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ABSTRACT 
Let 𝑁 be  a semiprime left near-ring and 𝛼 any mapping on 𝑁.  A mapping  𝐹:𝑁 → 𝑁 is a generalized derivation and 
𝑓:𝑁 → 𝑁 is a derivation.  In this paper our main motive is to study the commutativity of semiprime near-rings and the 
nature of mappings. 
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1. INTRODUCTION 
 
Throughout this paper, 𝑍(𝑁) will denote the multiplicative center of 𝑁. Numerous outcomes in literature indicate how 
the worldwide structure of a near-ring 𝑁 is often tightly connected to the behavior of additive mappings characterized 
on 𝑁.  More recently several authors consider similar situation in the case the derivation 𝑑 is replaced by a generalized 
derivation. Recently, there has been a lot of work concerning commutativity of prime and semiprime rings admitting 
suitably constrained derivations and generalized derivations [5]. Obviously, every derivation is a generalized derivation 
but the converse need not be true in general [6].  In this paper, we have proved comparable results of [6] for near-rings. 
 
2. PRELIMINARIES  
 
In this section, we collect all basic concepts in near-rings mostly from A. Boua and L. Oukhtite [1], H. E. Heatherly [2], 
G. Pilz [3], Mehsin Jabel Atteya, Dalal Jbrahee Rasen [4] and M. Samman, L. outkhtite, A. Boua [5] which are required 
for our study. 
 
Definition 2.1: A left near-ring is a set 𝑁 together with two binary operations “+” and “⋅” such that 

a)   (𝑁, +)  is a group (not necessarily abelian) 
b)  (𝑁,⋅) is a semigroup  
c)   ∀ 𝑛1,𝑛2,𝑛3 ∈ 𝑁: 𝑛1. (𝑛2 + 𝑛3) = 𝑛1.𝑛2 + 𝑛1𝑛3. 

 
Definition 2.2: An additive endomorphism 𝐷 of 𝑁 is called a derivation on 𝑁 if 𝐷(𝑥𝑦) = 𝑥𝐷(𝑦) + 𝐷(𝑥)𝑦 for all 
𝑥,𝑦 ∈ 𝑁. 
 
Definition 2.3: An additive mapping 𝐹:𝑁 → 𝑁 is said to be a right (resp., left) generalized derivation with associated 
derivation 𝑑 if 𝐹(𝑥𝑦) = 𝐹(𝑥)𝑦 + 𝑥𝑑(𝑦) (resp., 𝐹(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝐹(𝑦)), for all 𝑥,𝑦 ∈ 𝑁, and 𝐹:𝑁 → 𝑁 is said to be 
a generalized derivation with associated derivation 𝑑 on 𝐹 if it is both a right and left generalized derivation on 𝑁 
with associated derivation 𝑑. 
 
Definition 2.4: A near-ring 𝑁 is said to be semiprime near-ring if 𝑥𝑁𝑥 = {0} for 𝑥 ∈ 𝑁 implies 𝑥 = 0. 
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Definition 2.5: For any 𝑥,𝑦 ∈ 𝑁, [𝑥,𝑦] = 𝑥𝑦 − 𝑦𝑥 will denote the commutator and (𝑥 ∘ 𝑦) = 𝑥𝑦 + 𝑦𝑥 will denote the 
anti-commutator. 
 
For any 𝑥,𝑦, 𝑧 ∈ 𝑁, the following identities hold: 
i)   [𝑥,𝑦𝑧] = 𝑦[𝑥, 𝑧] + [𝑥,𝑦]𝑧   
ii)  [𝑥𝑦, 𝑧] = 𝑥[𝑦, 𝑧] + [𝑥, 𝑧]𝑦   
 
Definition 2.6: A normal subgroup 𝐼 of (𝑁, +) is called an ideal of 𝑁 (𝐼 ⊴ 𝑁) if  

𝛼) 𝐼𝑁 ⊆ 𝐼 
𝛽) ∀ 𝑛,𝑛, ∈ 𝑁  ∀ 𝑖 ∈ 𝐼 ∶ 𝑛(𝑛, + 𝑖) − 𝑛𝑛, ∈ 𝐼. 

