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ABSTRACT  
In this paper deals a common fixed point theorem in intuitionistic menger space. 
 
Key words: fixed point, common fixed point theorem , menger space , intuitionistic  menger space. 
 
 
INTRODUCTION 
 

 There have been a number of generalizations of metric space. One such generalization is Menger space 
introduced in 1942 by Menger [98] who used distribution functions instead of nonnegative real numbers as 
values of the metric.  

 In fact, he replaced the distance function d: X × X → ℜ+ with a distribution function Fp,q: ℜ →  [0, 1]  wherein 
for any number x, the value Fp,q(x) describes the probability that the distance between p and q is less than.  

 Schweizer and Sklar [118] studied this concept and then the important development of Menger space theory 
was due to Sehgal and Bharucha-Reid [122]. Sessa [123] introduced weakly commuting maps in metric 
spaces.  

 Jungck [81] enlarged this concept to compatible maps. The notion of compatible maps in Menger spaces has 
been introduced by Mishra [99]. 

 Aamri and Moutawakil [1] and Liu et al. [92] respectively defined the property (E.A) and common property 
(E.A) and proved some common fixed point theorems in metric spaces. 

 Imdad et al. [77] extended the results of Aamri and Moutawakil [1] to semi-metric spaces. Most recently, 
Kubiaczyk and Sharma [90] defined the property (E.A) in PM spaces and 

 used the same to prove some results on common fixed points wherein authors claim their results for strict 
contractions which are in fact proved for contractions. 

 Kutukcu et al. [91] defined the notion of intuitionistic Menger spaces with the help of t-norms and t−conorms 
as a generalization of Menger spaces due to Menger [96].On the other hand Rezaiyan et. al. [106] prove fixed 
point theorem for Menger (PQM) space which is modified by Mihet [98]. 

 The aim of this paper is to prove a hard and fast purpose theorem in Intuitionistic Menger (PQM)  area 
mistreatment  property E.A. for this 1st we have a tendency to offer some definitions and notable 
results that square measure utilized in this paper 

 
Definition 7.1.1: A binary operation T ∶ [0,1] × [0,1] → [0,1], is a t-norm if T satisfies the following conditions: 

71.1 (i) T is commutative and associative. 
7.1.1 (ii) T(a ,1) =  a  for all a ∈  [0,1]. 
7.1.1 (iii) T(a , b) ≤ T(c, d)  whenever a ≤ c and b ≤ d 
For a, b, c, d ∈ [0,1]. 

 
Definition 7.1.2: A binary operation S ∶ [0,1] × [0,1] → [0,1] is a t−conorm if S satisfies the following conditions: 

7.1.2 (i) S is commutative and associative. 
7.1.2 (ii) S(a ,0) =  a  for all a ∈ [0, 1] 
7.1.2 (iii) S(a , b) ≤ S(c, d)  whenever a ≤ c and b ≤ d 
For a , b , c , d ∈ [0,1]. 
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Remark 7.1.3: The concepts of t−norm T and t−conorm S are known as the axiomatic skeletons that we use                
T ∶ [0,1] × [0,1] → [0,1], for characterizing fuzzy intersections and unions respectively. Throughout this chapter, we 
will denote R = (−∞, ∞)   and R+  = [0, ∞).    
 
Definition 7.1.4: A distance distribution function is a function F: R → R+, which is left continuous on R, non-
decreasing T ∶ [0,1] × [0,1] → [0,1], and inft∈R  F(t)  = 0, supt∈R F(t) = 1. We will denote by D, the family of all 
distance distribution functions and by H a special element of D defined by 

H(t) = �0, 𝑖𝑓 𝑡 ≤ 0
1, 𝑖𝑓 𝑡 > 0

� 

If X is a nonempty set, F: X × X → D is called a probabilistic distance on X. 
 
Definition 7.1.5: A non-distance distrib T ∶ [0,1] × [0,1] → [0,1], ution function is a function L: R → R+,  which is 
right continuous on R, non-increasing and inft∈R  L(t)  = 1, supt∈R L(t)  =  0.   
 
We will denote by E, the family of all non-distance distribution functions and by G a special element of E defined by 

G(t) = �1, 𝑖𝑓 𝑡 ≤ 0
0, 𝑖𝑓 𝑡 > 0

� 

If X is a nonempty set, L: X × X → D is called a probabilistic non-distance on X. 
 
