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ABSTRACT 
In this paper it comprises four sections, In depth study makes me section 1 to introduce the 
Topological Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field, further 
author investigate the related properties in section 2 of Simply Connected Nagendram Γ-semi sub 
near-field spaces of a Γ-near-field space over near-field, in section 3 The exponential map 
Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field and finally in 
section 4 about Naturality of exponential map Nagendram Γ-semi sub near-field spaces of a Γ-near-
field space over near-field. 
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SECTION-1:  
 
1.1 Topological Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-
field. 
 
Definition 1.1.1: A topological Nagendram Γ-semi sub near-field space of a Γ-near-field space 
over near-field N is a topological Nagendram Γ-near-field space which is a near-field space over a 
near-field and has the properties that the Nagendram Γ-semi sub near-field space operations are 
continuous. 
 
Lemma 1.1.2: Let N be a connected topological Nagendram Γ-semi sub near-field space of a Γ-
near-field space over near-field. Suppose H is an abstract open Nagendram Γ-semi sub near-field 
space of N. Then H = N. 
 
Proof: For any a ∈ N, La : N → N given by g  ag is a homeomorphism. Thus for each a ∈ N, aH 
⊆ N is open.  Since the Nagendram Γ-semi co-sub near-field spaces partition N and N is 
connected. We must have |N/H| = 1. This completes the proof of the lemma. 
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Lemma 1.1.3: Let N be a connected topological Nagendram Γ-semi sub near-field space of a Γ-
near-field space over near-field, U ⊆ N a neighbourhood of 1. Then U generates N. 
 
Proof: For a Nagendram Γ-semi sub near-field space W ⊆ N, write W-1 = {g-1 ∈ N / g ∈ W}. Also, if 
k is a positive integer, we set Wk = {a1, a2....., ak / ak ∈ W}. Let U be as above, and V = U ∩ U-1. 

Then, V is open and v ∈ V implies that v-1 ∈ V. Let H = 


∞

=1n

nV . Then, H is a Nagendram Γ-semi 

sub near-field space of a Γ-near-field space over near-field and we claim that H is open. Notice 
that H is precisely the Γ-semi sub near-field space generated by U. So if we prove that H is open, 
then H = N and the lemma is proved.  

If Vk is open, then Vk+1 = 


∞

∈ Va

kaV )(  is open and since left multiplication is a homeomorphism. By 

induction, Vn is open for every n. Thus H is open. This completes the proof of the lemma. 
 
We will use these results to prove that Nagendram Γ-semi sub near-field space sub algebras 
correspond to connected Nagendram Γ-semi sub near-field spaces. But first, we will need to 
develop some more terminology and recall some results differential geometry. 
 
Definition 1.1.4: A d-dimensional distribution D on a manifold M is a sub-bundle of TM of rank d. 
 
Note 1.1.5:  Given a distribution D ⊆ TM, does there exist for each x ∈ M an immersed sub-
manifold L(x) of M such that TyL(x) = Dy for every y ∈ L(x) ? A necessary condition for this question 
to be answered in the affirmative is X, Y ∈Γ(D) then [X, Y] ∈ Γ(D). 
 
Definition 1.1.6: A distribution D on a manifold M is integrable or involutive if for every X, Y 
∈Γ(D) , [X, Y] ∈Γ(D). An immersed sub manifold L ⊆ M is an integral manifold of D if TxL = Dx for 
every x ∈ L. 
 
We will get some mileage out of the following theorem and proposition for which we omit the 
proofs. 
 
Note 1.1.7: Let D be a d-dimensional integrable distribution on a manifold M. Then, for all x ∈ M, 
there exists a unique maximal, connected, immersed integral sub -manifold L(x) of D passing 
through x. 
 
Proposition 1.1.8: Suppose D ⊆ TM is an integrable distribution and L ⊆ M is an immersed sub 
manifold such that TgL = Dy for every y ∈ L. Suppose f : E → M is a smooth map of manifolds and 
F(E) ⊆ L. Then, f  : E → L is C∞. 
 
Theorem 1.1.9: Let N be a Nagendram Γ-semi sub near-field space of a Γ-near-field space over 
near-field with Nagendram Γ-semi sub near-field space algebras g and h ⊆ g a Nagendram Γ-semi 
sub near-field space sub-algebras H of N with T1H = h. 
 