 
Normal subgroups 𝑅 of (𝑁, +) with 𝛼) are called right ideals of 𝑁 (𝑅 ⊴𝑟 𝑁), while normal subgroups 𝐿 of (𝑁, +) with 
𝛽) are said to be left ideals of 𝑁 (𝐿 ⊴𝑙 𝑁). 
 
Definition 2.7: A distributive near-ring is a near-ring satisfying both distributive laws. 
 
Definition 2.8: The symbol 𝑍(𝑁) will represent the multiplicative center of 𝑵, that is, 𝑍(𝑁) = {𝑥� ∈ 𝑁 ∕ 𝑥𝑦 = 𝑦𝑥 for 
all �𝑦 ∈ 𝑁}. 
 
3. MAIN RESULTS 
 
Theorem 3.1: Let 𝑁 be an additive abelian semiprime left near-ring and 𝐼 a non-zero ideal of 𝑁. Suppose that 𝐹 is a 
left generalized derivation associated with the mapping 𝑓 on 𝑁.  If 𝐹[𝑥,𝑦] − [𝑥, 𝑓(𝑦)] = 0 for all 𝑥,𝑦 ∈ 𝐼, then 
[𝑓(𝑦),𝑦] = 0 for all 𝑦 ∈ 𝐼. 
 
Proof: 
Assume that 

𝐹[𝑥,𝑦] − [𝑥, 𝑓(𝑦)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Replacing 𝑥 by 𝑦𝑥, 
   𝐹[𝑦𝑥,𝑦] − [𝑦𝑥, 𝑓(𝑦)] = 0 
           ⟹ 𝑦𝐹[𝑥,𝑦] + 𝑓(𝑦)[𝑥,𝑦] − 𝑦𝑥𝑓(𝑦) + 𝑓(𝑦)𝑦𝑥 = 0 
 
Adding and subtracting 𝑦[𝑥, 𝑓(𝑦)], 

𝑦𝐹[𝑥,𝑦] − 𝑦[𝑥, 𝑓(𝑦)] + 𝑓(𝑦)[𝑥,𝑦] + 𝑦[𝑥, 𝑓(𝑦)] − 𝑦𝑥𝑓(𝑦) + 𝑓(𝑦)𝑦𝑥 = 0 
                       ⟹ 𝑓(𝑦)𝑥𝑦 − 𝑦𝑓(𝑦)𝑥 = 0                                                              (1) 
 
Replace 𝑥 by 𝑥𝑓(𝑦), 

𝑓(𝑦)𝑥𝑓(𝑦)𝑦 − 𝑦𝑓(𝑦)𝑥𝑓(𝑦) = 0                                                                           (2) 
 
Post multiply (1) by 𝑓(𝑦), 

𝑓(𝑦)𝑥𝑦𝑓(𝑦) − 𝑦𝑓(𝑦)𝑥𝑓(𝑦) = 0                                                                           (3) 
 
Subtracting (3) from (2), 

𝑓(𝑦)𝑥�𝑓(𝑦)𝑦 − 𝑦𝑓(𝑦)� = 0 
                       ⟹ [𝑓(𝑦),𝑦]𝑥[𝑓(𝑦),𝑦] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Since 𝑁 is semiprime near-ring, [𝑓(𝑦),𝑦] = 0 for all 𝑦 ∈ 𝐼. 
 
Theorem 3.2: Let 𝑁 be an additive abelian semiprime left near-ring and 𝐼 a non-zero ideal of 𝑁. Suppose that 𝐹 is a 
left generalized derivation associated with the mapping 𝑓 on 𝑁. If 𝐹(𝑥 ∘ 𝑦) − 𝑥 ∘ 𝑓(𝑦) = 0 for all 𝑥,𝑦 ∈ 𝐼, then 
[𝑓(𝑦),𝑦] = 0 for all 𝑦 ∈ 𝐼. 
 
