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ABSTRACT 
The time-dependent thin film flow problem of visco-elastic fluid consisting of nano-sized particles through an inclined 
belt has been studied in presence of transverse magnetic field. The constitutive equation of fluid flow is characterized 
by Oldroyd-B fluid model bearing rheological parameters: relaxation parameter and retardation parameter. The lower 
surface of the belt is oscillating about a non-zero constant mean velocity U. Outer surface is characterized by 
convection-conduction and convection-diffusion boundary conditions. Governing equations of motion are solved 
analytically by using perturbation scheme. Closed form solutions for velocity profiles, shearing stress, temperature and 
concentration fields are constructed. Results are discussed graphically for various values of flow parameters involved 
in the solution with a special emphasis are given on effects of relaxation and retardation parameters. 
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1. INTRODUCTION 
 
In recent time, the visco-elastic fluid flow has attracted many scientists and researchers because of its uses in various 
industries such as polymer solution, suspension, paints, cosmetic products etc. Oldroyd [1, 2] proposed a model to 
study the flow pattern of visco-elastic fluid and is named as Oldroyd model. The mechanism of two rheological 
parameters relaxation time and retardation time in the Oldroyd fluid model has attracted many researchers as it can 
study the visco-elastic fluid motion in more generalized way (Dey [3, 4, 5], Dey and Khound [6, 7]). Viscoelastic fluid 
flow applications may be seen in various polymer industries, blood flow etc. In blood circulatory system, blood’s 
elasticity restores an amount of energy, its viscosity dissipates mechanical energy into heat and the remaining part is 
responsible for the movement of blood [8]. The constitutive equation of Oldroyd fluid model is given by 

σij = −pδij + τij 

�1 + λ1
d
dt
� τij = 2μ �1 + λ2

d
dt
� eij                                                                                                               (1.1) 

where, σij is stress tensor, p hydrostatic pressure, δij kronecker delta, τij viscous-stress tensor, λ1 relaxation time, λ2 
retardation time, μ co-efficient of viscosity, eij is strain tensor and d

dt
 is material derivative. (λ1 = 0, λ2 = 0)  

characterizes Newtonian fluid, (λ1 = 0, λ2 > 0) characterizes Second-grade fluid, (λ1 = 0, λ2 < 0) characterizes 
Walters liquid and (λ1 ≠ 0, λ2 = 0) represents the Maxwell fluid model.  
 
Nano fluids are suspensions of nano particles in fluids. Mechanism of nano-fluid can be utilized where heat transfer 
enhancement is dominant as in many industrial applications, nuclear reactors, transportation, electronics as well as 
biomedicine and food (Wong and Leon [9]). Singh and Dikshit [10] have studied the hydro-magnetic flow past a 
continuously moving semi-infinite plate for large suction using similarity solution. Nield and Kuznetsov [11] have 
analysed the Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by 
a nano fluid. Thermal instability in a porous medium layer saturated by a nano fluid has been investigated by 
Kuznetsov and Nield [12]. Chamkha et.al [13] have studied the non-similar solution for natural convective boundary 
layer flow over a sphere embedded in a porous medium saturated with a nanofluid. Shah et.al [14] have investigated the 
optimal homotopy asymptotic method for thin film flows of a third grade fluid. Natural convection boundary layer flow 
over a truncated cone in a porous medium saturated by a nanofluid has been analysed by Cheng [15] using cubic spline 
collocation method. Shahid et.al [16] have formulated the exact solution for motion of an Oldroyd-B fluid over an  
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infinite flat plate that applies an oscillating shear stress to the fluid using Laplace and Fourier transforms. MHD Thin 
film flows of a third grade fluid on a vertical belt with slip boundary conditions have been investigated by Gul et.al 
[17] using Adomian decomposition method and Optimal homotopy asymptotic method. Hydromagnetic flow of an 
Oldroyd-B fluid near an infinite plate induced by half rectified sine pulses using operational method has been analysed 
by Ghosh et.al [18]. Unsteady MHD thin film flow of an Oldroyd-B fluid over an oscillating inclined belt has been 
investigated by Gul et.al [19]. Uddin et.al [20] have constructed the similarity and analytical solutions of free 
convective flow of dilatant nanofluid in a Darcian porous medium with multiple convective boundary conditions. 
Choudhury and Dey [21] have constructed the closed form solutions of free convective elastico-viscous fluid flow past 
an inclined plate in slip flow regime using perturbation technique.  
 
The objective of the present study is to investigate the effects of relaxation and retardation parameters on hydro-
magnetic thin film flow consisting of nano-sized particles in an inclined belt in presence of convection-conduction and 
convection-diffusion phenomena.  
 
