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ABSTRACT
In this paper we formulated a new definition called 0-constant Reverse Magic Graphoidal graphs. Let G admits
magic graphoidal total labelling of G if there exists one-to-one map f:V U E —»{1,2,3,...,m+n} such that for
every path P in y then f *(P) = Z?:f(vi Vir1) = {f (01) + f(¥)} = trmge = 0(Zero) is a constant, where f* is the
induced labeling on  is called Zero-Constant Reverse Magic Graphoidal. And also proved that Binary tree and
Coconut tree are Zero-Constant Reverse Magic Graphoidal Graphs.

Keywords: Zero-Constant Reverse Magic Graphoidal Graphs, Graphoidal Constant, Graphoidal Cover, Magic
Graphoidal, reverse- magic graphoidal.

1. INTRODUCTION

Let G = (V,E) be a graph with n vertices and m edges. A graphoidal cover y of G is a collection of paths such that
(i) Every edge is exactly one path of
(i) Every vertex is an internal vertex of almost one path in .

In1963,motivated by the notation of magic squares in number theory, Magic labeling were introduced by Sedlacek
[10]. B.D. Acharya and E. Sampath Kumar defined Graphoidal cover as partition of edge set of G in to internally
disjoint paths (not necessarily open). The maximum cardinality of such cover is known as graphoidal covering number
of G.

A graph G = (V,E) is said to be magic if there exist a bijection f:V U E —-{1,2,3.......m + n}. Such that for every
path P = {v,,v,,......,v,} in w. A graph G is called magic graphoidal if there exists a minimum graphoidal cover y
of G such that G admits - magic graphoidal total labelling of G.

Here we introduced a new type of (ie. Zero-Reverse) magic graphoidal total labeling is called Zero-reverse magic
graphoidal (rmg) total labeling.

Definition 1.1: The Trivial graph K, or P; isthe graph with one vertex and no edges

Definition 1.2: A Binary tree is an 2-ary tree in which every internal vertex has exactly 2 children and all leaves are at
the same level.

Definition 1.3: The Coconut tree graph is obtained by identifying the vertex of K, , with a pendant vertex of the path
Pn

Definition 1.4: A reverse magic graphoidal labeling of a graph G is one-to-one map f from
V(G)V E(G)—>{1,23,.......,m+n}, where ‘n’ is the number of vertices of a graph and ‘m’ is the number of the
edges of a graph, with the property that , there is an integer constant ‘«’ such that

f @)= X, F@ivian) = F 1) + FW)} = Hymge, is acontant
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1. MAIN RESULTS

Definition 2.1: Let G admits v magic graphoidal total labelling of G if there exists one-to-one map f:V U
E —»{1,2,3,..,m +n} such that for every path P in y then f *(P) = Z';lf(vi Vip1) — (f (1) + fFWn)}= tymge =
0 (Zero) is a constant, where f™ is the induced labeling on w is called Zero-Constant Reverse Magic Graphoidal .

Then the reverse methodology of Zero-constant magic graphoidal labeling is called Zero-constant reverse magic

graphoidal labeling (Zero-crmgl). Reverse process of Zero-constant magic graphoidal of a graph is called Zero-
constant reverse magic graphoidal graphs (Zero-crmgg).

Theorem 2.1: The binary tree is Zero-constant reverse magic graphoidal.

Proof:
Let G be the binary tree.
Let VG)=u; 0<i<n-1

. -1
And  E(G) ={ (i1 Uzia), (Uimy Uz)}; 1S 1S
Here m+n = 2n-1

Define f: VUE —»{1,2,......,m+n} by
f(uy) = novalue

n—1

fuzioy) =i 1<i< >
n—1

fluy) = 2n—1i 1<i< >
n—-1 o o n-—1

fuicy ugio1) = +i; 1<i=< >
3n+1 n—1

fuig up) = 2 — i 1<i< 2

Let y = {P = (upj_1 U —1Uz;)}

So,
frP) = fugimq wicq) + fuimqug) — {f(upim1) + f(uz)}
n—1 3n+1

= ——+i+ —i-{i+ 2n-i}

_n—1+3n+1 2

-2 2

4in —4n

ZTZOZ”rmgC €Y)

From the above equation (1) we conclude that G admits - revere magic graphoidal total labeling. The reverse magic
graphoidal constant g Of binary tree is *0’. Hence binary tree is Zero-reverse magic graphoidal.

Theorem 16: The Coconut tree K; , © B, is Zero-constant reverse magic graphoidal.

Proof:

Let G be a coconut tree.

