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ABSTRACT 
This paper deals with πg*β -compact spaces and their properties by using nets, filter base and πg*β -complete 
accumulation points. The notion of πg*β-connectedness in topological spaces is also introduced and their properties 
are studied. 
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1. INTRODUCTION 
 
The notions of compactness and connectedness are useful and fundamental notions of not only general topology but 
also of other advanced branches of mathematics. Many researchers have investigated the basic properties of 
compactness and connectedness in Topological Spaces. The productivity and fruitfulness of these notions of 
compactness and connectedness motivated the researchers to generalize these notions. In the course of these attempts 
many stronger and weaker forms of compactness and connectedness have been introduced and investigated. A. Devika  

and R.Vani in [2] introduce the concept of π generalized star beta closed (briefly, πg*β -closed) sets and π generalized 
star beta open (briefly, πg*β -open) sets in a topological spaces. They also defined in [3] π generalized star beta 
continuous (briefly, πg*β-continuous) functions and π generalized star beta irresolute (briefly, πg*β-irresolute) 
functions in topological spaces and studied some of their properties. The purpose of this paper is to introduce the 
concept of πg*β-compactness and πg*β-connectedness in topological spaces and is to give some characterizations of 
πg*β-compact spaces in terms of nets and filter bases. Further, the notion of πg*β-complete accumulation points is also 
introduce and is used to characterize πg*β – compactness and studied some of their properties. 
 
2. PRELIMINARY NOTES 
 
Throughout this paper (X, τ), (Y, σ) are topological spaces with no separation axioms assumed unless otherwise stated. 
Let A⊆X. The closure of A and the interior of A will be denoted by Cl(A) and Int(A) respectively. 
 
Definition 2.1: [4] A set A is said to be regular open (briefly, r-open) (resp.regular closed(briefly, r-closed)) if 
A=int(cl(A)) (resp. A=cl(int(A))). The family of r-open (resp. r-closed) sets f a space X is denoted by RO(X) (resp. 
RC(X)). 
 
Definition 2.2: [1] For any subset A of (X, τ), RCl(A)=∩{G: G⊇A, G is a regular closed subset of X}. 
 
Definition 2.3: [2] A subset A of a topological space (X, τ) is called a generalized regular star closed set [briefly     
πg*β -closed] if βcl(A)⊆U  whenever A⊆U  and U is πg-open subset of X. 
 
Definition 2.4: [2] For a subset A of a space X, πg*β -cl(A) = ⋂{F: A⊆F, F is πg*β  closed in X} is called the          
πg*β -closure of A. 
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Remark 2.5: [2] Every r-closed (π-closed) set in X is πg*β -closed in X. 
 
Definition 2.6: [3] A function : ( , ) ( , )f X Yτ σ→  is said to be πg*β-continuous if f-1(V) is πg*β-closed set in X for 
every closed set V in Y. 
 
Definition 2.7: [3] A function : ( , ) ( , )f X Yτ σ→  is said to be πg*β-irresolute if f-1(V) is πg*β-closed set in X for 
every πg*β-closed set V in Y. 
 
3. πg*β -Compact Spaces 
 
Definition 3.1: 

(1) A collection : ( , ) ( , )f X Yτ σ→ of πg*β -open sets in a topological space X is called πg*β -open cover of 

a subset B  of X if { }:B Aα α⊂ ∪ ∈∇  holds. 

(2) A topological space X is called π generalized star beta compact (briefly, πg*β -compact) if every πg*β -open 
cover of X has a finite subcover. 

(3) A subset B of X is called πg*β -compact relative to X if for every collection { }:Aα α ∈∇ of πg*β -open 

subsets of X such that { }:B Aα α⊂ ∪ ∈∇ , there exist a finite subset °∇ of ∇ such that { }:B Aα α °⊂ ∪ ∈∇ . 

(4) A subset B of X is said to be πg*β -compact if B is πg*β -compact as a subspace of X . 
 
Theorem 3.2: Every πg*β -closed subset of πg*β -compact space X is πg*β -compact relative to X . 
 
Proof: Let A be πg*β -closed subset of X , then CA is πg*β -open. Let { }:O Gα α= ∈∇  be a cover of A  by     

πg*β -open subsets of X . Then CW O A= ∪ is an πg*β -open cover X , i.e., { }( : ) CX G Aα α= ∪ ∈∇ ∪ . By 

hypothesis, X is πg*β -compact. Hence W has a finite subcover of X say 1 2( ..... )nG G G∪ ∪ ∪ CA∪ . But A  and 
CA are disjoint, hence 1 2( ..... ).nA G G G⊂ ∪ ∪ ∪ So O  contains a finite subcover for A , therefore A is         

πg*β -compact relative to X .  
 