2. MATHEMATICAL FORMULATION 
 

The time-dependent thin film flow of Oldroyd-B nanofluid through an inclined belt with convective boundary condition 
at the upper surface is considered. The lower surface of the belt is oscillating about a non-zero mean velocity U. The 
motion of the fluid layer is in downward direction due to the influence of gravitational force g. Let x' axis be taken 
along the length of belt(infinite in length) and y' axis be taken perpendicular to it. The following assumptions are being 
made for studying the governing fluid motion: 

(i) Magnetic field (𝐵�⃗ ) is applied along the transverse direction to the surface. Gauss’s law of magnetism: 
∇.𝐵�⃗ = 0 => 𝐵�⃗ = 𝐵0. i.e the strength of magnetic field is uniform. 

(ii) Magnetic Reynolds number is very small for weekly conducting system, so induced magnetic field may be 
neglected. 

(iii) As the speed of visco-elastic fluid flow is small, so energy dissipation due to viscosity may be neglected. 
(iv) Electric field intensity may be neglected in comparison to the Lorentz force. 
(v) Pressure is taken as uniform in the governing fluid motion, so pressure gradient is neglected. 
(vi) As the plate is infinite in length, fluidic properties like velocity, temperature and concentration are functions 

of y and t only. 
(vii) The pressure-diffusion in mass transfer is neglected because of zero pressure gradient. 
(viii) Temperature and concentration of fluid are assumed to be oscillating with time t about non-zero mean 

temperature and concentration respectively. 
(ix) At the outer edge of the belt, rate of deformation (𝜕𝑢

𝜕𝑦
) is taken as zero. 

(x) Outer surface is experienced by convection-diffusion and convection-conduction boundary conditions. 
 
With these above assumptions, the equations of governing fluid motion are as follows: 
 
Momentum equation: 

ρ �
∂u′
∂t′

+ λ1
∂2u′
∂t′2

� = μ �
∂2u′
∂y′2

+ λ2
∂3u′
∂y′2 ∂t′

� − �1 + λ1
∂
∂t′
� σB0

2u′ + ρg sin γ                                         (2.1) 

 
Energy equation:  

∂T′
∂t′

= α
∂2T′
∂y′2

+ βDB
∂T′
∂y′

∂C′
∂y′

                                                                                                                            (2.2) 

 
Energy equation for species concentration: 

∂C′
∂t′

= DB
∂2C′
∂y′2

                                                                                                                                                    (2.3) 

 
The corresponding boundary conditions are as follows: 

y′ = 0 ; u′ = U + ϵUeiω′t′ ; T′ = Ts + ϵ(T0 + TS)eiω′t′ ;  C′ = Cs + ϵ(C0 + CS)eiω′t′; 

y′ = 1 ; 
∂u′
∂y′

= 0 ; 
∂T′
∂y′

= −
hf
k

(TS − T′) ; 
∂C′
∂y′

= −
hm
Db

(CS − C′) 
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Figure-1: Geometry of the problem 

 
3. METHOD OF SOLUTION 

 
We introduce the following non-dimensional quantities to make the equations (2.1) to (2.3) dimensionless: 

y =
y′

δ
 ;  u =

u′

U
;  t =

μt′

ρδ
;  θ =

T′ − TS
T0 − TS

;  ϕ =
C′ − CS
C0 − CS

;  a =
λ1μ
ρδ2

;  b =
λ2μ
ρδ2

;  M =
σB0

2δ2

μ
;  ω =

ω′ρδ2

μ
 ; 

m =
ρδ2g sin γ

μU
; Sc =

μ
ρDb

; Pr =
μ
ρα

; Nb =
ρ2Db(C0 − CS)
μ(T0 − TS)  

 
The dimensionless equations are as follows: 

∂u
∂t

+ a
∂2u
∂t2

=
∂2u
∂y2

+ b
∂3u
∂y2 ∂t

− �1 + a
∂
∂t
�Mu + m                                                                                  (3.1) 

∂θ
∂t

=
1
Pr
∂2θ
∂y2

+ Nb
∂θ
∂y
∂ϕ
∂y

                                                                                                                                  (3.2) 

Sc
∂ϕ
∂t

=
∂2ϕ
∂y2

                                                                                                                                                        (3.3) 

 
We use the following boundary conditions for solving the equations (3.1) and (3.3): 

y = 0, u = 1 + ϵeiωt, θ = ϵeiωt, ϕ = ϵeiωt  & 𝑦 = 1,
∂u
∂y

= 0, θ =
δhf
k

= Nc,ϕ =
δhm
Db

= Nd           (3.4)  

 
We use the perturbation technique to solve the equations (3.1) to (3.3). The velocity, temperature and concentration are 
taken as follows: 

u = f0 + ϵeiωtf1 + o(ϵ2), θ = g0 + ϵeiωtg1 + o(ϵ2), ϕ = ℎ0 + ϵeiωtℎ1 + o(ϵ2)             (3.5) 
 