Proof: Consider D ⊆ TN and given by Da = dLa (h) for a ∈ N. Then, D is a distribution. We claim D 
is integrable. To prove this, let v1, v2,......,vk be a basis of h. Let V1, V2,.....,Vk be the corresponding 
left invariant vector Nagendram Γ-semi sub near-field spaces on N. Then, { V1(g),........,Vk(g) }is a 
basis of Dg.  Also, we have [V1(g),......,Vk(g)] = dLg ([Vi, Vj](g)) since the bracket of left invariant 
vector Nagendram Γ-semi sub near-field spaces is left invariant. 
 
Now, for arbitrary sections X, Y of D, write them locally as X = ∑

i
iiVx  , Y = ∑

j
jjVy  where          

xi, yj ∈ C∞ (N)  ∀ i, j. So, [X, Y] = ∑∑∑ −+
ji

ijij
ji

jiji
ji

jjii VyxVVVyjxiVyVx
,,,

)(],[,)(  each term 

of which is in Γ(D) , and hence [X, Y] ∈ Γ( D ). 
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We now get an immersed, connected, maximal sub manifold H of N such that 1 ∈ H and T1H = h. 
The claim is that H is a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-
field of N. To show that H is a Γ-semi sub near-field space of a Γ-near-field space, fix some x ∈ H. 
consider x-1H=Lx-1 (H). Then, 1=xx-1∈x-1H and for all a ∈ N, we have Tx-1a(x-1H)=dLx-1 (TaH)= dLx-1 
(dLah) = dLx-1 dLx-1ah =  D x-1a. 
 
So, x-1H is a tangent Γ-semi sub near-field space to D. Since H is connected, x-1H is connected 
and by maximality and uniqueness of H, we have x-1H ⊆ H. Therefore, H is a Nagendram Γ-semi 
sub near-field space of a Γ-near-field space over near-field of N. 
 
Finally, we need to show that m|HxH and inv|H are C∞. But, m : H X H → N is C∞ and m (H X H ) 
⊆ H. Therefore, multiplication is a smooth binary operation on H. Similarly, inv is smooth on H 
and thus H is a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field of 
N. This completes the proof of the theorem. 
 
SECTION-2:  
 
2.1 Simply Connected Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over 
near-field Introduction. 
 
If ρ : N → H is a Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field 
morphisms, then δρ : g → h is a map of Nagendram Γ-semi sub near-field space algebras.  Is the 
converse true? i.e. if N, H are Nagendram Γ-semi sub near-field spaces with Nagendram Γ-semi 
sub near-field space algebras g and h respectively and r : g → h is a map of Nagendram Γ-semi 
sub near-field space algebras. Does not there exist a Nagendram Γ-semi sub near-field space 
morphism ρ : N → H with δρ = r? Unfortunately, the answer is not always. We can answer 
affirmatively when N is connected and simply connected however. Let’s recall a couple of 
definitions from basic topology. 
 
Definition 2.1.1: A connected topological  Γ-semi sub near-field spaces of a Γ-near-field space 
over near-field S is simply connected if S is arc-wise connected and every pointed map f : (T1 , 1) 
→ (S, *) is homotopically trivial. 
 
Definition 2.1.2: A continuous map ρ : X → Y is a covering map if for each y ∈ Y, there exists a 
neighbourhood  U of y such that ρ-1U = 

 αU  where U α ⊆ X is open for each α and ρ/ Uα is a 

homeomorphism. 
 
Lemma 2.1.3: Let, φ : A → B be a map of Nagendram Γ-semi sub near-field spaces of a Γ-near-
field space over near-field with (dφ)1 = a → b an isomorphism. Then  (i) φ is a local diffeomorphism 
and (ii) If B is connected, φ is onto. 
 
Proof: Consider the following commutative diagram  

 
which can be viewed element-wise   
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From this we can conclude that (aφ)1=(dLφ(a))φ(a)-1 ο (dφ)a ο (dLa)1. Now since (dφ)1 is an 
isomorphism. (dφ)a is an isomorphism for every a ∈ A. Invoking the inverse function theorem. We 
see then that φ is a local diffeomorphism. In particular, φ is an open map, so φ(A) is an open Γ-
semi sub near-field spaces of a Γ-near-field space over near-field of B. Now, if B is connected then 
φ(A) = B and thus φ is onto. This completes the proof of the lemma. 
 
Lemma 2.1.4: Let φ : A → B be a surjective Nagendram Γ-semi sub near-field spaces of a Γ-near-
field space over near-field map that is a local diffeomorphism. Then, φ is a covering map. 
 
