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ABSTRACT 
The MAGDM problems have investigated under neutrosophic fuzzy environment, and proposed an approach to 
handling the situations where the attribute values were characterized by fuzzy sets, intuitionistic fuzzy sets, vague sets, 
and soft sets in which the information about attribute weights were completely unknown. In this directions, each object 
of fuzzy set (FS) theory is assigned a single real value, called the grade of membership, between zero and one [Zadeh, 
1965, 1978, 1983]; Kaufmann & Gupta, 1985]; [Kwang - Lee, 2005]; and [Zimmermann, 1991]. Atanassov [1986, 
1989, 1999] introduced the concept of intuitionistic fuzzy set (IFS) characterized by a membership function and a non-
membership function, which is a generalization of the concept of fuzzy set whose basic component is only a 
membership function. The intuitionistic fuzzy set has received much attention since its appearance. Gau & Buehrer 
[1994] introduced the concept of the vague set. But Bustince & Burillo [1996] showed that vague sets are intuitionistic 
fuzzy sets. The proposed approach first fuses all individual neutrosophic fuzzy decision matrices into the collective 
neutrosophic fuzzy decision matrix by using the NFOWA operator. Then the obtained attribute weights and the NFHA 
operator have used to get the overall neutrosophic fuzzy values of alternatives  The ordered weighted averaging (OWA) 
operator has attracted much interest among researches. It provides a general class of parameterized aggregation 
operators that include the min, max and the average. Many applications in different areas such as decision making, 
expert systems, data mining, approximate reasoning fuzzy system and control utilize the OWA aggregation. One of the 
appealing points in OWA operators is the concept of orness. The orness measure reflects the and-like or or-like 
aggregation characteristic of an OWA operator, which is very important both in theory and applications.  The orness 
of OWA operator is also called “attitudinal character” to represent the aggregation performance information. It is 
clear that the actual type of aggregation performed by an OWA operator depends upon the form of the weighting 
vector. 
 
 
SECTION-1: PREVIOUS LITERATURES 
 
Gau & Buehrer [1994] pointed out that the drawback of using the single membership value in fuzzy set theory is that 
the evidence for u ∈ U and the evidence against u ∈ U are in fact mixed together (U is the universe of discourse and u 
is an element of U). To tackle this problem Gau & Buehrer [1994] proposed the notion of Vague Sets (VSs), which 
allow using interval-based membership instead of using point-based membership as in FSs.  
 
The interval-based membership generalization in VSs is more expressive in capturing data vagueness. However, VSs 
are shown to be equivalent to that of intuitionistic fuzzy sets (IFSs) [Bustince & Burillo, 1996]. For this reason, 
interesting features for handling vague data that are unique to VSs are largely ignored. Lu & Ng [2004, 2005, 2009] 
pointed out the major differences between IFSs and VSs by the way their interval memberships are defined. 
 
Vagueness and uncertainty are the two important aspects of imprecision. IFS is an intuitively straight forward extension 
of Zadeh’s [1965] fuzzy sets. IFS theory basically defies the claim that from the fact that an element x “belongs” to a 
given degree (say μ) to a fuzzy set A, it naturally follows that x should “not belong” to A to the extent 1-µ, an assertion 
implicit in the concept of a fuzzy set. On the contrary, IFSs assigns to each element of the universe both a degree of 
membership µ and one of non-membership γ such that µ + γ ≤ 1, thereby relaxing enforced duality γ = 1 - µ from fuzzy 
set theory.  
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Obviously, when µ + γ = 1 for all elements of the universe, the traditional fuzzy set concept is recovered. In IFS this 
identity is weakened into an inequality, or in other words: a denial of the law of the excluded middle occurs, one of the 
main ideas of intuitionism. Let X be the universe of discourse defined by X = {x1, x2, …, xn}  The grade of membership 
of an element xi ∈ X in a fuzzy set is represented by real values between 0 and 1. It indicates the evidence for xi ∈ X, but 
not the evidence against xi ∈ X.  
 