Proof: 
Assume that 

𝐹(𝑥 ∘ 𝑦) − 𝑥 ∘ 𝑓(𝑦) = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
On replacing 𝑥 by 𝑦𝑥, 

𝐹(𝑦𝑥 ∘ 𝑦) − 𝑦𝑥 ∘ 𝑓(𝑦) = 0 
                       ⟹ 𝑦𝐹(𝑥 ∘ 𝑦) + 𝑓(𝑦)(𝑥 ∘ 𝑦) − 𝑦𝑥𝑓(𝑦) − 𝑓(𝑦)𝑦𝑥 = 0 
 
Adding and subtracting 𝑦�𝑥 ∘ 𝑓(𝑦)� 𝑎𝑛𝑑 𝑢sing hypothesis, we have 

𝑓(𝑦)𝑥𝑦 + 𝑦𝑓(𝑦)𝑥 = 0                                                               (4) 
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Let 𝑥 = 𝑥𝑓(𝑦), 

𝑓(𝑦)𝑥𝑓(𝑦)𝑦 + 𝑦𝑓(𝑦)𝑥𝑓(𝑦) = 0                                                                           (5) 
 
Post multiply (4) by 𝑓(𝑦), 

𝑓(𝑦)𝑥𝑦𝑓(𝑦) + 𝑦𝑓(𝑦)𝑥𝑓(𝑦) = 0                                                                     (6) 
 
Subtracting (6) from (5), 

[𝑓(𝑦),𝑦]𝑥[𝑓(𝑦),𝑦] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Since 𝑁 is semiprime near-ring, we get [𝑓(𝑦),𝑦] = 0 for all 𝑦 ∈ 𝐼. 
 
Theorem 3.3: Let 𝑁 be an additive abelian semiprime left near-ring and 𝐼 a non-zero ideal of 𝑁. Suppose that 𝐺 and 𝐹 
are two left generalized derivations associated with the mappings 𝑔 and 𝑓 respectively on 𝑁.  
 
If 𝐺(𝑥𝑦) ± [𝑥,𝐹(𝑦)] ± 𝑥𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼, then 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 
 
Proof: 
Case (i):  
Assume that 

𝐺(𝑥𝑦) + [𝑥,𝐹(𝑦)] + 𝑥𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Substituting 𝑧𝑥 for 𝑥,  

𝐺�(𝑧𝑥)𝑦� + [𝑧𝑥,𝐹(𝑦)] + 𝑧𝑥𝑦 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 
𝑔(𝑧)𝑥𝑦 + [𝑧,𝐹(𝑦)]𝑥 = 0                for all 𝑥,𝑦, 𝑧 ∈ 𝐼                                                           (7) 

 
Substituting 𝑥𝑡 for 𝑥, 

𝑔(𝑧)𝑥𝑡𝑦 + [𝑧,𝐹(𝑦)]𝑥𝑡 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁                                                          (8) 
 
Right multiply (7) by 𝑡, 

𝑔(𝑧)𝑥𝑦𝑡 + [𝑧,𝐹(𝑦)]𝑥𝑡 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁                                                          (9) 
 
Subtracting (8) from (9), we get 
    [𝑦,𝑔(𝑧)]𝑥[𝑦, 𝑡] = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁 
 
Let 𝑡 = 𝑔(𝑧) and since 𝑁 is a semiprime near-ring, [𝑦,𝑔(𝑧)] = 0 for all 𝑦, 𝑧 ∈ 𝐼 
 
Substituting 𝑦𝑟 in place of 𝑦, 

𝑦[𝑟,𝑔(𝑧)] = 0 for all 𝑦, 𝑧 ∈ 𝐼 and 𝑟 ∈ 𝑁 
 
Again by semiprimeness of 𝑁, 𝑔(𝑧) ∈ 𝑍(𝑁) for all 𝑧 ∈ 𝐼.  Hence 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 
 
Case (ii): 
Assume that         𝐺(𝑥𝑦) − [𝑥,𝐹(𝑦)] − 𝑥𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Substituting 𝑧𝑥 for 𝑥, 

𝑔(𝑧)𝑥𝑦 − [𝑧,𝐹(𝑦)]𝑥 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼                                                                        (10) 
 
On replacing 𝑥 by 𝑥𝑡 in (10), 

𝑔(𝑧)𝑥𝑡𝑦 − [𝑧,𝐹(𝑦)]𝑥𝑡 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁                                                        (11) 
 
Post multiply (10) by 𝑡  and subtract (11) 

𝑔(𝑧)𝑥[𝑦, 𝑡] = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁 
 
Further, proceeding as in the proof of case (i), we have 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 
 
Using similar approach, the same result holds for 𝐺(𝑥𝑦) ± [𝑥,𝐹(𝑦)] + 𝑥𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼. 
 
