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ABSTRACT

In this research article, some fixed point theorems in 2- metric spaces are established. It also introduces contraction
type mappings in 2-metric spaces. The theorems are generalizations of some fixed point theorems of Pal and Maiti [2].
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INTRODUCTION

The notion of 2-metric space was introduced by Gahler [1] in 1963 as a generalizationof area function for Euclidean
triangles. Fixed point theory was first studied by Poincare and developed by many mathematicians Brouwer, Banach,

Schauder, Rhoades [4], etc. Let X be a non-empty set. A function f : X — X from X into itself is called a self-map

on X. Apoint Z € X is called a fixed point of self-map f : X — X if f (z) = z, Theorems concerning fixed points

of self-maps are known as fixed point theorems. Most of the fixed point theorems were proved for contraction
mappings. It is well known that every contraction on a metric space is continuous. The converse is not necessarily true.
The identity mapping on [0,1] simply serves the counter example.

In this present work, some of the fixed point theoremsof Pal and Maiti are extended to a more generalized 2-metric
space setting.

In what follows X stands for a 2-metric space.
1. PRELIMINARIES

This section is devoted to some basic definitions which are needed for the further study of this Article.

Definition 1.1: Let X be a non-empty setand A: X x X x X — R . Forall X,¥,Zand uin X ,if A satisfies
the following conditions

(a) }t(x, Y, Z) =0 if atleast two of X, Y, z are equal
® A(XY.2)=2A(x2,y)=A(y.2,X)=...
© A(XY,2)<A(Xyu)+A(xu,z2)+A(u,y,z2)

A
Then d is called a 2-metricon X and the pair (X ,/1) is called a 2-metric space.
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Definition 1.2: Let( X, ﬂ.) be a 2-metric space. A mapping T : X — X is said to be a Contractive if
A(Tx,Ty,a)<A(x,y,a)forallX,y,ain X .

Remark 1.3: It is well known that a contractive mapping on a complete metric space has a unique fixed point in X .
But a contractive mapping on a complete 2-metric space (X , /1) neednot have a fixed point. It can be seen from the
following example.

Example- L4:Let X ={x e R/ x> 2} =[2,00) with 2-metric defined by
A(x,y,z)=min{x-y|.|ly-2].]z-x]} .

Define f: X — X byf(x):iv XxeX.
X

/I(fx,fy,a):/l(%,%,aJ
.{1 1H1 1 }
=min<s|———{,|~—al,|-—a
X Yy X

<min{[x-y|.|ly-a],Ja- X}
=A(x,y,a)

= f isa contractive mapping on X ,but it has no fixed point in X .

Definition 1.5: Let (X,ﬁ) be a 2-metric space. A mapping T : X — X is said to be a Generated Contractive if

}t(Tx,Ty,a)<max{/l(x,y,a),/’t(x,Tx,a),/l(y,Ty,a),%[/l(x,Ty,a)wl(y,Tx,a)] forallX,y,ain X .

Remark 1.6: A Generated contractive mapping is need not be contractive mapping. Itcan be seen from the following
example.

Example 1.7: Let X = [0, 6] with 2-metric defined as A(X,y,z) = min {|x - y|,|y - z|,|z - x|} forall X, Y, Zin X .
3x if xe[0,3]

We define a map T 2[0, 6] - [0, 6] by T (X) = {3 L if (3,6]
X—1 1 Xely,

Clearly T is generated contractive mapping.

But A(T(3),T(5),0)=4(9,140)=5>1(3,5,0)

= T is not a contractive mapping.
Definition 1.8: A 2-metric space (X,/I) is said to be 2-compactif every sequence in X has a convergent
subsequence.
2. FIXED POINT THEOREMS FOR GENERATED CONTRACTIVE MAPPINGS
In this section we proved fixed point theorems for Generated Contractive type mappings.

The following Theorem-2.1 is a generalization of Pal and Maiti [2] in 2-metric space setting.

Theorem 2.1: Let T be a continuous generated contractive self-mapping on a compact 2-metric space X such that
/I(X,Ty, a) + /l(y,TX, a) < 2/1(X, Y, a) forall X, y,ain X . ThenT has a unique fixed pointin X
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Proof: LetS, € X..
Define a sequence {Sn} in X such thats, =T"s,when n=1,2,3,...
Consider Z(X,Ty, a)+/1(y,Tx, a) < Z/I(X, Y, a)
PUt X=S,,, Y=5,
A8y Tsy,2)+ A(s,,Ts,4,a) < 24(s,..5,.2)
= A(Sp1+S0e1:8) + A(S,8,,2,2) < 24(8,.4.5,,)

n+l7>~n+1?
:>;t(sn,sn+2, a)<24(s,,.s,.a)
= A(51150208) < A(51118018) &
Putc, =d(s,,s,.,.a)

Since T is generated contractive,
A(Tx, Ty, a) < max{/l(x, y,a),A(x,Tx,a),A(y,Ty,a) [/1 x,Ty,a)+A(y,Tx, a)]}
PUt X=S,,,. Y=S5,

A(Ts,,1.Ts, )

n+l?