Theorem 3.3: Let :f X Y→ be a map: 

(1) If X is πg*β -compact and f is πg*β -compact bijective, then Y  is compact. 
(2) If f is πg*β -irresolute, and B is πg*β -compact relative to X . Then ( )f B is πg*β -compact relative to Y . 
(3) If X is compact and f is continuous surjective, then Y is πg*β -compact. 

 
Proof: 

(1) Let :f X Y→ be an πg*β -continuous bijective map, and X be an πg*β -compact space. Let { }:Aα α ∈∇

be open cover for Y , then 1{ ( ) : }f Aα α− ∈∇ is an πg*β -open cover of X . Since X is πg*β -compact, it has 

a finite subcover say 1 1
1 1{ ( ), ( ),f A f A− − …., 1( )}nf A−  but f is surjective, so {A1,A2,…,An} is a finite 

subcover of Y . Therefore, Y is compact. 
(2) Let B X⊂ be πg*β -compact relative to X ,{ }:Aα α ∈∇ be any collection of πg*β -open subsets of Y such 

that { }( ) :f B Aα α⊂ ∪ ∈∇ . Then 1{ ( ) : }B f Aα α−⊂ ∪ ∈∇ . By hypothesis, there exist a finite subset 

°∇  of ∇ such that  1{ ( ) : }B f Aα α−
°⊂ ∪ ∈∇ . Therefore, we have { }( ) :f B Aα α °⊂ ∪ ∈∇ which shows 

that ( )f B is πg*β -compact relative to Y . 

(3) Let { }:A Aα α= ∈∇ be an πg*β -open cover of Y . Since f is continuous, therefore 1( )f Aα
− is open in X . 

The collection 1{ ( ) : }W f Aα α−= ∈∇ is an open cover of X . Since X is compact, W has a finite subset say 
1 1 1

1 2{ ( ), ( ),...., ( )}nf A f A f A− − − which cover X . Since 1 2{ ( ) ( ) .... ( )nX f A f A f A= ∪ ∪ ∪  and f  is 
surjective, therefore  
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( )Y f X= =  

1 1 1 1 1 1
1 2 1 2 1 2 .( ( ) ( ) .... ( )) ( ( )) ( ( )) ... ( ( )) ...n n nf f A f A f A f f A f f A f f A A A A− − − − − −∪ ∪ ∪ = ∪ ∪ ∪ ⊂ ∪ ∪ ∪

Thus 1 2{ , ,....., }nA A A is a finite πg*β -open subcover of Y , and Y  is πg*β -compact. 
 
Definition 3.6: Let ⋀ be a directed set. A net ξ = { xα: α∈⋀ } πg*β -accumulates at a point x∈X if the net is frequently 
in every U∈πg*β O(X, x), i.e., for each U∈πg*β O(X, x) and for each ∝0∈⋀, there is some ∝≥∝0 such that xα∈U. The 
set ξ πg*β -converges to a point x of X if it is eventually in every U∈πg*β O(X, x). 
 
Definition 3.7: We say that a filter base ⊝={F∝:∝∈Γ} πg*β -accumulates at a point x∈X if x∈D⋂∝∈Γ πg*β Cl(F∝). A 
filter base ⊝={F∝:∝∈Γ} πg*β -converges to a point x in X if for each U∈πg*β O(X, x), there exists an F∝ in ⊝ such 
that F∝⊂U. 
 
Definition 3.8: A point x in a space X is said to be πg*β -complete accumulation point of a subset S of X if 
Card(S∩U)=Card(S) for each U∈πg*β O(X, x), where Card(S) denotes the cardinality of S. 
 
Definition 3.9: In a topological space X, a point x is said to be a πg*β -adherent point of a filter base ⊝ on X if it lies 
in the πg*β -closure of all sets of ⊝. 
 
Theorem 3.10: A space X is πg*β -compact if and only if each infinite subset of X has a πg*β -complete accumulation 
point. 
 
Proof: Let the space X be πg*β -compact and let S be an infinite subset of X. Let K be the set of points x in X which 
are not πg*β -complete accumulation points of S. Now it is obvious that for each x in K, we are able to find U(x) ∈ 
πg*β O(X, x) such that Card(S∩U(x))  ≠ Card(S). If K is the whole space X, then ⊝={U(x): x∈X} is a πg*β -cover of 
X. By the hypothesis X is πg*β -compact, so there exists a finite sub-cover ψ={U(xi)}, where i=1,2,…,n such that 
S⊂{U(xi)∩S : i=1,2,…,n}. Then Card(S)=max{Card(U(xi)∩S)}, where i=1,2,…,n which does not agree with what we 
assumed. This implies that S has πg*β -complete accumulation point. 
 