Theorem 3.4: Let 𝑁 be an additive abelian semiprime left near-ring and 𝐼 a non-zero ideal of 𝑁.  Suppose that 𝐺 and 𝐹 
are two left generalized derivations associated with the mappings 𝑔 and 𝑓 respectively on 𝑁. If 𝐺(𝑥𝑦) ± 𝑥 ∘ 𝐹(𝑦) ±
𝑥𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼, then 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 
 
Proof: 
Assume that         𝐺(𝑥𝑦) − 𝑥 ∘ 𝐹(𝑦) − 𝑥𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼 
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Substituting 𝑧𝑥 in place of 𝑥, 

𝑔(𝑧)𝑥𝑦 + [𝑧,𝐹(𝑦)]𝑥 = 0                                                            (12) 
 
On replacing 𝑥 by 𝑥𝑡 in (12), 

𝑔(𝑧)𝑥𝑡𝑦 + [𝑧,𝐹(𝑦)]𝑥𝑡 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁                                                        (13) 
 
Post multiply (12) by 𝑡 and subtract (13) 

[𝑦,𝑔(𝑧)]𝑥[𝑦, 𝑡] = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁 
 
Let 𝑡 = 𝑔(𝑧)  𝑎𝑛𝑑 𝑠ince 𝑁 is semiprime, [𝑦,𝑔(𝑧)] = 0 for all 𝑦, 𝑧 ∈ 𝐼. 
 
Substituting 𝑦𝑟 in place of 𝑦, we get 

𝑦[𝑟,𝑔(𝑧)] = 0 for all 𝑦, 𝑧 ∈ 𝐼 and 𝑟 ∈ 𝑁 
 
Again by semiprimeness of 𝑁, 𝑔(𝑧) ∈ 𝑍(𝑁) for all 𝑧 ∈ 𝐼.  Hence 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 
 
By using similar approach, the same result holds for 𝐺(𝑥𝑦) + 𝑥 ∘ 𝐹(𝑦) ± 𝑥𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼. 
 
Theorem 3.5: Let 𝑁 be an additive abelian semiprime left near-ring and 𝐼 a non-zero ideal of 𝑁.  Suppose that 𝐺 and 𝐹 
are two left generalized derivations associated with the mappings 𝑔 and 𝑓 respectively on 𝑁. If one of the following 
holds: 
i)   𝐺(𝑥𝑦) ± 𝑥 ∘ 𝐹(𝑦) ± [𝑥,𝑦] = 0; 
ii)  𝐺(𝑥𝑦) ± 𝑥 ∘ 𝐹(𝑦) ± 𝑥 ∘ 𝑦 = 0; 
iii) 𝐺(𝑥𝑦) ± 𝑥 ∘ 𝐹(𝑦) = 0 
      for all 𝑥,𝑦 ∈ 𝐼, then 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 
 
Proof: 
i) Assume that   𝐺(𝑥𝑦) ± 𝑥 ∘ 𝐹(𝑦) ± [𝑥,𝑦] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 

Assume further that 𝐺(𝑥𝑦) − 𝑥 ∘ 𝐹(𝑦) − [𝑥,𝑦] = 0 for all 𝑥,𝑦 ∈ 𝐼                                                         (14) 
 

Substituting 𝑧𝑥 instead of 𝑥 in (14), 
𝑔(𝑧)𝑥𝑦 + [𝑧,𝐹(𝑦)]𝑥 − [𝑧,𝑦]𝑥 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼                                                                       (15) 