Atanassov [1986, 1989] pointed out that this single value combines the evidence for xi ∈ X and the evidence against      
xi ∈ X. An IFS “A” in X is characterised by a membership function µA(xi) and a non-membership function γA(xi).  Here, 
µA(xi) and γA(xi) are associated with each point in X, a real number in [0,1] with the values of µA(xi) and γA(xi) at X 
representing the grade of membership and  non-membership of xi in A. Thus closeness of the value of µA(xi) to unity 
and the value of γA(xi) to zero, raise high the grade of membership and lower the grade of non-membership of xi. An 
IFS becomes a fuzzy set when γA(xi) = 0  
 

The OWA Operator 1.1:  An OWA operator of dimension n ( 2n ≥ ) is a map FW: Rn → R that has an associated 
weighting vector W = (w1 + w2 +…+ wn) having (w1 + w2 +…+ wn) = 1 where 0 ≤ wi ≤ 1 ( i varies 1 to n).  In addition, 
FW (X) = FW(x1, x2,…,xn) = ∑ 𝑤𝑖𝑦𝑖𝑛

𝑗=1  with yi being ith largest of xi’s.     
 
Definition 1.2: The degree of “orness” associated with this operator is defined as Orness (W) = ∑ (𝑛−𝑖)

(𝑛−1)
𝑛
𝑖=1 wi.  

 
Definition 1.3: The max, min and average correspond to W*, W*, WA, respectively, where W* = (1, 0, 0…,0),   
W* = (1,0,0…,0), WA = (1/n,/1/n, …, 1/n), and FW* (X) = min 0 ≤ i ≤ 1 {xi}; FW* (X) = min 0 ≤ i ≤ 1 {xi}; 𝐹𝑊𝐴 = (1/n) 
∑ 𝑥𝑖𝑛
𝑖=1 . Obviously, orness (W*) = 1; orness (W*) = 0;  orness (WA) = ½.   

 
SECTION-2: QUANTIFIER GUIDED AGGREGATIONS WITH OWA OPERATORS 
 
Consensus processes imply that experts achieve an agreement about a problem before taking a decision, thus yielding a 
solution accepted by the organization, society or themselves. Various consensus approaches were proposed ranging 
from rigid methods to flexible approaches [Kacprzyk, 1986, 1987]. In these approaches, it is crucial to establish a 
consensus measure to calculate the level of agreement. Consensus measures are indicators to evaluate how far a group 
of experts’ opinions is from unanimity.  
 
Mohanty & Bhasker [2005] have applied the concepts of Linguistic Quantifiers in the product classifications based on 
customer preference in Internet-Business.  In this work, The Linguistic Quantifiers guided aggregation based on the 
Ordered Weighted Averaging (OWA) operators are used to derive the weights of the experts. 
 
The problem of determining weights for an OWA operator can be addressed in different ways, for example with the use 
of the so-called ‘Linguistic Quantifiers’ introduced by Zadeh [1983]. A relative linguistic quantifier Q, such as ‘most’, 
‘few’, ‘many’, and ‘all’, can be represented as a fuzzy subset of the unit interval, where for a given proportion 

[ ]0,1r∈  of the total of the values to aggregate, Q(r) indicates the extent to which this proportion satisfies the 
semantics defined in Q. For example, given Q = ‘most’, if Q(0.7) = 1 then it would mean that a proportion of 70% 
totally satisfies the idea conveyed by the quantifier ‘most’, whereas Q(0.55) = 0.25 indicates that the proportion 55% is 
barely compatible with this concept (only 25%). 
 
Regular Increasing Monotone (RIM) quantifiers [Liu, 2008; Liu & Han, 2008] are especially interesting for their use in 
OWA operators. These quantifiers present the following properties: (a). Q(0) = 0;  (b). Q(1) = 1;  (c). If 

( ) ( )1 2 1 2  then  r r Q r Q r< ≥ . 
 
Definition 2.1: Yager [1988] suggested the following method to compute weights wi, with the use of a RIM quantifier 
Q:   wi = Q(1/n) – Q((i-1)/n), i varies from 1 to n.  
where the membership function of a linear RIM quantifier Q(r) is defined by two parameters [ ], 0,1a b∈  as:   

Q(r) = 0, r < a;  (r-a)/(b-a), a ≤ r ≤ b;  1, r > b.  
 