Using (3.5) in the above equations (3.1) to (3.3), and comparing the co-efficient of ϵ, we get 

f0′′ − Mf0 + m = 0                                                           (3.6) 
f1′′ − (A3 + iA4)f1 = 0                                                           (3.7) 
1
Pr

g0′′ + Nbg0′ h0′ = 0                                                           (3.8) 
1
Pr

g1′′ + Nb(g1′ h0′ + g0′ h1′) = iωg1                                                                 (3.9) 
h0′′ = 0                                                           (3.10) 
h1′′ = iScωh1                                                          (3.11) 

 
Here we use the following boundary conditions: 

y = 0; f0 = 1; f1 = 1; g0 = 0; g1 = 1; h0 = 0; h1 = 1 & 
y = 1; ∂f0

∂y
= 0; ∂f1

∂y
= 0; g0 = δhf

k
; g1 = 0; h0 = δhm

Db
 ; h1 = 0                                        (3.12) 

 
4. RESULTS AND DISCUSSIONS 
 
Solving the equations (3.6) to (3.11) and using the boundary conditions (3.12) we get the velocity profile, temperature 
and concentration as: 
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u =

m
M

 + A11�e√My + e√M(2−y)�
+ ϵ[cosωt{eA5y(A7 cos A6y − A8 sin A6y)   + e−A5y(A9 cos A6y + A10 sin A6y)}
− sinωt{eA5y(A8 cos A6y + A7 sin A6y)
+ e−A5y(A10 cos A6y
− A9 sin A6y)}]                                                                                                                                                  (4.1) 

 

θ =
δhf

k(1 − eA21)
(1 − eA21y)  

+ ϵ cosωt �C7eA25y cos A26y + C8eA27y cos A26y + A32e(A21+A20)y

− A33e(A21−A20)y]                                                                                                                                              (4.2) 
 

ϕ =
δhm
Db

+ ϵ[cosωt cos A20y{A16eA20y + A18e−A20y}

+ cosωt sin A20y{A19eA20y − A17e−A20y} − sinωt cos A20y{A17eA20y + A19e−A20y}
− sinωt sin A20y{A16eA20y
− A18e−A20y}]                                                                                                                                                     (4.3) 

 
The constants Ai’s (i=1, 2, ……….33) are not presented here for the sake of brevity. 
 
Here the shearing stress is represented by the following first order differential equation, 

�1 + k1
∂
∂t
� τ = �1 + k2

∂
∂t
� �∂u

∂y
�                                                                         (4.4) 

where, τ is the dimensionless shearing stress and is given by 

τ =
τ′
ρf02

 

 
By solving the differential equation (4.4) and using the condition τ = 0 at y = 0, we get the shearing stress as: 

τ = A14 + ϵ
1+k1

2ω2
�sin�β1 + ωt� − i cos (β1 + ωt)�                                                        (4.5) 

 
Figure 2 to 5 represent the velocity profiles against the displacement variable for various values of flow parameters 
involved in the solution. It is seen that during the growth of relaxation parameter, fluid motion slows down. Physically, 
it can be interpreted that increase in relaxation time parameter is directly proportional to the storage of energy and as a 
consequence, fluid flow experiences retarding trend (figure 2). Retardation time parameter (figure 3) is connected with 
time scale in creeping motion of visco-elastic fluid and increasing values of retardation parameter accelerate the fluid 
motion. Figures reveal that there is a deficit by 1.03% in fluid motion during 400% growth in relaxation time parameter 
and an increase by 1.03% during the growth in retardation parameter by 200%.  
 
Application of transverse magnetic field generates a force field known as Lorentz force, the combination of Lorentz 
force and viscosity makes the system thicker and as a result speed slows down. This physical phenomenon is clearly 
seen in our result [figure 4]. During the growth of M (magnetic parameter) by 20% (from M=2 to 2.4), there is a fall in 
magnitude of velocity by 15.39% (approximately). Increase in gravitational parameter raises the power of inertia force 
and as a result fluid is accelerated [figure 5]. 
 
Shearing stress or viscous drag formed at the lower surface against the time t is drawn for various values of flow 
parameters are shown by figures 6 to 8. It clarifies the periodical variation of shearing stress against time. Effect of 
relaxation parameter on shearing stress is given by figure 7. In the interval [0, 1], drag force is reduced during the rise 
in relaxation parameter but the oscillating nature of flow pattern, an opposite phenomenon is noticed in the interval    
[1, 4]. In [0, 2], shearing stress is enhanced by the increase of retardation parameter. Physically it can be interpreted that 
the presence of viscosity and retardation parameter of visco-elasticity boosts the magnitude of shearing stress [figure 7]. 
An opposite fact is experienced in the interval [2, 5] due to the oscillating nature of flow with time. There is a 
significant amount of enhancement in viscous drag during a slight change in magnetic parameter. It can be justified as 
that the combination of viscosity and Lorentz force raises the viscous drag [figure 8]. 
 