Let V(G) = u; ; 1<i<2n

UU; 1<n-—1

And E(G)z{ununﬂ; 1<i<n

Here, m+n =2m+2n—-1

Define f:VUE:—>{12,.......2m+2n—1} by
f(u)) = 2(m+n—-1)
f(uy) 1

f(uyuy) = 2m+2n-1

Case (i): n = 0(mod4)

n
fuaiz) = 1; 1<i<y
n

fluy) = 2(m+n-1)-i; 1SLSZ
8m+7n—8 ) n
fUuaipUgi) = ———— — @ 1<i<-—
n 4 4

f(UajoqUy) = Z+i; 1<i SZ
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im+3n—4

n
f(u4iu4i+1)=f_l; 1S1SZ_1

n+2 i . n

f(Uairr Ugin2) = +1; 1SLS§

8m+3n—4 . n

f(unun+2i—1)= - — 1 1S1SE

5n n

[ (uplpia) = T"‘l; 1SLS§

8m +5n—4 . n

f(un+2i—1)=f_ L; 1SLSE

n

f (Uns20) =T+l 13135

Lety = {P= (wuy)
Py = (Ugi—zUsi—1) U (Uai—1Usi); 1<i<

Py = (UgiUlgiv1) U (Uajs1Usis2);

Py = (UpUnizi—1) U (Uplnyz)

= =

IA A

AN IA
NS 3RIS

So,
f*(P)

flug) = {f () + f(uz)}
2m+2n—-1- 2(m+n—-1) + 1}

= Ozﬂrmgc €Y)
fr(P) = f(ugi—psi—q1) + f(um 1Usi) = { f(uaiz) + f(ug)}
8m+7n—8
= - i+ Z +i—{i+2(m+n—-1)—i}
= Ozﬂrmgc (2)
fr(P3) = f(uaittaizr) + f(UairrUaivz) — {f(Ua)) + f(Uaisz )}
dm+3n—4 n+2 .
=f—l+ > +i—{2m+n—-1)-i+i++1}
= Ozﬂrmgc 3)

f (P4) - f(un Upy2i— 1) f(un un+2i)_{f(un+2i—1) + f(un+2i)}
_8m+3n—-4 5n . 8n+5n—-4  3n
_T_l+7 +1i— T_l-i-T +l}
= 0=#ngc (4)

From the above equation (1), (2), (3)& (4) we conclude that G admits - revere magic graphoidal total labeling. The
reverse magic graphoidal constant .., 4. 0f coconut tree is “0’.. Hence coconut tree is Zero-reverse magic graphoidal.

Case (ii): n =1 (mod 4)

n+3

f(ugi—z) = i; 1<i< 2
n—1

fug) = 2(m+n—-1)-i; lsi<s—
4m+3n—5 ] o on—-1
f(u4i—2u4i—1)=f - i 1<i< 7
n+1 | . o n—1

fugioiusy) = + i 1<i< 7
8m+7n—-7 n—1

f(UaiUtaisq) = - i; 1<i< 2
n+3 .o n—1

f Uaiv1Uaivz) = + i 1<i< 7
8m+5n—-9 n—1

fQupyz)) = —— — i; 1<i<

4 2
In+1 n-—1

fQUnizisr) = +i; 1<i< >
8m+3n—-7 . .o o n—1
f(unun+2i)= T -1, 1<i< 2
Sn—1 n—1

f(Unlinizir1) = 2 + i 1<i< >
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Lety = {P, = (Wu,)
Py = (Ugi—pUsi—1) U (Ugio1Usy)
Py = (ugiUsis1) VU (Uajr1Uaisz)
P4- = (un+2iun) U (unun+2i+1)}

frP) = fluwe) — f(w) + f(w2)}
=2m+2n—1-{2m+2n-2+1}

=0= Hrmgce (€Y)

So,

fr(P) = f(ugicoUai—1) + f(uaici fuai) = {f(uaiz2) + f(us)}

4m+3n—5 n+1
=f—i+ +i—{i+2(m+n-1)—1i}
= 0= Hrmgce 2)
fr(P3) = f(Uaittaiv1) + fUair1Uaivz) = {f (Uai) + f(Uaisz}
8m+7n—-7 n+3
=T—l+ +i—{2m+n-1)-i+i+1}
=0= ”rmgc (3)
f (P4) - f( Un+2i un) f(unun+21+1) {f(un+21) + f(un+21+1)}
_8m+3n-7 +5n—1+_ 8m+5n—-9 4 +1+_
= 2 i 2 i— { 2 i 2 i}
=0= ”rmgc (4)

From the above equation (1), (2), (3)& (4) we conclude that G admits - revere magic graphoidal total labeling. The
reverse magic graphoidal constant y,.,,4. Of coconut tree is “0’. Hence coconut tree is Zero-reverse magic graphoidal.