Example 2.2: RIM quantifier Q = ‘most’, with a = 0.5 and b = 0.7 is given as: Q(r) = 0, r < 0.5; 5r – 2.5, 0.5 ≤ r ≤ 0.7;  
r > 0.7. 
 
Since the use of OWA with RIM quantifiers captures the notion of the soft consensus correctly, they can be adopted for 
the purpose of studying the effect of different aggregation operators on the resolution of a consensus problem with 
many experts, and expressing a desired group’s attitude. 
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Yager [1988] proposed a method for obtaining the OWA weighting vectors via fuzzy linguistic quantifiers; in particular 
the Regular Increasing Monotone (RIM) quantifiers, which can provide information aggregation procedures guided by 
linguistically expressed concepts and a dimension- independent description of the desired aggregation.  
 
Definition 2.4: A fuzzy subset Q of the real line is called a RIM quantifier if the membership function Q(x) obeys       
Q(0) = 0, Q(1) = 1 and Q(x) ≥ Q(y) for x > y. 
 
Example 2.5: RIM quantifier are “all”, “most”, “many”, “at least”. The quantifier “all” is represented by the fuzzy 
subset  Q*(x) = 1, x=1; 0, x ≠ 1. The quantifier “there exists, not none”, is defined as Q*(x) = 0, x = 0; 1, x ≠ 0.   
 
With a RIM quantifier Q, Yager (1988) proposed the OWA weighting vector generating rule:  
wi = Q(1/n) – Q((i-1)/n),                                                                                                                                                    (2) 
 
Definition 2.6: Therefore, the quantifier guided aggregation with OWA operator is  
FQ(X) = FW(X) = ∑ 𝑄 �𝑖

𝑛
� − 𝑄(𝑖−1

𝑛
)𝑦𝑖𝑛

𝑗=1                                                                                                                     (3) 
 
Definition (orness) 2.7: Yager [1988] also extended the orness measure of OWA operator, and defined the orness of a 
RIM quantifier: Orness (Q) = ∑ (𝑛−𝑖)

(𝑛−1)
𝑛
𝑖=1   (𝑄 �𝑖

𝑛
� − 𝑄(𝑖−1

𝑛
))  as n tends to ∞ = 1/(n-1)∑ 𝑄( 𝑖

𝑛
)𝑛−1

𝑖=1  as n tends to  

∞ = ∫ 𝑄(𝑥)𝑑𝑥1
0                                                                                                                                                                   (4) 

 
SECTION 3: THE FUZZY LINGUISTIC QUANTIFIER FOR MAGDM 
 
The aggregation weighted vector W is a mapping to membership function Q(r) guided by a monotonically non-
decreasing fuzzy linguistic quantifier, Q represented as equation (5) and (6). The membership function Q(r) represents 
the membership grade on r that belongs to Q.  
 
Definition 3.1: The membership function also differs from Q (Herrera et al., 2000).    
wk = Q(k/n) – Q( (k-1) / n ) (1/2)                                                                                                                                      (5)                                                             
Q(r) = 0, r < a;  (r-a) / (b-a), a ≤ r ≤ b where a, b, r are in [0, 1];  1,  r > b.                                                                       (6) 
 
To enable the use of different fuzzy linguistic quantifiers to aggregate behaviour among attributes to produce the fuzzy 
majority rule the following perspectives are considered. “Critical” factor is used for fuzzy linguistic quantifier “At least 
half” to emphasize the strong influence of aggregating on results. “Major” factor is used for fuzzy linguistic quantifier 
“Most” to emphasize the medium influence of aggregation on the results. Finally, “Fundamental” factor is used for 
fuzzy linguistic quantifier “As many as possible” to represent the degree to which essential requests are satisfied. 
Optimizing the aggregation weighting vector 3.2: 
 
Optimizing the aggregation weighted vector requires calculating the degree of “Orness” and “Entropy” (Dispersion). 
The calculation is based on the aggregation weighted vector W, displayed in equations (7) and (8). Orness, which lies 
in the unit interval, is a good measurement for characterizing the degree to which the aggregation is an Or-like (Max-
like) or And-like (Min-like) operation. When Orness equals 1, the aggregation equals the maximum operation; when 
equals 0, the aggregation equals the minimum operation; and when Orness equals 0.5, the aggregation equals the 
arithmetic mean operation.  
 
