ANTI Q-FUZZY B–IDEALS IN B–ALGEBRA

Dr. A. PRASANNA1, *M. PREMKUMAR2 AND HAJEE. Dr. S. ISMAIL MOHIDEEN3

1Assistant Professor, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

2Research Scholar and Assistant Professor, Department of Mathematics, Mahendra Engineering College (Autonomous), Tiruchengode, Namakkal-637 503, Tamilnadu, India.

3Principal, Head and Associate Professor, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

(Received On: 13-04-18; Revised & Accepted On: 28-05-18)

ABSTRACT

In this paper, we introduce the notion of anti Q-fuzzy B–ideals of B-algebras, lower level B – Ideal and prove some results on these. We show that a Q-fuzzy subset of a B-algebra is a Q-fuzzy B-ideal if and only if the complement of this Q-fuzzy subset is an anti Q-fuzzy B-ideal.

Keywords: B–algebra, B–Ideal, Fuzzy B–Ideal, Anti Fuzzy B–Ideal, Q–Fuzzy B–Ideal, Anti Q–Fuzzy B–Ideal.

1. INTRODUCTION

2. PRELIMINARIES

In this section we give some basic definitions and preliminaries of B-algebras and introduce Q-fuzzy B-ideal.

Definition 2.1: (Jung R. Cho and H.S.Kim [4]) A B-algebra is a non-empty set X with a constant 0 and a binary operation “∗” satisfying the following axioms:

(i) $x \ast x = 0$
(ii) $x \ast 0 = x$
(iii) $(x \ast y) \ast z = x \ast (z \ast (0 \ast y)), \text{for all } x, y, z \in X$

For brevity we also call X a B-algebra. In X we can define a binary relation “≤” by $x \leq y$ if and only if $x \ast y = 0$.

Definition 2.2: (Jung R. Cho and H.S.Kim [4]) A non-empty subset M of a B-algebra X is called a sub-algebra of X if $x \ast y \in M$ for any $x, y \in M$.

Corresponding Author: *M. Premkumar

Research Scholar and Assistant Professor, Department of Mathematics, Mahendra Engineering College (Autonomous), Tiruchengode, Namakkal-637 503, Tamilnadu, India.
Definition 2.3: (Jiayin Peng [5]) Let α be a fuzzy set in a B-algebra. Then α is called a fuzzy subalgebra of X if $\alpha(x \ast y) \geq \alpha(x) \land \alpha(y)$ for all $x, y \in X$.

Definition 2.4: (Jung R. Cho and H.S. Kim [4]) A non-empty subset N of a B-algebra X is called a B-ideal of X if it satisfies for $x, y, z \in X$
(i) $0 \in N$
(ii) $(x \ast y) \in \text{Nand} (z \ast x) \in N$ implies $(y \ast z) \in N$

Definition 2.5: (L. A. Zadeh [1]) Let X be a non-empty set. A fuzzy subset α of the set X is a mapping $\alpha: X \rightarrow [0,1]$

Definition 2.6: (F. Adam and N. Hassan [1]) Let Q and G be any two sets. A mapping $\alpha: \{0,1\} \rightarrow [0,1]$ is called a fuzzy set in G.

Definition 2.7: (R. Muthuraj et al [7]) Let α be a Q-fuzzy set in B-algebra. Then α is called a Q-fuzzy sub-algebra of X if $\alpha(x \ast y, q) \geq \min\{\alpha(x, q), \alpha(y, q)\}$ for all $x, y \in X \& q \in Q$

Definition 2.8: (R. Muthuraj et al [7]) Let α be a Q-fuzzy set in set X. Then the complement $\bar{\alpha}$ is the Q-fuzzy subset of X given by $\bar{\alpha}(x, q) = 1 - \alpha(x, q)$ for all $x \in X \& q \in Q$.