Conversely, suppose that X is not πg*β -compact and that every infinite subset S⊂X has a πg*β -complete 
accumulation point in X. It follows that there exists a πg*β -cover E with no finite sub-cover. Set δ=min{Card(Φ) : 
Φ⊂E}, where Φ is a πg*β -cover of X. Fix ψ⊂E for which Card(ψ)=δ and ⋃{U:U∈ψ}=X. Let N denote the set of 
natural numbers. Then by hypothesis δ≥Card( N). By well ordering of ψ by some minimal well ordering ~ suppose that 
U is any member of ψ. By minimal well ordering ~ we have Card({V:V∈ψ, V~U})<Card{V:V∈ψ}). Since ψ can not 
have any sub-cover with cardinality less than δ, then for each U∈ψ we have X≠ ⋃{V:V∈ψ, V~U}. For each U∈ψ 
choose a pont x(U)∈X-U{V∪{x(V)}: V∈ψ, V~U}. We are always able to do this if not one can choose a cover of 
smaller cardinality from ψ. If H={x(U): U∈ψ}, then to finish the proof we will show that H has no πg*β -accumulation 
points in X. Suppose that z is a point of X. Since ψ is a πg*β -cover of X, then z is a point of some set W in ψ. By the 
fact that U~W, we have x(U) ⊂ W. But Card(T)<δ. Therefore, Card(H∩W)<δ. But Card(H)=δ>Card(N), since for two 
distinct points U and W in ψ, we have x(U)≠x(W), This means that H has no πg*β -complete accumulation point in X 
which contradicts our assumptions. Therefore X is πg*β -compact. 
 
Theorem 3.11: For a space X the following are equivalent 

(1) X is πg*β -compact. 
(2) Every net in X with a well ordered directed set as its domain πg*β -accumulates to some point of X. 

 
Proof:  
(1)=>(2): Suppose that (X,τ ) is πg*β -compact and { : }axξ α= ∈∧ a net with a well ordered directed set A as 

domain. Assume that ξ  has no πg*β adherent point in X. Then for each point x  is X, there exist 

( ) ( , )V x g O X xπ β∗∈  and an ( )xα ∈∧ such that ( ) { : ( )}V x x xα α α φ∩ ≥ = . this implies that 

{ : ( )}x xα α α≥  is a subset of X-V(x). Then the collection C = {V(x):x∈X} is a πg*β -cover of X. By hypothesis of 
theorem, X is πg*β -compact and so C has a finite subfamily {V(xi)}, where i = 1,2,3,….,n such that X = ∪{V(xi)} . 
Suppose that the corresponding elements of ∧ are {α(xi)}, where i=1,2,3,…,n is finite, the largest element of {α(xi)}  
exists. Suppose it is {α(xi)}, then for γ ≥{α(xi)}. We have 

1 1{ : } ( ( )) ( )n n
i i i ix D X V x X V xδ δ γ φ= =≥ ⊂ ∩ − = −∪ =  which is impossible. This shows that ξ has at least one 

πg*β -adherent point in X. 
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(2)=>(1): Now by the last Theorem 3.10, it is enough to prove that each infinite subset has a πg*β -complete 
accumulation point. Suppose that S⊂X is an infinite subset of X. According to Zorn’s lemma, the infinite set S can be  
 
well ordered. This means that we can assume S to be a net with a domain, which is a well ordered index set. It follows 
that S has a πg*β -adherent point z. Therefore z is a πg*β -complete accumulation point of S. This shows that X is   
πg*β -compact. 
 
Theorem 3.12: A space X is πg*β -compact if and only if each family of πg*β -closed subsets of X with the finite 
intersection properly has a non-empty intersection. 
 
Proof: Given a collection 𝒜 of subsets of X, let 𝒞 ={X-A: A∈𝒜} be the collection of their complements. Then the 
following statements hold.  
(a) 𝒜 is a collection of πg*β -open sets if and only if 𝒞 is a collection of πg*β -closed sets. 
(b) The collection 𝒜 covers X if and only if the intersection ⋂c∈𝒞 𝒞 of all the elements of C is non-empty. 
(c) The finite sub collection {An…. An} of 𝒜 covers X if and only if the intersection of the corresponding elements          
      𝒞i = X – Ai of 𝒞 is empty. 
The statement (a) is trivial, while the (b) and (c) follow from DeMorgan’s law. X – (D⋃∝ϵJ Aα) = D⋂∝ϵJ ( X – Aα ) The 
proof of the theorem now proceeds in two steps, taking the contrapositive of the theorem and then the complement. 
 