Simultaneously, Entropy represents the measurement for characterizing the degree to which information on the 
individual behaviours in the aggregation process is used (Yager, 1988). 

Orness (W) = (1 / (n-1) ∑ (𝑛 − 𝑘)𝑤𝑘
𝑛
𝑖=1                                                                                                (7) 

Entropy (W) = (-) ∑ 𝑤𝑘   𝐼𝑛 𝑤𝑘𝑛
𝑖=1                                                                                                         (8) 

 
Optimization Problem 3.3:  

Maximize  (-) ∑ 𝑤𝑘   𝐼𝑛 𝑤𝑘𝑛
𝑖=1                                                                                                                (9) 

subject to: 
Orness (W) = (1 / (n-1) ∑ (𝑛 − 𝑘)𝑤𝑘𝑛

𝑖=1                                                                                              (9a) 
∑ 𝑤𝑘𝑛
𝑘=1   = 1;   wk is in [0, 1] for all k varying from 1 to n.                                                               (9b) 

 
Furthermore, the Langrange multiplier method can be used to obtain the maximal Entropy aggregation weighted vector 
W*, which can aggregate the maximum information from behaviours. Filev & Yager, (1998) presented a detailed 
information in this regard. Equation (9) can be further simplified as equations (10) and (11). Moreover, the numerical 
analysis approach can be used to obtain b from equation (10), and can be substituted into equation (11) to obtain W*.  
The initial vector of W thus is replaced by the new W*, thus optimizing the aggregation weighted vector. 

 ∑ 𝑛−𝑘
𝑛−1

𝑛
𝑘=1  – Orness (W) ) b(n – k) = 0                                                                                                    (10) 
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  Wk
* = 𝑏𝑛−𝑘

∑ 𝑏𝑛−𝑘𝑛
𝑘=1

                                                                                                                                   (11) 

 
Step-2:   Derive the weights by Quantifier (RIM) guided entropy method with Orness – for weights by using  

wk = Q(k/n) – Q( (k-1) / n ) (1/2)      k varies from 1 to n                                                                    (5) 
Q(r) = 0, r < a;   
        = (r-a) / (b-a), a ≤ r ≤ b where a, b, r are in [0, 1];   
        = 1, r > b.                                                                                                                                      (6) 

  Orness (W) = (1 / (n-1) ∑ (𝑛 − 𝑘)𝑤𝑘
𝑛
𝑖=1                                                                                 (9a) 

  ∑ 𝑤𝑘
𝑛
𝑘=1   = 1;   wk is in [0, 1] for all k varying from 1 to n.                                                               (9b) 

Hence   Maximize  (-) ∑ 𝑤𝑘   𝐼𝑛 𝑤𝑘𝑛
𝑖=1                                                                                                                (9) 

subject to the constraints  
Orness (W) = (1 / (n-1) ∑ (𝑛 − 𝑘)𝑤𝑘𝑛

𝑖=1                  .                                                                      (9a) 
 ∑ 𝑛−𝑘

𝑛−1
𝑛
𝑘=1  – Orness (W) ) b(n – k) = 0                                                                                           (10)  

  Wk
* = 𝑏𝑛−𝑘

∑ 𝑏𝑛−𝑘𝑛
𝑘=1

                                                                                                                                   (11) 

 
SECTION-4: THE ALGORITHM FOR GETTING WEIGHTS BY QUANTIFIER (RIM) GUIDED ENTROPY 
METHOD 
 
Definition 4.1: A neutrosophic fuzzy set A on the universe of discourse X characterized by a truth membership 
function TA(x), an indeterminacy function IA(x) and a falsity membership function FA(x) is defined as A = { < x, TA(x), 
IA(x), FA(x) > : x  X }, where TA, IA ,FA : X → [0. 1] and  0 ≤ TA(x) ≤ 1; 0 ≤ IA(x) ≤ 1;  0 ≤ FA(x) ≤ 1, for all x ∈ X.  
 