<max{/1(sml,sn,a),/l( S ),/l(sn,Tsn,a)é[/i( w1oT8,,8)+ A(S, TS, )]}
:max{ﬂ’(sml'sn’a)’ﬂ’(sn+l’sn+2’a)’ﬂ’(sn’Sn+l’a)’l|:ﬂ’(sn+l’Sn+1'a)+ﬂ’(sn’Sn+2’a)]}

= A(Sy,2:5,1:8) < max{/l(sm,sn @), 2(S51:50.2+8), ;ﬂ(sn Snis ,a)}
Let M = 2’( n+l? n+2’a‘)
Then ﬂ‘( n+l? n+27 )<ﬂ“( n+l? n+2’a)

This is a contradiction.

So M ;éﬂ’( n+l? n+2’a)

By (1), M =A(s,s,,.2)

So we get ﬂ,( 1 M,a) < /I(Sn ,sml,a)
= Cn+1 < Cn
SimilarlyC, ; <C, <C _, <...<C,

= {Cn} is a monotonically decreasing and bounded sequence of nonnegative real numbers.

= {Cn} Converges.

Suppose that lim ¢, =1

n—oo

Since X is compact, {Sn} has a convergent subsequence, say, { pm} .
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Let lim p_ =U,where Ue X.
m—o

Since T is continuousand lim P, =Uu, we have lim Tp, =Tu
m—o0

m—o0

= limTp,,,=Tu

m-—oo

Now we show that U is a fixed point of T Assume that U = Tu
Then A(u,Tu,a)<A(u,Tu, p,)+A4(u, p,,a)+A(p, Tu,a)

=2(u,Tu, p,)+4(u, p,,,a)+A(Tp,,Tu,a)
<A(u,Tu, p,)+A(u, p,.a)

+ max{/i( P, .U, a),/i( Py TP,y a),/‘t(u,Tu,a),%[ﬂ( pm_l,Tu,a)+/1(u,Tpm_l,a)]}

=2(u,Tu, p,,)+A(u, p,.a)

+max{/1(pm_l,u,a),/1(pm_l, P, ,a),i(u,Tu,a),%[ﬂ(pm_l,Tu,a)+/1(u, pm,a)]}

Letting m — o0
A(u,Tu,a)< max{;t(u,Tu,a),%ﬂ,(u,Tu,a)}
A(u,Tu,a)<A(u,Tu,a)

This is a contradiction.

Therefore our assumption is false.

Hence Tu=U.
= Uis a fixed pointof T in X .

Now we show that it is unique.
Let Vv be another fixed point of T

ie, Tv=v
Assume that U #V

Then A(u,v,a)=A(Tu,Tv,a)

< max{/’t(u,v,a),i(u,Tu, a),/1(v,Tv,a),%[/‘t(u,TV,a)+/1(v,Tu,a)]}

= max{/l(u,v, a),i(u,u,a),;t(v,v,a)%[ﬂ(U,Vva)Jfﬁ(V'“’a)]}

=2(u,v,a)
= A(u,v,a)<i(u,v,a)

This is a contradiction.

Hence u=V.
=> T has a unique fixed pointin X .

© 2018, IJMA. All Rights Reserved 22



pr.v. Srinivasakumar, K. Kumara Swamy and 3. Sujatha /
Fixed Point theorems through Contractivetype Mappings / IIMA- 9(8), August-2018.

Theorem- 2.2: Let (X ) Z) be a compact 2-metric space. Suppose that S and T are two continuous self-maps on a

X such that
(1) 2(x,Ty,a)+A(y,S xa)<24(x,y,a)

(2) A(S XTy,a)< max{i(x, y,),4(x8 1), 2(1.T.2). 2 A(xTy.2) 4 2(.S xa)]}

forallX,y,a in X .
ThenS and T have a unique common fixed pointin X

Proof: Let P € X.
Define a sequence { pn} in X such that p2n+1 = SpZn , where N = 0,1, 2, 3,
And P, =TpP,,,;,, where m=1,2,3,...

Suppose that A, = /I( Pon s Panaas a) where n=0,1,2,3,...
Consider ﬂ(x,Ty,a)Jrﬂ(y, S xa) < 2/1(X, y,a)

Put X=P,,andy =P,
A( P20 TP201:8) + A(PasrS 200 B) < 24( gy Popyr@)
= 2(Pon Pan @)+ A( Poyys Pansn@) < 22( Pyy s Prnssd)
= A Pon 11 Panir@) < 24( Py Poy 1,2)

= %/1( Pon_1s Panaas a) < ﬂ“( Pan-1: Pan 'a) (1)

Now, consider A(S xTy,a) < max{;t(x, y,a),A(x$S xa),ﬂ(y,Ty,a),%[i(x,Ty,a)wi(y,S xa)}}

Put X=P,,andy = P, 4
A(SpZn ’TpZn—l’a)