 
Replace 𝑥 by 𝑥𝑡, 𝑡 ∈ 𝑁 in (15)  

𝑔(𝑧)𝑥𝑡𝑦 + [𝑧,𝐹(𝑦)]𝑥𝑡 − [𝑧,𝑦]𝑥𝑡 = 0                                                          (16) 
 

Post multiply (15) by 𝑡  and subtract (16) 
[𝑦,𝑔(𝑧)]𝑥[𝑦, 𝑡] = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁 

 
Putting 𝑡 = 𝑔(𝑧), then [𝑦,𝑔(𝑧)]𝑥[𝑦,𝑔(𝑧)] = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 

 
Since 𝑁 is semiprime, we have [𝑦,𝑔(𝑧)] = 0 for all 𝑦, 𝑧 ∈ 𝐼  

 
Substituting 𝑦𝑟 in place of 𝑦, we get 

𝑦[𝑟,𝑔(𝑧)] = 0 for all 𝑦, 𝑧 ∈ 𝐼 and 𝑟 ∈ 𝑁 
 

Again by semiprimeness of 𝑁, 𝑔(𝑧) ∈ 𝑍(𝑁) for all 𝑧 ∈ 𝐼.  Hence 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 
 

Using similar approach, the same result holds for 𝐺(𝑥𝑦) + 𝑥 ∘ 𝐹(𝑦) ± [𝑥,𝑦] = 0 and 𝐺(𝑥𝑦) − 𝑥 ∘ 𝐹(𝑦) + [𝑥,𝑦] = 0 
for all 𝑥,𝑦 ∈ 𝐼. 

 
ii) Assume that 𝐺(𝑥𝑦) ± 𝑥 ∘ 𝐹(𝑦) ± 𝑥 ∘ 𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼 
 

Let 𝐺(𝑥𝑦) − 𝑥 ∘ 𝐹(𝑦) − 𝑥 ∘ 𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼 
 

On replacing 𝑧𝑥 in place of 𝑥, 
𝑔(𝑧)𝑥𝑦 + [𝑧,𝐹(𝑦)]𝑥 + [𝑧,𝑦]𝑥 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 

 
Further, proceeding as in the proof of part (i), we have 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 
By using similar argument we can prove the same result for the following cases 𝐺(𝑥𝑦) + 𝑥 ∘ 𝐹(𝑦) ± 𝑥 ∘ 𝑦 = 0 and 
𝐺(𝑥𝑦) − 𝑥 ∘ 𝐹(𝑦) + 𝑥 ∘ 𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼. 
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iii) Assume that 𝐺(𝑥𝑦) ± 𝑥 ∘ 𝐹(𝑦) = 0 for all 𝑥,𝑦 ∈ 𝐼  
 

   Suppose that 𝐺(𝑥𝑦) − 𝑥 ∘ 𝐹(𝑦) = 0 for all 𝑥,𝑦 ∈ 𝐼 
 

   Substituting 𝑧𝑥 instead of 𝑥, 
𝑔(𝑧)𝑥𝑦 + [𝑧,𝐹(𝑦)]𝑥 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼                                                                        (17) 

 
   Now replacing 𝑥𝑡 in place of 𝑥, 

𝑔(𝑧)𝑥𝑡𝑦 + [𝑧,𝐹(𝑦)]𝑥𝑡 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁                                                        (18) 
 

   Right multiply (17) by 𝑡 and subtract (18) 
[𝑦,𝑔(𝑧)]𝑥[𝑦, 𝑡] = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑡 ∈ 𝑁 

 
   Putting 𝑡 = 𝑔(𝑧) and since N is semiprime, we have 

[𝑦,𝑔(𝑧)] = 0 for all 𝑦, 𝑧 ∈ 𝐼  
 

   Substituting 𝑦𝑟 in place of 𝑦, we get 
𝑦[𝑟,𝑔(𝑧)] = 0 for all 𝑦, 𝑧 ∈ 𝐼 and 𝑟 ∈ 𝑁 

 
   Again by semiprimeness of 𝑁, 𝑔(𝑧) ∈ 𝑍(𝑁) for all 𝑧 ∈ 𝐼.  Hence 𝑔(𝑥) ∈ 𝑍(𝑁) for all 𝑥 ∈ 𝐼. 