Steps for an algorithm 4.2:  
 
Step-1: Calculate the weight information using the Quantifier guided aggregations..  

To derive a weight vector w by using Quantifier (RIM) guided entropy method with orness for weight. 
Most Quantifier: Q(r) = 0, r < 03;  

       = (r – 0.3) / (0.8 – 0.3), 0.3 ≤ r ≤ 0.8 where a, b, r are in [0, 1];   
       = 1,  r > 0.8.                                                                                                                                   (6) 

 
Further it follows that Maximize  (-) ∑ 𝑤𝑘   𝐼𝑛 𝑤𝑘𝑛

𝑖=1                             
subject to the constraints  

Orness (W) = (1 / (n-1) ∑ (𝑛 − 𝑘)𝑤𝑘𝑛
𝑖=1  

∑ 𝑤𝑘𝑛
𝑘=1   = 1;   wk is in [0, 1] for all k varying from 1 to n 

∑ 𝑛−𝑘
𝑛−1

𝑛
𝑘=1  – Orness (W) ) b(n – k) = 0 

Wk
* = 𝑏𝑛−𝑘

∑ 𝑏𝑛−𝑘𝑛
𝑘=1

 

 
Now the following calculations are derived when n = 5. 

w1
* =  𝑏4

∑ 5−𝑗5
𝑗=1

  =  𝑏4

𝑏4+𝑏3+𝑏2+𝑏+1
                         

w2
* =  𝑏3

∑ 5−𝑗5
𝑗=1

  =  𝑏3

𝑏4+𝑏3+𝑏2+𝑏+1
                         

w3
* =  𝑏2

∑ 5−𝑗5
𝑗=1

 =  𝑏2

𝑏4+𝑏3+𝑏2+𝑏+1
                         

w4
* =  𝑏

∑ 5−𝑗5
𝑗=1

 =  𝑏
𝑏4+𝑏3+𝑏2+𝑏+1

                    

w5
* =  1

∑ 5−𝑗5
𝑗=1

 =  1
𝑏4+𝑏3+𝑏2+𝑏+1

                         

 
Now other deviations are given below: 

W1 = Q(1/5)- Q(0/5) = Q(0.2) – Q(0) = 0 - 0 = 0. 
W2 = Q(2/5)- Q(1/5) = Q(0.4) – Q(0.2) = 0.2 - 0 = 0.2 . 
W3 = Q(3/5)- Q(2/5) = Q(0.6) – Q(0.4) = 0.6 – 0.2 = 0.4 . 
W4 = Q(4/5)- Q(3/5) = Q(0.8) – Q(0.6) = 1 – 0.6 = 0.4 . 
W5 = Q(5/5)- Q(4/5) = Q(1) – Q(0.8) = 1 – 1 = 0 . 

 
Thus Orness (W) = (1 / (5-1) ∑ (5 − 𝑗)𝑤𝑗𝑛

𝑗=1     
                            = (1/4) (4w1 + 3w2 + 2w3 + w4) 
                            = (1/4) (4(0) + 3(0.2) + 2(0.4) + (0.4)) = 0.45. 
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Also  ∑ 5−𝑗

5−1
5
𝑗=1   –  0.45) b(5 – j) = 0 

 
Then (5−1

5−1
 – 0.45)b4 + (5−2

5−1
 – 0.45)b3 + (5−3

5−1
 – 0.45)b2 + (5−4

5−1
 – 0.45)b + (5−5

5−1
 – 0.45) = 0. 

 
Implies that (4

4
 – 0.45)b4 + (3

4
 – 0.45)b3 + (2

4
 – 0.45)b2 + (1

4
 – 0.45)b + (0

4
 – 0.45) = 0. 

 
Implies that 0.55 b4 + 0.3 b3 +  0.05 b2 – 0.2 b – 0.45 = 0. 
 