< maX{i( Pan s Pan 102), (P20 sS 500 R),A( pzn_l,TpZH_l.a)é[ﬂ»( Pon s TPon 1:8)+ A( Pan 1S 2 ,a)]}
_ max{z( Pan+ Pon1:)s A Pans Pana @), A ( Pan 1 P ,a)%[ﬂ( Pans Pon @)+ A( P s pm,a)}}

= 2(Ponis» Pon @) < Max {/1( Pans Pon1:8), 4( Pan p2n+1,a)%/1( Pon 1 pzm,a)}

If max {/1( Pan s Pon-ts a)ﬂl( Pan s Panias a)’%ﬂ“( Pan-1r Pania s a)} = ﬂ“( Pzn s Panaa s a)
Then /1( Pan s Ponias a) < /1( P2n s Ponias a)

This is a contradiction.

So max {ﬂ( p2n ! p2n—l' a) ! /1( p2n ! p2n+l ! a) ’%/1( p2n—l' p2n+l ! a)} # ﬂ“( p2n ! p2n+l ! a)
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By (1) , we get

aX{l( Pon s Pn1:8)s A ( P pm,a)%ﬂ( Panss pzm,a)} = A(Pan 1 P20 8)

= dZn < d2n—1

Similarly d,, <d,, , <d,, , <..<d,
= {d2n} is a monotonically decreasing and bounded sequence of nonnegative real numbers.

= {d,, } Converges.
Suppose that lim d,, =1
n—oo

Since X is compact, every sequence in X has a convergent subsequence

So{ pn} has a convergent subsequencein X .
Suppose that {pZn} is a convergent subsequence of{ pn} in X andlet lim P,, = U, where U € X.
n—oo

Now we prove that U is acommon fixed point of Sand T
Assume that U # Su

Since S is continuous on X and lim p,, =U, we have lim Sp,. = Su
nN—oo nN—oo

= lim p,, ,=Su
n—oo

Since T is continuous on X and lm P, = SU, we have !]ETJO Tp,,,, =TSU
= Iim TP, =TSU
= I|m Pyn.p = TSU because TP, ;1 = Popss
Then i(u,Su,a)sﬂ(u,Su, Pon )+ A (U, P,y 8)+ A( Py, SULA)
= (U, Su, P,y )+ A (U, Ppys@) + A (TP, SUL )
<2(u,S upyy )+ A(U, Py,

a)
a)
+max{/1(u, Pon1r @), ;t(u,Su,a),/i(pZn_l,TpZH,a)%[ﬂ(u,TpZn_l,aﬁﬂ(pZn_l,Su,a)]}
=2(u,S up,, ) +A(u, p,y.a)

A(

1
+max{ﬂ,(u,p2n ), u,Su,a),/’t(pZM,p2n,a),5[ﬂ.(u,p2n,a)+ﬂ,(p2nl,Su,a)}}

Letting N — o
A(u,Su,a)< max{i(u,Su,a),%ﬁ(u,Su,a)}

= A(u,Su,a)<A(u,Su,a)

This is a contradiction.Soour assumption is false.

Hence SU=U.
= Uis a fixed pointof S in X .
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Consider ﬂ,(x,Ty,a)+ﬂ,(y,S xa)<2/1(x, y,a)
Put X=Y=U
A(u,Tu,a)+A(u,S ya)<24(u,u,a)

Since SU =U ,A(u,Tu,a) <0.

ButA(u,Tu,a)>0.
= A(u,Tu,a)=0
=Tu=u

Hence U is a common fixed pointofSand Tin X
Now we show that it is unique.

Let V be another fixed point of T
ie, Sv=Tv=v

Assume that U #V
Then A(u,v,a)=A(S uTv,a)

< max{;t(u,v,a),ﬂ.(u,s ua),}t(v,Tv,a),%[i(u,Tv,a)wl(v,S ua)]}

= max{/i(u,v,a),/i(u,u,a),A(v,v,a),%[/l(u,v,a)wl(v,u,a)]}
=A(u,v,a)

= A(u,v,a)<i(u,v,a)

This is a contradiction.

Hence U =V.

Thus S and T have a unique common fixed pointin X

Remark-2.3: If we take S =T in Theorem-2.2 then we obtain Theorem-2.1. So 2.2 is a further generalization of

Theorem-2.1. A point is a unique fixed point of T : X — X iff it is unique fixed point of any positive power of T .
This fact leads us to the following theorem and proof of the following is similar to the proof of previous theorem.

Theorem- 2.4: Let (X ) /1) be a compact 2-metric space. Suppose that S and T are two continuous self-maps on X
such that
(1) A(xT%.a)+A(y,S"x.a)<24(xy.a)

(2) A(S"xT.a)< max{/’t(x, y,a),/I(x,Spx,a),/I(y,Tqy,a),%[i(x,Tqy,a)Jr/l(y,pr,a)}}

Forall X,Y,a in X and for all p,q € N.

Then S and T have a unique common fixed pointin X
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