Definition 7.1.6 A triple (X, F, L, ) is said to be an intuitionistic Menger(PQM) space if X is a nonempty set, F is a 
probabilistic distance and L is probabilistic non-distance on X satisfying the following conditions: 
For all  x, y, z ∈  X and  s, t >  0 

7.1.6 (i) Fx,y (t) + Lx,y (t) ≤ 1  
7.1.6 (ii) Fx,y (t) = 0  
7.1.6 (iii) Fx,y (t) = H(t)for all t > 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦  
7.1.6 (iv) Fx,y (t) = Fy,x (t) 
7.1.6 (v) Lx,y (0) = 1  
71.6 (vi) Lx,y (t) = G(t)for all t > 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦  
7.1.6 (vii) Lx,y (t) = Ly,x (t) 
If in addition, we have the triangle inequalities: 
7.1.6 (viii) Fx,y (t + s) ≥ T �Fx,z (t), Fz,y (t)�.  
7.1.6 (ix) Lx,y (t + s) ≤ S(Lx,z (t), Lz,y (t)). 

Here T is a t−norm and S is a t−conorm. Then (X, F, L, T , S)  is said to be an  
 
INTUITIONISTIC MENGER (PQM) SPACE 
 
The Functions 𝐅𝐱,𝐲 (𝐭) and 𝐋𝐱,𝐲 (𝐭) Denote The degree of nearness and degree of non-nearness between x and y with 
respect to t respectively. 
 
Remark 7.1.7: Every Menger (PQM) space (X, F, T ) is an intuitionistic Menger (PQM) space of the form       
(X, F, 1 − F, T , S)  such that t−norm T and t−conorm S are associated  
i.e. S(x, y) =  1 −  T(1 −  x, 1 −  y)  for any x, y ∈  X. 
 
Example 7.1.8: (Induced intuitionistic Menger (PQM)space) Let (X, d )be a metric space. Then the metric d induces a 
distance distribution function F defined by 

 Fx,y (t) =  H(t −  d(x, y))  
and a non-distance distribution function L defined by 

 Lx,y (t) =  G(t −  d(x, y))  for all x, y,∈  X and t ≥ 0.  
Then (X, F, L )  IS AN INTUITIONISTIC MENGER (PQM) SPACE.  
 
We call this Intuitionistic Menger (PQM) space induced by a metric d the induced intuitionistic Menger (PQM) space. 
If t−norm T is T(a , b) = min {a, b} and t−conorm S is S(a , b) = min {1, a + b} for all a , b ∈ [0 ,1], then 
(X, F, L, TM , SM) is an intuitionistic Menger (PQM)space. 
 
Remark 7.1.9: Note that the above examples hold even with the t−norm T(a , b) = min {a, b}   and t−conorm 
S(a , b) = max {a, b}, and hence (X, F, L, T , S) is an INTUITIONISTIC MENGER SPACE WITH RESPECT TO ANY 
T−NORM AND T−CONORM.Also note that, T ∶ [0,1] × [0,1] → [0,1],  in the above example the t−norm T and 
t−conorm S are not associated. 
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Definition 7.1.10: Let (X, F, L, T , S) be a Intuitionistic Menger (PQM) space. 
(i) A sequence {xn} in X is T ∶ [0,1] × [0,1] → [0,1], said to be convergent to x in X, if for every ε > 0, λ > 0, there 
exists positive integer N such that 

Fxn,x (ε) >  1 − λ and Lxn,x (ε) < λ whenever n ≥ N. 
we write xn →  x as n → ∞ or lim

n→∞
 xn = x. 

(ii) A sequence {xn} in X is called cauchy sequence, if for every ε > 0,  λ > 0,, there exists positive integer N such that 
Fxn,xm (ε) >  1 − λ and Lxn,xm (ε) < λ whenever n ≥ N ≥ m ≥  N. 

(iii) A Menger (PQM) space (X, F, T )is said to be complete if and only if every cauchy sequence in X is convergent to 
a point in X. 
 
Lemma 7.1.11: Let (X, F, L, T , S) be an intuitionistic Menger space. If  there is a constant k ∈ (0,1) such that for 
x, y ∈ X, t >  0, Fx,y (kt) ≥ Fx,y (t) and Lx,y (kt) ≤ Lx,y (t), then x = y. 
 
Lemma 7.1.12: let (X, F, L, T , S)  be an intuitionistic menger space. then fx,y (t) and lx,y (t)  are continuous functions on 
x × x → (0,∞).   
 