From the formulae, w1
* =  𝑏4

∑ 5−𝑗5
𝑗=1

  =  𝑏4

𝑏4+𝑏3+𝑏2+𝑏+1
                         

w2
* =  𝑏3

∑ 5−𝑗5
𝑗=1

  =  𝑏3

𝑏4+𝑏3+𝑏2+𝑏+1
                         

w3
* =  𝑏2

∑ 5−𝑗5
𝑗=1

  =  𝑏2

𝑏4+𝑏3+𝑏2+𝑏+1
                         

w4
* =  𝑏

∑ 5−𝑗5
𝑗=1

  =  𝑏
𝑏4+𝑏3+𝑏2+𝑏+1

                    

w5
* =  1

∑ 5−𝑗5
𝑗=1

  =  1
𝑏4+𝑏3+𝑏2+𝑏+1

                         

Hence it finds that w1
* = 0.1619; w2

* = 0.1791; w3
* = 0.1979; w4

* = 0.2189; w1
* = .2421.   

 
Step-2: Utilize the NFOWA operator to aggregate all individual neutrosophic fuzzy decision matrices R(k) =  < (Tij(k), 
Iij(k), Fij(k) > = ( rij

(k)) (k varies from 1, 2,3, and 4) into a collective neutrosophic fuzzy decision matrix R = (rij) m  ×  n. 
 
Step-3: Use the NFHA operator to get the overall values rj of the alternatives Oj (j = 1, 2,…,n) using the weights 
0.2717, 0.2254, 0.2608, 0.2421 by funding from Poisson distribution through a method of fitness.   
 

Step-4: Using r* = (1,0,0) = (TA*, IA*, FA*), find d(r*, rj) = � �𝑇𝐴∗ − 𝑇𝑗𝐴�
2 + �𝐼𝐴∗ − 𝐼𝑗𝐴�

2 + �𝐹𝐴∗ − 𝐹𝑗𝐴�
2 to calculate 

the distances between informational neutrosophic values  rj = (𝑇𝑗𝐴 , 𝐼𝑗𝐴, 𝐹𝑗𝐴 ) (j = 1, 2 ,..., n).  
 
Step-5: Rank the alternatives based on distances. 
 
Step-6: Select the best alternative.  
 
Section 5 - Numerical Illustration:  
 
Step-1: Assume that the information in decision making are in neutrosophic fuzzy matrices as follows: 

R1   = �

< 0.25,0.54,0.8 > < 0.3,0.4,0.9 >
< 0.6,0.5,0.5 > < 0.6,0.2,0.3 >    < 0.7,0.35,0.5 > < 0.9,0.2,0.8 >

< 0.2,0.4,0.9 > < 0.6,0.23,0.7 >
< 0.3,0.45,0.9 > < 0.7,0.1,0.4 >

< 0.45,0.38,0.27 > < 0.37,0.68,0.16 >    < 0.6,0.5,0.5 > < 0.4,0.2,0.9 >
< 0.6,0.25,0.3 > < 0.1,0.4,0.8 >

� 

 

R2   = �

< 0.1,0.3,0.7 > < 0.6,0.6,0.5 >
< 0.3,0.55,0.37 > < 0.75,0.42,0.1 >    < 0.4,0.2,0.1 > < 0.3,0.7,0.6 >

< 0.32,0.67,0.56 > < 0.35,0.56,0.72 >
< 0.5,0.4,0.32 > < 0.65,0.25,0.32 >

< 0.27,0.9,0.81 > < 0.31,0.4,0.6 >     < 0.6,0.3,0.1 > < 0.75,0.25,0.55 >
< 0.75,0.65,0.55 > < 0.3,0.7,0.9 >

� 

 

R3   = �

< 0.32,0.47,0.6 > < 0.9,0.1,0.3 >
< 0.12,0.32,0.52 > < 0.17,0.81,0.9 >    < 0.6,0.4,0.5 > < 0.3,0.5,0.7 >

