also Db#-(A∪B)= {a, b, c, d}⊄ Db#-(A)∪ Db#-(B). Again let A1= {a, b} and B1= {a, c}. Db#-(A1)= {c, d} and Db#-
(B1) = {b, d}. Therefore Db#-(A)∩ Db#- (B)⊄ Db#-(A∩B). 
 
Let A2= {a, c}. Db#-(A2) = {b, d} and Db#(Db#-(A)) = {a, b, c}. Thus Db#-(A)⊄ Db#( Db#-(A))\A. 
 
Theorem 3.6: Let A be a sub set of (X, τ ) and x∈X. Then the following are equivalent. 

(i) If for all U∈τ b#, x∈U then A U≠  φ . 
(ii) x∈b#-cl(A). 

 
Proof: Suppose (i) holds. If x∉  b#-cl(A), then there exists a b#-closed set F such that A⊆ F and x∉F. Hence X/F is a 
b#-open set containing x and A (X/F) ⊆A (X/A)= φ . This is a contradiction to our assumption. This proves 
(i)⇒  (ii). The proof of (ii) ⇒  (i) is from the Definition 3.1. 
 
Corollary 3.7: For any sub set A of X we have Db#- (A) ⊆ b#-cl(A). 
 
Proof: Let x∈Db#- (A). By Definition 3.1, there exists x ∈U such that U  (A/{x}) ≠ φ . That is U  A ≠ φ . So 
by Theorem 3.6, x ∈  b#-cl(A). 
 
Theorem 3.8: For any sub set A of X, b#-cl(A)= A Db#- (A).  
 
Proof: Let x∈b#-cl(A). Assume that x∉A and let U∈τ b# with x∈U. Then U (A/{x}) ≠ φ  and so x∈Db#-(A). 
Hence b#-cl(A) ⊆A Db#- (A). Conversely since A⊆ b#-cl(A) and Db#- (A) ⊆ b#-cl(A). This proves the theorem. 
 
Definition 3.9[3]: A space X is said to be b#-closed preserving if every b#-closure of a subset is b#-closed.  
 
Theorem 3.10: Let A and B be a sub sets of (X, τ ). If A is b#-closed preserving then b#-cl(A B) ⊆A b#-cl(A).  
 
Proof: If A is b#-closed preserving then b#-cl(A)=A and so b#-cl(A B) ⊆ b#-cl(A)  b#-cl(B)=A b#-cl(B). 
 
Theorem 3.11: For every sub set A of X we have A is b#-closed then Db#- (A) ⊆A. 
 
Proof: Assume that A is b#-closed. Let x∈X/A. Then X/A is b#-open, (X/A)  (A/{x}) = φ . Therefore x is not a      
b#-limit point of A. That is x∉Db#- (A). Hence Db#- (A) ⊆A.  
 
Corollary 3.12: The converse of the above theorem is true if A is b#-closed preserving. 
 
Theorem 3.13: Let A be a sub set of (X, τ ). If a point x∈X is a b#-limit point of A\x then x is also a b#-limit point of 
A. 
 
Proof: If x is a b#-limit point of A/{x} then by Definition 3.1, there exists a b#-open set U such that x∈U and 
U [(A/{x})/{x}] ≠  φ . That is x is a b#-limit point of A/{x}. 
 
4. b#-interior, b#-border and b#-Frontier 
 
Definition 4.1: Let A be a sub set of a topological space (X, τ ). A point x ∈X is called a b#-interior point of A if there 
exists a b#-open set U such that x ∈U ⊆A. The set of all b#-interior points of A is called b#- interior of A and is 
denoted by b#-int(A). 
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Definition 4.2: For any sub set A of X, the set b#-b(A)= A/ b#-int(A) is called the b#-border of A and the set                
b#-Fr(A)= b#-cl(A)/ b#-int(A) is called the b#-Frontier of A. 
 
Remark 4.3: If A is a b#-closed preserving sub set of X then b#-b(A) = b#-Fr(A). 
 
Proposition 4.4: For a sub set A of X the following statements holds. 

(i) b#-int(A)   b#-b(A)= φ . 
(ii) b#-int(b#-b(A))= φ . 
(iii) b#-b(b#-b(A))= b#-b(A). 
(iv) b#-b(A)=A   b#-cl(X/A). 

 
Proof: By Definition of 4.2, (i) holds. Now to prove (ii).                                                                 
If x ∈  b#-int(b#-b(A)) then x ∈  b#-b(A) ⊆A and x ∈  b#-int(A). Thus x ∈  b#-int(A)   b#-b(A) but by (i), b#-int(A) 
  b#-b(A)= φ  which is a contradiction. Hence b#-int(b#-b(A))= φ . This proves (ii).                                                                                                                                             
 
Now to prove (iii). By Definition 4.2, b#-b(b#-b(A))= b#-b(A)/ b#-int(b#-b(A)).                           
 
Using (ii), b#-b(b#-b(A)) = b#-b(A). This proves (iii). Now to prove (iv). Using Definition 4.2,  
b#-b(A)=A/ b#-int(A)=A/[X/ b#-cl(X/A)]= A   b#-cl(X/A). This proves (iv). 
 
Theorem 4.5: For a sub set A of (X, τ ), the following conditions holds. 