 
   By using similar approach, the same result holds for 𝐺(𝑥𝑦) + 𝑥 ∘ 𝐹(𝑦) = 0 for all 𝑥,𝑦 ∈ 𝐼. 

 
Theorem 3.6: Let 𝑁 be an additive abelian semiprime distributive near-ring and 𝐼 a non-zero ideal and 𝛼 any mapping 
on 𝑁.  Suppose that 𝐺 and 𝐹 are two left generalized derivations associated with the mappings 𝑔 and 𝑓 respectively on 
𝑁. If 𝐺(𝑥𝑦) + 𝐹(𝑥)𝐹(𝑦) ± [𝑥,𝛼(𝑦)] = 0 for all 𝑥,𝑦 ∈ 𝐼, then [𝑓(𝑥), 𝑥] = 0 and [𝑔(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼.  
Moreover, if 𝛼 is an automorphism, then 𝑁 is commutative. 
 
Proof: 
Assume that         𝐺(𝑥𝑦) + 𝐹(𝑥)𝐹(𝑦) − [𝑥,𝛼(𝑦)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Substituting 𝑧𝑥 for 𝑥,  

𝑔(𝑧)𝑥𝑦 + 𝑓(𝑧)𝑥𝐹(𝑦) − [𝑧,𝛼(𝑦)]𝑥 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼                                           (19) 
 
Substituting 𝑥𝑟 in place of 𝑥, we obtain 

𝑔(𝑧)𝑥𝑟𝑦 + 𝑓(𝑧)𝑥𝑟𝐹(𝑦) − [𝑧,𝛼(𝑦)]𝑥𝑟 = 0                                                          (20) 
 
Substituting 𝑟𝑦 in place of 𝑦 in (20) and subtract from (20) 

−𝑓(𝑧)𝑥𝑓(𝑟)𝑦 + [𝑧,𝛼(𝑟𝑦)]𝑥 − [𝑧,𝛼(𝑦)]𝑥𝑟 = 0                                                                       (21) 
 
On replacing 𝑥 by 𝑥𝑟 in (21), 

−𝑓(𝑧)𝑥𝑟𝑓(𝑟)𝑦 + [𝑧,𝛼(𝑟𝑦)]𝑥𝑟 − [𝑧,𝛼(𝑦)]𝑥𝑟2 = 0                                                         (22) 
 
Post multiply (21) by 𝑟 and subtract from (22) 

𝑓(𝑧)𝑥[𝑓(𝑟)𝑦, 𝑟] = 0                                                                                    (23) 
 
Replace 𝑥 by 𝑥𝑧𝑦 in (23), 

𝑓(𝑧)𝑥𝑧𝑦[𝑓(𝑟)𝑦, 𝑟] = 0                                                                          (24) 
 
Replace 𝑥 by 𝑥𝑦 in (23), 

𝑓(𝑧)𝑥𝑦[𝑓(𝑟)𝑦, 𝑟] = 0                                                            (25) 
 
Pre multiply (25) by 𝑧 and subtract from (24) 
   [𝑓(𝑧)𝑥, 𝑧]𝑦[𝑓(𝑟)𝑦, 𝑟] = 0 
 
 
Let 𝑟 = 𝑧 and 𝑦 = 𝑥 and since 𝑁 is semiprime, 

𝑓(𝑧)[𝑥, 𝑧] + [𝑓(𝑧), 𝑧]𝑥 = 0                                                           (26) 
 
Substituting 𝑥𝑟 for 𝑥 in (26), 

𝑓(𝑧)𝑥[𝑟, 𝑧] + 𝑓(𝑧)[𝑥, 𝑧]𝑟 + [𝑓(𝑧), 𝑧]𝑥𝑟 = 0                                                                        (27) 
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Post multiply (26) by 𝑟 and subtract from (27) 
   [𝑓(𝑧), 𝑧]𝑥[𝑓(𝑧), 𝑧] = 0 
 
Since 𝑁 is semiprime, [𝑓(𝑧), 𝑧] = 0 for all 𝑧 ∈ 𝐼 

⟹ [𝑓(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼. 
 