Definition 7.1.13: Let (X, F, L, T , S) be a intuitionistic menger (pqm) space such that the t-norm t and t−conorm s is 
continuous and P, Q be mappings from X into itself. Then, P and Q are said to be compatible if lim

n→∞
FPQxn,QPxn(x) = 1 

and lim
n→∞

LPQxn,QPxn(x) = 0 for all x >  0, whenever {xn} is a sequence in X such that  lim
n→∞

Pxn =  lim
n→∞

Qxn = z for some 
z ∈  X. 
 
Definition 7.1.14: Two self mappings P and Q are said to be weakly compatible if they commute at their 
T ∶ [0,1] × [0,1] → [0,1],  coincidence points that is Px = Qx.  For some x ∈  X implies PQx = QPx. 
 
Definition 7.1.15: let 𝑃 and Q be two self mappings of a menger space (X, F, L, T , S) we say that p and q satisfy the 
property (E.A) if there exists a sequence {xn} in X such that 

lim
n→∞

Pxn =  lim
n→∞

Qxn = z 
for some z ∈ X. 
 
Example 7.1.16: Let X = [0, +∞).  Define P , Q ∶ X → X by 

Px = 7x
 5

   and x = 3x
8

 , ∀ x ∈  X. 
 
Consider the sequence xn = 1

n
.Clearly 

lim
n→∞

xn = Pxn =  lim
n→∞

xn = Qxn = 0 
Then P and Q satisfy (E, A). 
 
Example 7.1.17: Let X = [2, +∞). Define P, Q ∶ X → X by 

Px = x + 1 and x = 2x + 1 ∀ x ∈ X. 
 
Suppose that the property (E.A.) holds. 
 
Then there is T ∶ [0,1] × [0,1] → [0,1],  a sequence {xn} in X satisfying 

lim
n→∞

Pxn =  lim
n→∞

Qxn = z for some z ∈  X 
 
Therefore             lim

n→∞
xn = z − 1 and lim

n→∞
xn = z−1

2
. 

 
Thus, z = 1, which is a contradiction since 1 ∉ X. 
 
Hence P and Q do not satisfy (E.A.). T ∶ [0,1] × [0,1] → [0,1], 
 
7.2. COMMON FIXED POINT THEOREM IN INTUITIONISTIC MENGER SPACES 
 
Theorem 7.2.1: Let (X, F, L, T , S)  be a Intuitionistic Menger (PQM) space with 
T(x, y) =  min {x, y} and S(x, y) =  max {x, y} for all x , y ∈ [0 ,1]. Let A, B , P and Q be mappings from X into itself 
such that: 

7.2.1 (I) A(X) ⊂  P(X) and B(X) ⊂  Q(X). 
7.2.1 (II) (A , Q) or (B , P) satisfies the property (E.A). 
7.2.1 (III) There exists a number k ∈ (0 , 1) such that 
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min �
(FAu,Bv kx)(FQu,Pv (x), FQu,Bv (x), FPv,Bv (x),

FAu,Qu (x), FAu,Pv (x), FQu,Qu(x) �
2

  ≥ 0 

 min �
LAu,Bv (kx)LQu,Pv (x), LQu,Bv (x), LPv,Bv (x),

LAu,Qu (x), LAu,Pv (x)LQu,Qu(x)  � 2 ≤ 0 

                 for all u, v ∈ X. 
7.2.1 (IV) (A , Q) and (B , P)  are weakly compatible, 
7.2.1 (V) One of A(X), B(X), Q(X) or P(X) is a closed subset of X. 

Then A, B , P and Q have a unique common fixed point in X. 
 
Proof: Suppose that (B , P)  satisfies the T ∶ [0,1] × [0,1] → [0,1], property (E.A). Then there exists a  sequence {xn}  
in X such that 

limBxn
n→∞

  =  lim
n→∞

Pxn = z 

for some z ∈  X. 
 
Since B(X) ⊂ Q(X), there exists in X a sequence {yn} such that 

Bxn =  Qyn. 
 
Hence lim

n→∞
Qyn = z. 