(i) b#-int(A)   b#-Fr(A)= φ . 
(ii) b#-b(A) ⊆  b#-Fr(A). 
(iii) b#-Fr(A)= b#-b(A)  ( Db#- (A)/ b#-int(A)). 
(iv) b#-Fr(A)= b#-cl(A)   b#-cl(X/A). 
(v) b#-Fr(A)= b#-Fr(X/A). 
(vi) b#-Fr(b#-int(A)) ⊆  b#-Fr(A). 
(vii) b#-int(A)=A/ b#-Fr(A). 

 
Proof: Using Definition 4.2, b#-int(A)   b#-Fr(A)= b#-int(A)  [ b#-cl(A)/ b#-int(A)]=φ . This proves (i). Now to 
prove (ii).  
 
Since A⊆  b#-cl(A) we have b#-b(A)= A/ b#-int(A) ⊆  b#-cl(A)/ b#-int(A)= b#-Fr(A). This proves (ii). Now to prove 
(iii).  
 
By Definition 4.2, b#-Fr(A)= b#-cl(A)/ b#-int(A) = (A Db#- (A))/ b#-int(A) = (A/b#-int(A))  (Db#- (A)/ b#-int(A))    
= b#-b(A)  (Db#- (A)/ b#-int(A)). Hence (iii) is proved. Now to prove (iv).  
 
Using Lemma 2.6, we have  
b#-cl(A) b#-cl(X/A)=b#-cl(A) (X/b#-int(A))=b#-cl(A)/b#-int(A)= b#-Fr(A). This proves (iv). Using (iv),  
b#-Fr(X/A) = b#-cl(X/A)  b#-cl(A)= b#-Fr(A). Hence (v) is proved.  
 
Using Lemma 2.4, b#-Fr(b#-int(A))= b#-cl(b#-int(A))/ b#-int(b#-int(A))⊆ b#-cl(A)/ b#-int(A)= b#-Fr(A). This proves (vi). 
Now A/b#-Fr(A)=A/(b#-cl(A)/b#-int(A))=A ((X/b#-cl(A) b#-int(A))=φ  (A b#-int(A))=b#-int(A). This 
completes the proof. 
 
The converse of (ii) and (vi) of Theorem 4.5 is not true in general as seen in the following Example. 
 
Example 4.6: Consider the same topological space in Example 3.5. Let A= {c}. Then b#-Fr(A)= {b, c},  b#-b(A)= {c}, 
b#-int(A)= Φ and b#-Fr(b#-int(A))= Φ. Thus b#-Fr(A)⊄ b#-b(A) and b#-Fr(A)⊄ b#-Fr(b#-int(A)). 
 
5. b#- exterior 
 
Definition 5.1: For a sub set A of (X, τ ), the b#-interior of X/A is called b#- exterior of A and is denoted by b#-ext(A), 
that is b#-ext(A)= b#-int(X/A). 
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Theorem 5.2: For sub sets A and B of X the following assertions are valid. 

(i) b#-ext(A)= X/ b#-cl(A). 
(ii) b#-ext(b#-ext(A))= b#-int(b#-cl(A))⊇  b#-int(A). 
(iii) A ⊆B implies b#-ext(A) ⊆  b#-ext(B). 
(iv) b#-ext(A  B) ⊆  b#-ext(A)   b#-ext(B). 
(v) b#-ext(A  B) ⊇ b#-ext(A)  b#-ext(B). 
(vi) b#-ext(X)= φ , b#-ext(φ )= X. 
(vii) X= b#-int(A)  b#-ext(A)  b#-Fr(A). 

 
Proof: By Definition 5.1 and Lemma 2.6, b#-ext(A)= b#-int(X/A)= X/b#-cl(A). This proves (i). Now to prove (ii). Using 
Lemma 2.6, we get b#-ext(b#-ext(A))= b#-ext(b#-int(X/A)) = b#-int(X/b#-int(X/A))= b#-int(b#-cl(A))⊇ b#-int(A). This 
proves (ii).  
 
Now to prove (iii). Assume that A⊆B. Then b#-ext(B)= b#-int(X/B) ⊆ b#-int(X/A)= b#-ext(A). Hence (iii) is proved.  
 
Now to prove (iv). b#-ext(A B)= b#-int(X/(A B)) = b#-int((X/A)  (X/B))⊆ b#-int(X/A)  b#- int(X/B)= b#-ext(A) 
 b#-ext(B). Hence (iv) is proved.  
 
Now to prove (v). b#-ext(A B)= b#-int(X/(A B))= b#-int((X/A)  (X/B)) ⊇ b#-int(X/A)  b#-int(X/B) = b#-ext(A) 
 b#-ext(B). Thus (v) is proved. Using Definition 5.1, (vi) is proved.  
 
Now to prove (vii). b#-int(A)  b#-ext(A)  b#-Fr(A)= b#-int(A)  ( b#-cl(A)/ b#-int(A)) b#-ext(A) = (b#-int(A)   
b#-cl(A))∪ b#-ext(A)= b#-cl(A)∪ b#-cl(X\A)= X since by Definition 4.2 and Lemma 2.6.  
 
Examples can be easily constructed for the reverse inclusion of Theorem 5.2(iii) and (iv). 
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