Again replacing 𝑥 by 𝑧𝑥 in (19), 

𝑔(𝑧)𝑧𝑥𝑦 + 𝑓(𝑧)𝑧𝑥𝐹(𝑦) − [𝑧,𝛼(𝑦)]𝑧𝑥 = 0                                                          (28) 
 
Pre multiply (19) by 𝑧 and subtract from (28) 

[𝑔(𝑧), 𝑧]𝑥𝑦 + �𝑧, [𝑧,𝛼(𝑦)]�𝑥 = 0                                                                   (29) 
 
Putting 𝑥 = 𝑥𝑟, 

[𝑔(𝑧), 𝑧]𝑥𝑟𝑦 + �𝑧, [𝑧,𝛼(𝑦)]�𝑥𝑟 = 0                                                                   (30) 
 
Post multiply (29) by 𝑟 and subtract (30) 
   [𝑔(𝑧), 𝑧]𝑥[𝑦, 𝑟] = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 and 𝑟 ∈ 𝑁 
 
Let 𝑟 = 𝑔(𝑧) and 𝑦 = 𝑧, 

[𝑔(𝑧), 𝑧] = 0 for all 𝑧 ∈ 𝐼                                                                                       (31) 
 
Hence [𝑓(𝑥), 𝑥] = 0 and [𝑔(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼.  
 
Next, we assume the case, when 𝛼 is an automorphism. 
 
Applying (31) in (29), we have 
   �𝑧, [𝑧,𝛼(𝑦)]� = 0                                                                           (32) 
 
Linearizing this expression, 

�𝑥, [𝑧,𝛼(𝑦)]� + �𝑧, [𝑥,𝛼(𝑦)]� = 0                                                           (33) 
 
On replacing 𝑥𝑧 for 𝑥,   
  ��𝑥, [𝑧,𝛼(𝑦)]� + �𝑧, [𝑥,𝛼(𝑦)]��𝑧 + [𝑧, 𝑥][𝑧,𝛼(𝑦)] = 0 
 
Using (33), we obtain 

[𝑧, 𝑥][𝑧,𝛼(𝑦)] = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝐼 
 
Substituting 𝛼(𝑦)𝑥 for 𝑥, 

[𝑧,𝛼(𝑦)] = 0 for all 𝑦, 𝑧 ∈ 𝐼 
 
Put 𝑦 = 𝑦𝛼−1(𝑟) 

�𝑧,𝛼�𝑦𝛼−1(𝑟)�� = 0  ⟹ [𝑧, 𝑟] = 0 for all 𝑧 ∈ 𝐼 and 𝑟 ∈ 𝑁 
   i.e. 𝐼 ⊂ 𝑍(𝑁). 
 
Hence 𝑁 is commutative.Using similar approach, the same result holds for 𝐺(𝑥𝑦) + 𝐹(𝑥)𝐹(𝑦) + [𝑥,𝛼(𝑦)] = 0 for all 
𝑥,𝑦 ∈ 𝐼. 
 
Using similar techniques with some necessary variations we can prove the following Theorem: 
 
Theorem 3.7: Let 𝑁 be an additive abelian semiprime distributive near-ring and 𝐼 a non-zero ideal and 𝛼 any mapping 
on 𝑁.  Suppose that 𝐺 and 𝐹 are two left generalized derivations associated with the mappings 𝑔 and 𝑓 respectively on 
𝑁. If 𝐺(𝑥𝑦) − 𝐹(𝑥)𝐹(𝑦) ± [𝑥,𝛼(𝑦)] = 0 for all 𝑥,𝑦 ∈ 𝐼, then [𝑓(𝑥), 𝑥] = 0 and [𝑔(𝑥), 𝑥] = 0 for all 𝑥 ∈ 𝐼.  
Moreover, if 𝛼 is an automorphism, then 𝑁 is commutative. 
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