 
Let us show that lim

n→∞
Ayn = z. 

min �
FAyn,Bxn(kx)FQyn,Pxn (x), FQyn,Bxn (x), FPxn,Bxn (x),

FAyn,Qyn (x), FAyn,Pxn (x)FQyn,Qxn (x) �
2

≥ 0 

≥ min �
FAyn,Bxn(kx)FBxn,Pxn (x), FPxn,Bxn (x),

FAyn,Bxn (x), FAyn,Pxn (x) �
2

 

≥ {FAyn,Bxn(x)}2min �
LAyn,Bxn(kx)LQyn,Pxn (x), LQyn ,Bxn (x), LPxn,Bxn (x),

LAyn,Qyn (x), LAyn,Pxn (x)LQyn,Qxn (x) �
2

 ≤ 0 

≤ min �
LAyn,Bxn(kx)LBxn,Pxn (x), LPxn,Bxn (x),

LAyn,Bxn (x), LAyn,Pxn (x) ≤ 0�
2

           

≤ min �
LAyn,Bxn(kx)LBxn,Pxn (x), LPxn,Bxn (x),

LAyn,Bxn (x), LAyn,Pxn (x) �
2

 

≤ {LAyn,Bxn(x)}2{k belong to (zero , one ) 
 
Therefore with the Lemma (7.1.11) Ayn= Bxn. 
 
Letting n → ∞, we obtain 

min �
LAyn,Bxn(kx)LQyn,Pxn (x), LQyn,Bxn (x), LPxn,Bxn (x),

LAyn,Qyn (x), LAyn,Pxn (x)LQyn,Qxn (x) �
2

≤ 0 

≤ min �
LAyn,Bxn(kx)LBxn,Pxn (x), LPxn,Bxn (x),

LAyn,Bxn (x), LAyn,Pxn (x) �
2

≤ 0 

 
lim
n→∞

Bxn = lim
n→∞

Ayn = z. {k belong to (zero, one) 
 
Suppose Q(X)is a closed subset of X. Then z = Qu for some u ∈  X. 
 
Subsequently, we have 

min �
LAyn,Bxn(kx)LQyn,Pxn (x), LQyn,Bxn (x), LPxn,Bxn (x),

LAyn,Qyn (x), LAyn,Pxn (x)LQyn,Bxn (x) �
2

≤ 0 

 min �
LAyn,Bxn(kx)LBxn,Pxn (x), LPxn,Bxn (x),

LAyn,Bxn (x), LAyn,Pxn (x) �
2

≤ 0 {k belong to (zero, one) 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
 
We have 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
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min �
FAu,Bxn (kx)FQu,Pxn (x), FQu,Bxn (x), FPxn,Bxn (x),

FAu,Qu (x), FAu,Pxn (x)FQyn,Qxn (x) �
2

≥ 0 

 

min �
LAu,Bxn (kx)LQu,Pxn (x), LQu,Bxn (x), LPxn,Bxn (x),

LAu,Qu (x), LAu,Pxn (x)LQyn,Qxn (x) �
2

≤ 0 {k belong to (zero, one) 

 
Letting n → ∞, we obtain 

{FAu,Su (kx)FAu,Su (x)}2 ≥ 0 
{LAu,Su (kx)LAu,Su (x)}2 ≤ 0 

 
Therefore with the Lemma (7.1.11) we have 

Au = Qu. 
 
The weak compatibility of A and Q implies that 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
AQu =  QAu 

and then AAu = AQu = QAu = QQu.  
 
On the other hand,  since A(X) ⊂  P(X), there exists a point v ∈ X , such that Au = Pv. 
 
We claim that  Pv = Bv .                                                                                                                                                                                                                                                   
 
We have 

min �
FAu,Bv (kx)FQu,Pv (x), FQu,Bv (x), FPv,Bv (x),

FAu,Qu (x), FAu,Pv (x)FQyn,Qxn (x) �
2

≥ 0 

≥ {F(Au, Bv )(x)}2 {k belong to (zero , one ) 

min �
LAu,Bv (kx) LQu,Pv (x), LQu,Bv (x), LPv,Bv (x),

LAu,Qu (x), LAu,Pv (x)FQyn,Qxn (x) �
2

 ≤ 0 

≤ { LAu,Bv (x)}.2{k belong to (zero, one) 
 
Therefore, with the Lemma (7.1.11) we have Au = Bv. 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
 
Thus Au = Qu =  Pv = Bv. 
 
The weak compatibility of B and P implies that 

BPv = PBv and PPv = PBv = BPv = BBv. 
 
Let us show that Au is a common fixed point of A, B, Pand Q.  