< 0.5,0.3,0.1 > < 0.45,0.65,0.27 >
< 0.50,0.6,0.23 > < 0.56,0.52,0.23 >

< 0.54,0.83,0.72 > < 0.73,0.86,0.61 >    < 0.3,0.6,0.1 > < 0.57,0.52,0.55 >
< 0.5,0.52,0.4 > < 0.6,0.4,0.2 >

� 

 

R4   = �

< 0.7,0.3,0.1 > < 0.5,0.4,0.4 >
< 0.3,0.56,0.73 > < 0.57,0.24,0.1 >    < 0.2,0.1,0.6 > < 0.7,0.9,0.6 >

< 0.23,0.76,0.65 > < 0.53,0.65,0.27 >
< 0.32,0.32,0.6 > < 0.56,0.52,0.32 >
< 0.72,0.5,0.18 > < 0.13,0.6,0.4 >     < 0.1,0.3,0.9 > < 0.57,0.52,0.55 >

< 0.55,0.56,0.78 > < 0.7,0.1,0.6 >

� 

 

R5   = �

< 0.52,0.45,0.1 > < 0.57,0.37,0.1 >
< 0.3,0.6,0.7 > < 0.7,0.4,0.1 >     < 0.76,0.65,0.23 > < 0.57,0.52,0.55 >

< 0.3,0.7,0.6 > < 0.5,0.4,0.6 >
< 0.2,0.3,0.2 > < 0.6,0.2,0.5 >

< 0.27,0.5,0.81 > < 0.75,0.25,0.32 >    < 0.1,0.6,0.65 > < 0.3,0.9,0.7 >
< 0.32,0.67,0.56 > < 0.35,0.56,0.72 >

� 
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Step-3: Utilize the NFOWA operator to aggregate all individual neutrosophic fuzzy decision matrices R(k) =  < (Tij(k), 
Iij(k), Fij(k) > = ( rij

(k)) (k varies from 1, 2,3, and 4) into a collective neutrosophic fuzzy decision matrix  R = (rij) m  ×  n  
using weight vector W  =  {0.1619,0.1791,0.1979,0.2189,0.2421}.  
 
R= 

�

< 0.4418,0.5838,0.4935 > < 0.6443,0.6118,0.4941 >
< 0.3310,0.4804,0.3991 > < 0.5974,0.4626,0.5594 >    < 0.5778,0.6138,0.5750 > < 0.6229,0.3427,3475 >

< 0.3202,0.3845,0.3707 > < 0.4919,0.4720,0.4602 >
< 0.3672,0.5825,0.4732 > < 0.6121,0.6514,0.6339 >
< 0.4841,0.3134,0.3514 > < 0.5354,0.3924,0.5577 >    < 0.3506,0.5182,0.4024 > < 0.5366,0.3863,0.3197 >

< 0.4841,0.4369,0.4351 > < 0.4675,0.5372,0.2934 >

� 

 
Step-4:  Using the weights w = {0.2717, 0.2608, 0.2254, 0.2421} obtained from Poisson distribution. New reduced row 
matrix R is [ (0.4106, 0.4943, 0.5646), (0.6009, 0.4526, 0.4362), (0.4664, 0.4978, 0.5436), (0.5374, 0.5644, 0.6443)]. 
 

Step-5: 𝑑 = �1
2

[∑[(1 − 𝑇)2 + (0 − 𝐼)2 + (0 − 𝐹)2 ]]. 

d( r , r1 ) = 0.6758 = A1; d( r , r2) = 0.5264 = A2; d( r , r3 ) = 0.6434 = A3; d( r , r4 ) = 0.6882 = A4 
 
Step-6: A4>   A1 >A3 >A2.  
 
Step-7: A4 is best alternative. 
 
CONCLUSIONS 
 
The proposed approach in this work not only can comfort the influence of unjust arguments on the decision results, but 
also avoid losing or distorting the original decision information in the process of aggregation. Thus, the proposed 
approach provides us an effective and practical way to deal with multi-person multi-attribute decision making 
problems, where the attribute values are characterized by NFSs and the information about attribute weights is partially 
known. The suitable alternative is selected through the algorithm from the given neutrosophic information in which the 
unknown weights are derived based upon normal distribution. 
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