The statement X is πg*β -compact is equivalent to: Given any collection 𝒜 of πg*β -open subsets of X, if 𝒜 covers X, 
then some finite sub collection of 𝒜 covers X. This statement is equivalent to its contrapositive, which is the following. 
 
Given any collection 𝒜 of πg*β -open sets, if no finite sub-collection of 𝒜 covers X, then 𝒜 does not cover X. Letting 
𝒞 be as earlier, the collection {X-A: A∈𝒜} and applying (a) to (c), we see that this statement is in turn equivalent to the 
follwing: 
 
Given any collection 𝒞 of πg*β -closed sets, if every finite intersection of elements of 𝒞 is non-empty, then the 
intersection of all the elements of 𝒞 is non-empty. This is just the condition of our theorem. 
 
Theorem 3.13: A space X is πg*β -compact if and only if each filter base in X has at least one πg*β -adherent point. 
 
Proof: Suppose that X is πg*β -compact and θ={Fα: αϵΓ} a filter base in it. Since all finite intersecions of Fα’s are non-
empty, it follows that all finite intersections of πg*β-Cl(Fα)’s are also non-empty. Now it follows from Theorem 3.12 
that  D⋂∝ϵΓ πg*β-Cl(Fα) is non-empty. This means that θ has at least one πg*β -adherent point. 
 
Conversely, suppose θ is any family of πg*β -closed sets. Let each finite intersection be non-empty. The sets (Fα) with 
their finite intersection establish a filter base θ. Therefore πg*β -accumulates to some point z in X. It follows that 
z∈D⋂∝ϵΓ (Fα). Now by Theorem 3.12, we have that X is πg*β -compact. 
 
Theorem 3.14: A space X is πg*β -compact if and only if each filter base on X with at most one πg*β -adherent point 
is πg*β -convergent. 
 
Proof: Suppose that X is πg*β -compact, x is a point of X and a filter base on X. The πg*β -adherence of θ is a subset 
of {x}. Then the πg*β -adherence of θ is equal to {x} by Theorem 3.13. Assume that there exists V∈πg*β O(X, x) such 
that for all F∈θ, F∩(X-V) is non-empty. Then ψ={F-V: F∈θ} is a filter base on X. It follows that the πg*β -adherence 
of θ is non-empty. However, D⋂Fϵθ πg*β Cl(F – V) ⊂ (D⋂Fϵθ πg*β Cl(F) ∩ (X – V)) = {x} ∩ {X – V} = ϕ. But this is 
a contradiction. Hence for each V ∈ πg*β O(X,x) there exists an F∈θ with F⊂V. This shows that  πg*β -converges to x. 
 
To prove the converse, it suffices to show that each filter base in X has at least one πg*β -accumuation point. Assume 
that θ is a filter base on X with no πg*β -adherent point. By hypothesis,  πg*β -converges to some point z in X. 
Suppose Fα is an arbitrary element of θ. Then for each V ∈ πg*β O(X,z), there exits Fβ∈θ such that Fβ∈V. Since θ is a 
filter base, there exits a  γ such that Fγ ⊂ Fα∩Fβ ⊂ Fα∩V, where Fγ non-empty. This means that Fα∩V is non-empty for 
every V ∈ πg*β O(X,z) and correspondingly for each α, z is a point of πg*β-Cl(Fα) it follows that z ∈ D⋂α πg*β-Cl(Fα). 
Therefore z is a πg*β -adherent point of θ which is contradiction. This shows that X is πg*β -compact. 
 
4. πg*β -Connected Spaces 
 
Definition 4.1: A space X is said to be π generalized star beta connected (briefly, πg*β -connected) if it cannot be 
written as a disjoint union of two non-empty πg*β -open sets, otherwise it said to be πg*β -disconnected. A subset of X 
is said to be πg*β -connected if it is πg*β -connected as a subspace of X. 
 
Example 4.2: Let X={a, b} and let τ={X, ϕ, {a}}. Then it is πg*β -connected. 
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Remark 4.3: Every πg*β -connected space is connected but not converse need not be true in general, which follows 
from the following example. 
 