Case (iii) : n = 2 (mod 4)

n—2
flug) = 2(m+n—1)-i; lsis—
n+2
fuaiz) = i; l<is—;
4dm+3n—4 . S on=2
fUgipUsiq) = ———— — i 1<i<
2 4
n . o n=2
f(Uaimqyy) = 5+ 0 1<i< 7
8m+7n—-6 . . n—2
fUaiyip) = ———— — 1; 1<i<
4 4
n+2 . . o n—2
f(Uair1Uaisr) = + i 1<i< 7
8m+5n—6 . .on
fQupyzicg) = —— — i; 1<i<-
4 2
3n—2 n
fQupiz) = +i; 1Sl§§
8m+3n—-6 . n
f(unun+2i—1) = — 1, 1<i<=
4 2
n—2 .on
fUptngzi) = T+ i; 1<i< 3
Lety = {P = (wuy)
Py = (UgipUsi—1) U (Ugi—q Usy)
Py = (UgiUsis1) U (Uajr1Uais2)
P4 = (un+2i—1un) U (unun+2i)}
So,
frP) = fluuy) — {f(w) + f(uz)}
=2m+2n—-1- 2(m+n—-1) + 1}
= 0= Urmge (1)
fT(P2) = f(uai—pUai—1) + f(Uai-1) fua) = { f(Uai—2) + f(ug)}
4dm+3n—-4 | n . )
T S i+ > +i—{i+2(m+n-1)-1i}
=0=u mgc (2)
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fr(P3) = f(uaittaivr) + f(UairrUaivz) — {f (a) + f(Usiso}

fr(Ps)

8m+7n—-6 n+2
= - i+ 7 +i—-{2m+n—-1)—-i+i+1
= Ozﬂrmgc 3)
= f(un+2i—1un) f(unun+21) {f(un+21 1) +f(un+21)}
_8m+3n-6 +5n—2 ny 8m+5n—6 4 3n—2 +i
= 2 i 2 i 2 - 2 i}
= Ozﬂrmgc (4)

From the above equation (1), (2), (3)& (4) we conclude that G admits - revere magic graphoidal total labeling. The
reverse magic graphoidal constant u,.,,,. Of coconut tree is *0’. Hence coconut tree is Zero-reverse magic graphoidal.

Case (iv) :n = 3 (mod 4)
n+1
fugip) = 0 1<i< 2
n+1
flug) = 2(m+n—1)-i; l<is—;
8m+7n—-9 . .o n+1
f(UgipUsi—q) = 5 L 1<i< 2
n+1 n+1
fugiciusy) = 2 +i; 1<i< 2
4m+3n—->5 n—3
f (UaiUtairr) = — i; 1<i< >
n+3 . . n—3
f(Ugip1Uaiez) = + i 1<i< 5
8m+5n—-7 n—1
fQUpizi) = ————— + i; 1<is—
3n+3 | . on—1
fQUnyzip1) = + i 1<i< >
8m+3n—-5 ] oo on—1
fUplpyp) = ———— — i3 1<is—
Sn+1 o on—1
fUptnyzipr) = 4 + i 1<i< >
Lety = {P;=(wuy)
Py = (UgipUsi—1) U (Ugi—1Usy)
Py = (UgiUsiy1) U (Uajr1Usis2)
P4- = (un+2iun) U (unun+2i+1) }
So,

fr(Py)

= fluuz) = {f(uy) + f(uz) }

=2m+2n—-1- 2(m+n—-1) + 1}

= 0=#rmgc )
[T(P2) = f(ua- 2;141 1)+ fUgiq f1(u4z) {f(uai-z) + f(ug)}

=%—l+n: +i—{i+2(m+n—-1)—-i}

= 0= MngC (2)

fT(P3) = f(uaiUaivr) + f(Uais1Uaiz ) — {F(Ua) + f(Uaie2}

4dm+3n -5 .on ) o
T — i+ > t+i—-{2(m+n—-1)—-i+i+1}
=0=”rmgc (3)
f (P4) - f(un+21un) + f(unun+21+1) {f(un+21) + f( un+21+1)}
8m+3n—5 Sn+1 ] 8m+5n—7 . 3n+3 .
=—— i+ +i— — = - +i}
8m+3n—5+5n+1—8m—5n+7 3n—3
4
=0=#rmgc (4)

From the above equation (1), (2), (3) & (4) we conclude that G admits - revere magic graphoidal total labeling.
The reverse magic graphoidal constant p.,,qc Of coconut tree is ‘0’. Hence coconut tree is Zero-reverse magic

graphoidal.
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