Concentration profile against the time t is represented by figures 9 and 10. Both the graphs are drawn for the time 
interval [0, 5]. It is observed that there is a uniform variation in concentration profile for various values of convection 
parameter for diffusion. The result can be interpreted as that convection parameter for diffusion increases the species 
concentration periodically with respect to time. Schmidt number characterizes the combined effect of momentum and 
mass diffusions. Growth in Schmidt number increases the species concentration periodically with respect to time 
[figure 10].  
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5. CONCLUSIONS 
 
Some of the important points from the above investigation are concluded as follows: 

i. Growth in relaxation time parameter retards fluid motion. 
ii. Retardation time parameter gears up the fluid motion. 
iii. Magnetic parameter may stabilize the fluid flow by reducing the speed of motion.  
iv. There is reduction in shearing stress by 0.05% (approximately) during the rise in when relaxation parameter. 

by 133% and growth in 0.04% (approximately) during 100% growth in retardation parameter. 
v. Shearing stress increases by 0.20% (approximately) as magnetic parameter increases by 0.10%. 

 
6. GRAPHS 

 

 
Figure-2: velocity u against y for b=0.3, M=2, Pr=4, Nc=0.003, Nb=0.05, Nd=0.004, m=4, Sc=0.5, 𝜔=1, t=0.1, 𝜖=0.01. 
 

 
Figure-3: velocity u against y for a=0.3, M=2, Pr=4, Nc=0.003, Nb=0.05, Nd=0.004, m=4, Sc=0.5, 𝜔=1, t=0.1, 𝜖=0.01. 
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Figure-4: velocity u against y for a=0.3, b=0.3, Pr=4, Nc=0.003, Nb=0.05, Nd=0.004, m=4, Sc=0.5, 𝜔=1, t=0.1, 𝜖=0.01. 
 

 
Figure-5: velocity u against y for a=0.3, b=0.3, M=2, Pr=4, Nc=0.003, Nb=0.05, Nd=0.004, Sc=0.5, 𝜔=1, t=0.1, 𝜖=0.01. 
 

 
Figure-6: Shearing stress against t for b=0.3, M=2, Pr=4, Nc=0.003, Nb=0.05, Nd=0.004, m=4, Sc=0.5, 𝜔=1, 𝜖=0.01, 
y=0.4. 
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Figure-7: Shearing stress against t for a=0.3, M=2, Pr=4, Nc=0.003, Nb=0.05, Nd=0.004, m=4, Sc=0.5, 𝜔=1, 𝜖=0.01, 
y=0.4. 

 
Figure-8: Shearing stress against t for a=0.3, b=0.3, Pr=4, Nc=0.003, Nb=0.05, Nd=0.004, m=4, Sc=0.5, 𝜔=1, 𝜖=0.01, 
y=0.4. 

 
Figure-9: Concentration C against t for a=0.3, b=0.3, M=2, Pr=4, Nb=0.05, Nd=0.004, m=4, Sc=0.5, 𝜔=1, 𝜖=0.01, 
y=0.4. 
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Figure-10: Concentration C against t for a=0.3, b=0.3, M=2, Pr=4, Nc=0.003, Nb=0.05, Nd=0.004, m=4, 𝜔=1, 𝜖=0.01, 
y=0.4. 
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8. NOMENCLATURE 
 

hf heat transfer coefficient. 
K thermal conductivity. 
hm mass transfer coefficient. 
Nc convection parameter for diffusion. 
Nd convection parameter for conduction. 
Db  diffusion coefficient. 
M magnetic parameter. 
m gravitational parameter. 
Sc Schmidt number, Pr Prandtl number. 
Nb Brownian motion parameter. 
u′ velocity of fluid. 
y′ displacement variable. 
t′  time. 
T′ temperature of fluid. 
C′ concentration of nano-sized particle. 
y dimensionless displacement variable. 
u dimensionless velocity of fluid. 
t dimensionless time. 
T0 mean temperature. 
Ts temperature of fluid at static case. 
C0 mean concentration. 
Cs concentration of fluid at static case. 
Sh dimensionless shearing stress. 
a dimensionless relaxation time. 
b dimensionless retardation time. 
g gravitational constant. 
Greek Symbols: 
𝜌 density of the fluid. 
δ thickness of the liquid layer. 
α thermal diffusivity. 
β the ratio of effective heat capacity of the nano-particle and heat capacity of the fluid. 
θ dimensionless temperature of fluid. 
ϕ dimensionless concentration of nano-sized particle. 
ν Kinematic viscosity. 
ω′ frequency of oscillation. 
ω dimensionless frequency. 
γ angle made by the belt with the horizontal. 
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