Proof: Let Λ  = ker φ. Since φ is alocal diffeomorphism, there exists an open neighbourhood U of 
IA such that φ|U is injective and so U  ∩ A = IA. Since A is a Nagendram Γ-semi sub near-field 
spaces of a Γ-near-field space over near-field, the multiplication map m : A X A → A is continuous 
and so there exists an open neighbourhood V of IA such that m( V X V ) ⊆ U. That is, VV ⊆ U. Let 
W = V  ∩ V-1, then WW-1 ⊆ U. We claim that for every λ, λ′ ∈ A. λW ∩ λ′W = φ if and only if λ ≠ λ′. 
 
To prove this claim, suppose  λW ∩ λ′W = φ for some λ, λ′ ∈ A. Then, there exists w, w′ ∈ W so 
that λW =  λ′W. But then , (λ′)-1λ = 1. 
Now, what we have just proved is that ker φ = Λ is discrete, so φ-1(φ(W)) = AW = ∏

Λ∈λ

λW and we 

have a homeomorphism φ|λW : λW  φ(w). Thus, for each b ∈ B and a ∈ φ-1 (b), φ-1 (bφ(W)) = 

∏
Λ∈λ

λWa . Therefore, the fibers of φ are  discrete and φ : A → B is a covering map. This completes 

the proof of the lemma. 
 
We have the following fact from topology stated here as lemma: 
 
Lemma 2.1.5: Let φ : A → B be a covering map of topological near-field spaces with B simply 
connected. Then, φ is a homeomorphism.  
 
Lemma 2.1.6: Let N be a connected and simply connected Nagendram Γ-semi sub near-field 
spaces of a Γ-near-field space over near-field with Nagendram Γ-semi sub near-field space 
algebras g and H a Nagendram Γ-semi sub near-field space with Nagendram Γ-semi sub near-
field space algebras h. Given Nagendram Γ-semi sub near-field space algebras morphismr: g  → h, 
there exists a unique Nagendram Γ-semi sub near-field space morphism ρ : N → H such that δρ = 
r. 
 
Proof: Let us first note that graph(r) = {(X, r(X)) ∈ g x h|X ∈ g } is a sub Nagendram Γ-semi sub 
near-field spaces of a Γ-near-field space over near-field algebras of g x h since [(X1, r(X1)), (X2, 
r(X2))] = (|X1, X2|, |r(X1), r(X2)|) = (|X1, X2|, r|X1, X2|) 
 
Therefore there exists a connected Nagendram Γ-semi sub near-field spaces of a Γ-near-field 
space over near-field Γ of N X H so that T1Γ = graph(r). The claim is that Γ is the graph of the 
Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field morphism ρ we 
are trying to construct, and hence it is sufficient to show that Γ is in fact a graph. Finally, if Γ is a 
graph, then we have  
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And can simply define ρ = π2 ο (π1|r)-1. Now (dπ1|r)(1,1) : graph(r) → g is an isomorphism. So π1|r is a 
local diffeomorphism and evidently π1|r : Γ → N is a surjective Nagendram Γ-semi sub near-field 
spaces of a Γ-near-field space over near-field homomorphism. π1|r is a covering map. Since N is 
simply connected, π1|r is a homeomorphism. 
 
Finally, define, ρ : N → H by ρ = π2 ο (π1|r)-1. Since Γ is a semi sub near-field spaces of a Γ-near-
field space over near-field, ρ is a homomorphism and graph (ρ) = Γ. This gives us the Nagendram 
Γ-semi sub near-field space morphism we want. 
 
We now have to establish the uniqueness of such a Nagendram Γ-semi sub near-field space 
homomorphism. Suppose ρ  : N → H is another such Nagendram Γ-semi sub near-field space 

morphism, then S(1,1) (graph( ρ )) = graph(r) = S(1,1)(graph(ρ)). 
 
Since graph( ρ ) and graph(ρ) are connected Γ-semi sub near-field spaces of N  × H with the same 

Nagendram Γ-semi sub near-field space algebras, they must be identical. Therefore, ρ  = ρ and 
there exists a unique Nagendram Γ-semi sub near-field space morphism ρ : N → H such that δρ = 
r. This completes the proof of the lemma. 
 
SECTION-3: The exponential map Nagendram Γ-semi sub near-field spaces of a Γ-near-field 
space over near-field  
  
3.1.1 The exponential Map.  Given a Nagendram Γ-semi sub near-field spaces of a Γ-near-field 
space over near-field and its Nagendram Γ-semi sub near-field space algebras g, we would like to 
construct an exponential map from g → N, which will help to give some information about the 
structure of g. 
 
3.1.2 Definition: exponential map. Let N be a Nagendram Γ-semi sub near-field space with 
Nagendram Γ-semi sub near-field space algebras g. Define the exponential map exp : g → N by 
exp(X) = γX(1). 
 