Definition 2.9: (R. Muthuraj et al [6]) Let α be a Q-fuzzy set in a set X. For $S \subseteq [0,1]$, the set $\alpha_S = \{x \in \alpha(x, q) \geq S \text{ for all } q \in Q\}$ is called a level subset of α.

Definition 2.10: (R. Muthuraj et al [7]) A Q-fuzzy set α in X is called Q-fuzzy B-ideal of X if it satisfies the following axioms:
(i) $\alpha(0,q) \geq \alpha(x,q)$
(ii) $\alpha(y \ast z, q) \geq \min\{\alpha(x \ast y, q), \alpha(z \ast x, q)\}$ for all $x, y \in X \text{ and } q \in Q$.

3. ANTI Q-FUZZY B-IDEALS

Definition 3.1: A Q-fuzzy set α of a B-algebra X is called and Anti Q-Fuzzy subalgebra of X if $\alpha(x \ast y, q) \leq \max\{\alpha(x, q), \alpha(y, q)\}$ for all $x, y \in X \text{ and } q \in Q$.

Definition 3.2: A Q-fuzzy set α in X is called an anti Q-fuzzy B-ideal of X if it satisfies the following axioms:
(i) $\alpha(0,q) \leq \alpha(x,q)$
(ii) $\alpha(y \ast z, q) \leq \max\{\alpha(x \ast y, q), \alpha(z \ast x, q)\}$ for all $x, y \in X \text{ and } q \in Q$

Theorem 3.3: Every anti Q-fuzzy B-ideal of a B-algebra X is order preserving.

Proof: Let α be an anti Q-fuzzy B-ideal of a B-algebra X.
Let $x, y \in X$ and $q \in Q$ be such that $y \leq x$ if and only if $y \ast x = 0$

Now,
$$\alpha(y, q) = \alpha(0 \ast y, q)$$
$$\leq \max\{\alpha(x \ast 0, q), \alpha(y \ast x, q)\}$$
$$\leq \max\{\alpha(x, q), \alpha(0, q)\}$$
$$\leq \alpha(x, q)$$
$$\Rightarrow \alpha(y, q) \leq \alpha(y, q)$$

Theorem 3.4: A Q-fuzzy subset α of a B-algebra X is a Q-fuzzy B-ideal of X if and only if its complement $\bar{\alpha}$ is an anti Q-fuzzy B-ideal of X.

Proof: Let α be a Q-fuzzy B-ideal of X and let $x, y, z \in X$ and $q \in Q$.
To prove:
$\bar{\alpha}$ is an anti Q-fuzzy B-ideal of X.
(i) $\bar{\alpha}(0,q) = 1 - \alpha(0,q)$
$$\leq 1 - \alpha(x,q)$$
$$= \bar{\alpha}(x,q)$$
(ii) $\bar{\alpha}(y \ast z, q) = 1 - \alpha(y \ast z, q)$
$$\leq 1 - \min\{\alpha(x \ast y, q), \alpha(z \ast x, q)\}$$
$$\leq 1 + \max\{-\alpha(x \ast y, q), -\alpha(z \ast x, q)\}$$
$$\leq \max\{1 - \alpha(x \ast y, q), 1 - \alpha(z \ast x, q)\}$$
$$\Rightarrow \bar{\alpha}(y \ast z, q) \leq \max\{\bar{\alpha}(x \ast y, q), \bar{\alpha}(z \ast x, q)\}$$
Thus, \tilde{a} is an anti Q-fuzzy B-ideal of X.
The converse part can also be prepared similarly.
Hence, the proof.

Definition 3.5: Let α be a Q-fuzzy subset of a B-algebra X. For $S \in [0,1]$, the set $\alpha^S = \{ x \in X | \mu(x, q) \leq S \}$ is called a lower level cut of α.

Clearly, $\alpha' = X$ and $\alpha_0^S \cup \alpha^S = X$ for $S \in [0,1]$. If $S_1 \leq S_2$ then $\alpha^{S_1} \subseteq \alpha^{S_2}$.