Example 4.4: Let X={a, b} and τ={X, ϕ}. Clearly (X, τ) is connected. Then πg*β -open subsets of X are                   
{X, ϕ,{a},{b}}. Therefore (X, τ) is not a πg*β -connected space, because X={a}∪{b} where {a} and {b} are non-
empty πg*β -open sets. 
 
Theorem 4.5: For a topological space X the following are equivalent. 

(i) X is πg*β -connected. 
(ii) X and ϕ are the only subsets of X which are both πg*β -open and πg*β -closed. 
(iii) Each πg*β -continuous map of X into a discrete space Y with at least two points is a constant map. 

 
Proof: 
(i)⇒(ii): Let O be any πg*β -open and πg*β -closed subset of X. Then OC is both πg*β -open and πg*β -closed. Since X 
is disjoint union of the πg*β -open sets O and OC implies from the hypothesis of (i) that either O = ϕ or O = X. 
 
(ii)⇒(i): Suppose that X=A∪B where A and B are disjoint non-empty πg*β -open subsets of X. Then A is both         
πg*β -open and πg*β -closed. 
  
By assumption A=ϕ or X. Therefore X is πg*β -connected. 
 
(ii)⇒(iii): Let f : X → Y be a πg*β -continuous map. Then X is covered by πg*β -open and πg*β -closed covering       
{f-1(Y) : y∈Y}, 
 
By assumption f-1(y)=ϕ or X for each y∈Y. If f-1(y)=ϕ for all y∈Y, then f fails to be a map. Then there exits only one 
point y∈Y such that f-1(y)≠ϕ and hence f-1(y)=X. This shows that f is a constant map. 
 
(iii)⇒(ii): Let O be both πg*β -open and πg*β -closed in X. Suppose O≠ϕ. Let f : X → Y be a πg*β -continuous map 
defined by f(O)=y and f(OC)={w} for some distinct points y and w in Y. 
 
By assumption f is constant. Therefore we have O=X. 
 
Theorem 4.6: If f : X → Y is a πg*β -continuous and X is πg*β -connected, then Y is connected. 
 
Proof: Suppose that Y is not connected. Let Y=A∪B where A and B are disjoint non-empty open set in Y. Since f is 
πg*β -continuous and onto, X=f-1(A)∪f-1(B) where f-1(A) and f-1(B) are disjoint non-empty πg*β -open sets in X. This 
contradicts the fact that X is πg*β -connected. Hence Y is connected. 
 
Theorem 4.7: If f : X → Y is a πg*β -irresolute surjection and X is πg*β -connected, then Y is πg*β -connected. 
 
Proof: Suppose that Y is not πg*β -connected. 
 
Let Y=A∪B where A and B are disjoint non-empty πg*β -open sets in Y. Since f is πg*β -irresolute and onto,           
X=f-1(A)∪f-1(B) where f-1(A) and f-1(B) are disjoint non-empty πg*β -open sets in X. This contradicts the fact that X is 
πg*β -connected. Hence Y is connected. 
 
Theorem 4.8: In a topological space (X, τ) with at least two points, if πO(X, τ) = πCl(X, τ) then X is not πg*β -
connected. 
 
Proof: By hypothesis we have πO(X, τ) = πCl(X, τ) and  by Remark 2.5 we have every π closed set is πg*β -closed, 
there exits some non-empty proper subset of X which is both πg*β -open and πg*β -closed in X. So by last Theorem 
4.5 we have X is not πg*β -connected. 
 
Theorem 4.9: If the πg*β -open sets C and D form a separation of X and if Y is πg*β -connected subspace of X, then Y 
lies entirely within C or D. 
 
Proof: Since C and D are both πg*β -open in X the sets C∩Y and D∩Y are πg*β -open in Y these two sets are disjoint 
and their union is Y. If they were both non-empty, they would constitute a separation of Y. Therefore, one of them is 
empty. Hence Y must lie entirely in C or in D. 
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Theorem 4.10: Let A be a πg*β -connected subspace of X. If A⊂B⊂πg*β-Cl(A) then B is also πg*β –connected 
spaces. 
 
Proof: Let A be πg*β -connected and let A⊂B⊂πg*β-Cl(A). Suppose that B=C∪D is a separation of B by πg*β -open 
sets. Then by Theorem 4.9 above A must lie entirely in C or in D. Suppose that A⊂C, then πg*β-Cl(A)⊆πg*β-Cl(C).  
 
Since πg*β-Cl(C) and D are disjoint. B cannot intersect D. This contradicts the fact that D is non-empty subset of B. So 
D = ϕ which implies B is πg*β -connected. 
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