Proposition 3.1.3: Let N be a Nagendram Γ-semi sub near-field space with Nagendram Γ-semi 
sub near-field space algebras g. then for each X ∈ g, there exists a map γX : N → N satisfying  
(a) γX(0) = IN ,  

(b) XtX
dt
d

t == )(0 γ   and 

(c) γX(s+t) = γX(s)γX(t). 
 
Proof: Consider the Nagendram Γ-semi sub near-field space algebras map τ : N → g defined by    
τ: t   tX for all X ∈ g. Now, N is connected and simply connected Γ-semi sub near-field space, so 
there exists a unique Nagendram Γ-semi sub near-field space map γX : N → N such that (dγX)0 = τ 

which is to say XtX
dt
d

t == )(0 γ . This completes the proof of the proposition. 

 
Lemma 3.1.4: Let N be a Nagendram Γ-semi sub near-field space with Nagendram Γ-semi sub 
near-field space algebras g. Write X̂  for the left invariant Γ-semi sub near-field space on g  with 
X̂ (1) = X. then, φt(a) = aγX(t) is the flow of X̂ . In particular, X̂  is complete Γ-semi sub near-field 
space with Nagendram Γ-semi sub near-field space algebras g. i.e. the flow exists for all t ∈ N. 
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Proof: For a ∈ N, we have   

( )

0 ( ) 0 ( ) 0

( ) 0 ( ) 0

( ) 0 1

( ) ( ) ( )) ( ) ( )

( ) ( ) ( )) ( ) ( ( )

( ) ( )) ( ) ( ) ( ( )

t a X s t a X s t

a X s t a X s tγX(s)

a X s t a

d d da X t d L X t d L X t s
dt dt dt

d ddL X s X t dL L X t
dt dt

ddL X t dL X s X X a X s
dt

γ γ

γ γ

γ

γ γ γ

γ γ γ

γ γ γ

= = =

= =

=

  
= = +  

  
  

= =  
  

 
= = = 

 

 

 
Since X̂  is left invariant Γ-semi sub near-field space on g  with X̂ (1) = X. So, aγX(t) is the flow of 

X̂  and exists for all t. This completes the proof of the lemma. 
 
Lemma 3.1.5: The exponential Map is C∞. 
 
Proof: Consider the vector Γ-semi sub near-field space V on N × g given by V(a, X) = (dLa(X), 0). 
Then V ∈ C∞(N, g) and the claim is that the flow of V is given by ψt(g, X) = (gγX(t),X).  To prove this 
claim, consider the following: 

)),(()0),(()),(( )(0 XsXgVXdLXtXg
dt
d

sXgt γγ γ ===  from which we can conclude that γX 

depends smoothly on X. 
 
Now, we note that the map φ : N × N × g defined by φ(t, a, X) = (aγX(t),X) is smooth. Thus, if π1: N × 
g  → N is projection on the first factor, (π1 ) ο  (IN, X) = γX(1) = exp(X) is C∞. This completes the proof 
of the lemma. 
 
Lemma 3.1.6: For all X ∈ g and for all t ∈ N γtX(1) = γX(t). 
 
Proof: The intent is to prove that for all s ∈ N, γtX(s) = γ(ts). Now, s  γtX(s) is the integral curve 

of the left invariant vector Γ-semi sub near-field space t X̂  through IN. But, t X̂  = t X̂ , so if we 

prove that γX(ts) is an integral curve of t X̂  through IN by uniqueness the lemma will be 
established.  
To prove this, first let σ (s) = γX(ts). Then σ(0) = γX(0) = IN. we also have 

))(())(()()()( sXttsXXtuX
du
ddtsX

ds
ds

ds
d

tsu σγγγσ ==== = . So σ(s) is also an integral 

curve of  Xt ˆ  through IN. thus, γtX(s) = γX(ts) and in particular, when s = 1 we have γtX(1) = γX(t). 
This completes the proof of the lemma. 
 
Note 3.1.7: Now we will use this lemma to prove a rather than nice fact about the exponential 
map. 
 
Proposition 3.1.8: Let N be a Nagendram Γ-semi sub near-field space with Nagendram Γ-semi 
sub near-field space algebras g. Identify both T0g and T1N with g. Then,          (d exp)0 : T0g → T1N 
is the identity map. 

Proof: We have (d exp)0 ( X ) = XtX
ds
dXt

ds
dtX

dt
d

ttt ===+ === )()1()0exp( 000 γγ . This 

completes the proof of the proposition. 
 