Theorem 3.6: Let α be a Q-fuzzy subset of a B-algebra X. If α is an anti Q-fuzzy B-ideal of X, then the lower level cut α^S is a B-ideal of X for all $S \in [0,1], S \geq \alpha(0, q)$.

Proof: Let α be an anti Q-fuzzy B-ideal of X. Then for all $x, y \in X$ and $q \in Q$,

(i) $\alpha(0, q) \leq \alpha(x, q)$

(ii) $\alpha(y \ast z, q) \leq \max\{\alpha(x \ast y, q), \alpha(z \ast x, q)\}$

To prove: α^S is a B-ideal of X.

Let $x, y, z \in \alpha^S$

\[\Rightarrow \alpha(x, q) \leq S \]

(i) Since $\alpha(0, q) \leq \alpha(x, q)$

\[\Rightarrow \alpha(0, q) \leq S \]

\[\Rightarrow 0 \in \alpha^S \]

(ii) $x \ast y \in \alpha^S \& z \ast x \in \alpha^S$

\[\Rightarrow \alpha(x \ast y, q) \leq S \& \alpha(z \ast x, q) \leq S \]

\[\alpha(y \ast z, q) \leq \max\{\alpha(x \ast y, q), \alpha(z \ast x, q)\} \]

\[\leq \max\{S, S\} \]

\[= S \]

\[\Rightarrow \alpha(y \ast z, q) \leq S \]

\[\Rightarrow y \ast z \in \alpha^S \]

Thus, α^S is a B-ideal of X.

Hence, the proof.

Theorem 3.7: Let α be a Q-fuzzy subset of a B-algebra X. If for each $S \in [0,1], S \geq \alpha(0, q)$ the lower level cut α^S is a B-ideal of X, then S is an anti Q-fuzzy B-ideal of X.

Proof:

α^S is a B-ideal of X.

\[0 \in \alpha^S \]

\[x \ast y \in \alpha^S \& z \ast x \in \alpha^S \Rightarrow y \ast z \in \alpha^S \]

To prove α^S is an anti Q-fuzzy B-ideal of X.

For all $x, y \in X$ and $q \in Q$

(i) $x \ast y \in \alpha^S \& z \ast x \in \alpha^S$

\[\Rightarrow \alpha(x \ast y, q) \leq S \& \alpha(z \ast x, q) \leq S \]

Let $\alpha(x \ast y, q) = S \& \alpha(z \ast x, q) = S$

\[y \ast z \in \alpha^S \]

\[\Rightarrow \alpha(y \ast z, q) \leq S \]

\[= \max\{S, S\} \]

\[\leq \max\{\alpha(x \ast y, q), \alpha(z \ast x, q)\} \]

\[\Rightarrow \alpha(y \ast z, q) \leq \max\{\alpha(x \ast y, q), \alpha(z \ast x, q)\} \]

(ii) $0 \in \mu^t$

Since $x \ast x = 0$

\[\alpha(0, q) = \alpha(x \ast x, q) \leq \max\{\alpha(x, q), \alpha(x, q)\} \]

\[= \alpha(x, q) \]

\[\Rightarrow \alpha(0, q) \leq \alpha(x, q) \]

\[\Rightarrow \alpha^S \text{ is an anti Q-fuzzy B-ideal of } S. \]

Hence, the proof.
4. CONCLUSION

This paper tried to define the Anti Q-Fuzzy B-Ideals on B-Algebra and proved some theorems on them. This Concept can further be generalized to normalization of Q-fuzzy B-Ideals in B-Algebra using n-fold translation and multiplication.

5. REFERENCES

1. F. Adam and N. Hassan, Q-fuzzy soft set, Applied Mathematical Sciences, 8(2014).

Source of support: Nil, Conflict of interest: None Declared.

[Copyright © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]