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
 
We have 

Min �
FAAu,Bv (kx) FQAu,Pv (x), FQAu,Bv (x), FPv,Bv (x),

FAAu,QAu (x), FAAu,Pv (x)FQyn,Qxn (x) �
2

≥ 0   {k belong to (zero , one ) 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
{FAu,AAu (kx) FAAu,Av (x)}2 ≥ 0 

min �
LAAu,Bv (kx) LQAu,Pv (x), LQAu,Bv (x), LPv,Bv (x),

LAAu,QAu (x), LAAu,Pv (x)LQyn,Qxn (x) �
2

≤ 0 {k belong to (zero, one)} 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
{LAu,AAu (kx)}2   ≤ {LAAu,Av (x)}2 

 
Therefore, we have  

Au = AAu = QAu 
 
That is  Au is a common fixed point of A and Q. 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
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Similarly, we can prove that Bv is a common fixed point of B and P. 
 
Since Au = Bv,  we conclude that Au is a common fixed point of A, B, Pand Q.  
 
The proof is similar when P(X) is assumed to be a closed subset of X. 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
 
The cases in which A(x) or B(x) is closed subset of X are similar to the cases in which P(X) or Q(X), respectively, is 
closed  
 
Since   A(X) ⊂  P(X) and B(X) ⊂ Q(X). 
 
If Au = Bu = Su = Lu = u  and   Av = Bv = Sv = Lv = v. 
 
We have 

min �
FAu,Bv (kx) FQu,Pv (x), FQu,Bv (x), FPv,Bv (x),

FAu,Qu (x), FAu,Pv (x)FQyn,Qxn (x) �
2

≥ 0  

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu ≥ {Fu,v (x)}2. 

min �
LAu,Bv (kx) LQu,Pv (x), LQu,Bv (x), LPv,Bv (x),

LAu,Qu (x), LAu,Pv (x)LQyn,Qxn (x) �
2

  ≤ 0  

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu ≤ {Lu,v (x)}2. 
 
Thus we have  u = v and the common fixed point is unique. 
 
This completes the proof of the theorem. 
 
For three mapping, we have the following result: 

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
 
Corollary 7.2.2: Let (X, F, L, T , S) be an Intuitionistic Menger (PQM) space with T(x, y) = min {x, y} and 
S(x, y) =  max {x, y} for all x , y ∈ [0 ,1].  

lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
 
Let A, B and P be mappings from X into itself such that: 

7.2.2 (I) A(X) ⊂  P(X) and B(X) ⊂  P(X) 
7.2.2 (II) (A, P) or (B, P) satisfies the property (E.A.), 
7.2.2 (III) There exists a number k ∈ (0,1)such that 

 min �
FAu,Bv (kx)FPu,Pv (x), FPu,Bv (x),

FPv,Bv (x), FAu,Pu (x), FAu,Pv (x)FQyn,Qxn (x)� ≥ 0  

 min �
LAu,Bv (kx) LPu,Pv (x), LPu,Bv (x),

LPv,Bv (x), LAu,Pu (x), LAu,Pv (x)FQyn,Qxn (x)� ≤ 0 

for all u, v ∈ X . 
7.2.2 (IV) (A, P) and (B, P) are weakly compatible, 
7.2.2 (V) One of A(X), B(X) orP(X) is a closed subset of X. 

                       Then A, B and P have a unique common fixed point in X. 
lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
 
Corollary 7.2.3: Let (X, F, L, T , S) be a Intuitionistic Menger (PQM) space with T(x, y) =  min {x, y} and  
S(x, y) = max {x, y} for all x , y ∈ [0 ,1].  
  
Let Aand P be mappings from X into itself such that: 

7.2.3 (I) A(X)⊂  P(X). 
7.2.3 (II) (A, P) satisfies the property (E.A), 
7.2.3 (III) There exists a number k ∈ (0,1) such that 

min �
FAu,Av (kx)FPu,Pv (x), FPu,Av (x),

FPv,Av (x), FAu,Pu (x), FAu,Pv (x)FQyn,Qxn (x)�
2

 ≥ 0  
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min �
LAu,Av (kx)LPu,Pv (x), LPu,Av (x),

LPv,Av (x), LAu,Pu (x), LAu,Pv (x)LQyn,Qxn (x)�
2

 ≤  0  

for all u, v ∈ X . 
7.2.3 (IV) (A, P)  be weakly compatible, 
7.2.3 (V) One of A(X) orP(X)  is a closed subset of X. 
 

                      Then A and P have a unique common fixed point in X. 
lim
n→∞

Ayn =  lim
n→∞

Bxn = lim
n→∞

Pxn = lim
n→∞

Qyn = Qu 
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