Corollary 3.1.9: For all t1, t2 ∈ N, (i) exp(( t1 + t2 )X) = exp t1X + exp t2 (ii) exp( -tX) = (exp(tX))-1. 
 
SECTION-4:  
 
4.1 Naturality of exponential map Nagendram Γ-semi sub near-field spaces of a Γ-near-field 
space over near-field  
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4.1.1 Naturality of exponential map.  
In this chapter, we reveal a property that will be used liberally in discussions to come and provide 
an important relationship between morphisms of Nagendram Γ-semi sub near-field spaces of a    
Γ-near-field space over near-field and morphisms of Nagendram Γ-semi sub near-field space 
algebras. 
 
Theorem 4.1.2:  Let φ : K → N be a morphism of Nagendram Γ-semi sub near-field spaces of a    
Γ-near-field space over near-field. Then, the following diagram commutes: 

 
That is to say, exp is natural. 
 
Proof: Fix X ∈ g. consider the curves σ(t) = φ(exp(tX)), r(t) = exp(δφ(tX)) 
 
Now, σ, τ: N → N are Nagendram Γ-semi sub near-field space homomorphisms with σ(0) = τ(0) = 1. 

So, )())(())exp(()()( 0010 t
dt
dXtX

dt
ddt

dt
d

ttt τδφφσ === === . 

 
So, σ(t) = r(t)  for all t. This completes the proof of the theorem. 
 
Corollary 4.1.3: Let K ⊆ N be a Nagendram Γ-semi sub near-field space of a of a Γ-near-field 
space over near-field N. Then, for all X ∈ k , expN (X) = expK (X). in particular, X ∈ k  if and only if 
(IFF) exp(tX) ∈ k for all t. 
 

Theorem 4.1.4: Every connected Nagendram Γ-semi sub near-field space N is a quotient N
M̂  

where M̂  is a simply connected Nagendram Γ-semi sub near-field space of the same dimension 

as M and N is a central discrete normal Γ-semi sub near-field space of M̂ . Both M̂  and N are 
unique up to isomorphism. 
 
Proof: Recall the universal covering space of a topological space is the unique up to desk 
isomorphism simply connected covering space. We will use, but not prove, the fact that every 
connected Nagendram Γ-semi sub near-field space has a universal covering space. 
 

Let M̂  be the universal covering space of M and denote by p the covering map. Let Î  = p-1 (1). 

Denote by m̂  the lift of the multiplication map m : M × M → M to M̂  uniquely determined by 

m̂ ( Î , Î ) = Î . Similarly, inv : M → M lifts to M̂  as well. Thus, M̂   is a Nagendram Γ-semi sub 
near-field space of a of a Γ-near-field space over near-field N. p is a Nagendram Γ-semi sub near-
field space of a of a Γ-near-field space over near-field homomorphism by definition of m̂ : p( m̂ (a, 

b)) = m(p(a), p(b)).  Now, kernels of covering maps are discrete, and evidently, M ≅ M̂ / ker. p.  
 
It remains to prove that N = ker. p is central, that is for all g ∈ M̂  and n ∈ N , gng-1= n. 
 
Fix n ∈ N. Define φ : M̂  → M̂  by φ(g) = gng-1 . Since N is Γ-semi normal sub near-field space φ(M) 

⊆ N. Now M̂  is connected so φ(M) is connected since is continuous. But, N is discrete so φ(M) is a 
single point. We have φ(1) = n and hence φ(M) = n. therefore, N is central. This completes the proof 
of the theorem. 
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Proposition 4.1.5: Nagendram Γ-semi sub near-field spaces of a of a Γ-near-field space over 
near-field N have no small Γ-semi sub near-field spaces, i.e. if N is a Nagendram Γ-semi sub near-
field space, then there exists a neighbourhood V of the identity so that for all g ∈ V there exists a 
positive integer K depending on g having the property that gK ∉ V. 
 
Proof: Recall that (d exp)0 : g → g is the identity. By the Inverse function theorem, there exists 
neighbourhoods V ′ of 0 in g and U′ of 1 ∈ M so that exp : V ′ → U ′ is a diffeomorphism. Let         
U = exp (1/2 V ′). We claim that U is the desired neighbourhood. 
 
If g ∈ U, then g = exp(1/2 v) for some v ∈ V ′. Then, gn = exp(1/2v).... exp(1/2v)  (n times) for any 
positive integer n.  
 
Now, given v, pick N so that N/2 v ∈ V ′ \ ½ V ′. Then, gN ∈ exp (V′) \ exp(1/2 V ′) = U ′\U. This 
completes the proof of the proposition. 
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