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ABSTRACT 
In this paper, the authors obtain some new sufficient conditions for the oscillation of all solutions of certain class of 
second order difference equations with nonlinear neutral term. Examples are included to illustrate the main results. 
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INTRODUCTION 
 
Consider the nonlinear neutral difference equation of the form 

Δ �𝑎𝑛Δ�𝑥𝑛 + 𝑝𝑛𝑥𝑛−𝑘𝛼
 �� + 𝑞𝑛𝑥𝑛+1−𝑙

𝛽 = 0,𝑛 ≥  𝑛0                                                                              (1) 
where 𝑛0 is a nonnegative integer, subject to the following conditions: 

(H1) 0 < 𝛼 ≤ 1 and 𝛽 are ratios of odd positive integers; 
(H2) {𝑎𝑛} is a positive real sequence for all 𝑛 ≥  𝑛0; 
(H3) {𝑝𝑛} and {𝑞𝑛} are nonnegative real sequences for all 𝑛 ≥  𝑛0; 
(H4) 𝑘 is a positive integer and 𝑙 is a nonnegative integer. 

 
Let 𝜃 = 𝑚𝑎𝑥 {𝑘, 𝑙}. By a solution of equation (1), we mean a real sequence {𝑥𝑛} defined for all 𝑛 ≥ 𝑛0 − 𝜃, that 
satisfies equation (1) for all 𝑛 ≥  𝑛0. A solution of equation (1) is called oscillatory if its terms are neither eventually 
positive nor eventually negative, and nonoscillatory otherwise. If all solutions of the equation are oscillatory then the 
equation itself called oscillatory. 
 
In the past few years, there has been a great interest in studying the oscillatory and asymptotic behavior of neutral type 
difference equations, see [1-3, 9] and the references cited therein. 
 
In [5], Thandapani et.al investigated the oscillation of all solutions of the equation 

Δ �𝑎𝑛Δ�𝑥𝑛 − 𝑝𝑛𝑥𝑛−𝑘𝛼
 �� + 𝑞𝑛𝑥𝑛+1−𝑙

𝛽 = 0,𝑛 ≥  𝑛0                                                                              (2) 
 
where 𝑝 > 0 is a real number, 𝑘 and 𝑙 are positive integers, 0 < 𝛼 ≤ 1 and 𝛽 are ratios of odd positive integers, and 
∑ 1

𝑎𝑛
= ∞∞

𝑛=𝑛0 . 
 
A special case of the equation studied by Yildiz and Ogunmez [10] has the form 

Δ2�𝑥𝑛 + 𝑝𝑛𝑥𝑛−𝑘
𝛽 � + 𝑞𝑛𝑥𝑛−𝑙

𝛽 = 0,𝑛 ≥  𝑛0                                                                                            (3) 
where {𝑝𝑛} is a real sequence, {𝑞𝑛} is a nonnegative real sequence, and 𝛼 > 1 and 𝛽 are again ratios of odd positive 
integers. They too discussed the oscillatory behavior of solutions of equation [3]. 
 

Corresponding Author: B. Kamaraj1*, 

1,2Department of Mathematics, SIVET College, Chennai-600 073, India. 
 
 
 
 
 

http://www.ijma.info/�


B. Kamaraj1* and R. Vasuki2 /  
Oscillation Criteria for Second Order Difference Equations with Nonlinear Neutral Term / IJMA- 9(8), August-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                         84  

 
In [6] and [8], Thandapani et.al considered equation (1) and obtained criteria for the oscillation of solutions provided 
either 

�
1
𝑎𝑛

= ∞
∞

𝑛=𝑛0

.                                                                                                                                                          (4) 

or 

�
1
𝑎𝑛

< ∞
∞

𝑛=𝑛0

.                                                                                                                                                          (5) 

 
Using some inequalities and Riccati type transformation. 
 
Motivated by this observation, in this paper we obtain sufficient conditions for the oscillation of all solutions of 
equation (1) in the two cases (4) and (5). Our method of proof is different from that of in [6, 8, 10, 11], and hence our 
results are new and complement to those reported in [5, 6, 8, 10, 11]. Example are presented to illustrate the main 
results. 
 
OSCILLATION RESULTS 
 
In this section, we obtain sufficient conditions for the oscillation of all solutions of the equation (1). We set 

𝑧𝑛 = 𝑥𝑛 + 𝑝𝑛𝑥𝑛−𝑘𝛼 . 
 
Due to the form of our equation, we only need to give proofs for the case of eventually positive solutions since the 
proofs for the eventually negative solutions would be similar. 
 
We begin with the following theorem. 
 
Theorem 1: Assume that (𝐻1) − (𝐻4) and (4) hold. If 

�  
∞

𝑛=𝑛1

𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛)𝛽 = ∞                                                                                                                               (6) 

holds for all constants 𝑀 > 0, then every solution of equation (1) is oscillatory. 
 
Proof: Assume to the contrary that equation (1) has an eventually positive solution {𝑥𝑛}, say 𝑥𝑛 > 0, 𝑥𝑛−𝑘 > 0, and 
𝑥𝑛−𝑙 > 0 for all 𝑛 ≥  𝑛1 for some 𝑛1 ≥  𝑛0. From equation (1), we have 

Δ(𝑎𝑛Δ 𝑧𝑛) = −𝑞𝑛𝑥𝑛+1−𝑙
𝛽 ≤ 0,𝑛 ≥  𝑛1.                                                                                               (7) 

 
In view of condition (4), it is easy to see that Δ 𝑧𝑛 > 0 for all 𝑛 ≥  𝑛1. Now, it follows from the definition of 𝑧𝑛, and 
using 𝑧𝑛 ≥  𝑀 > 0 for all 𝑛 ≥  𝑛1, we have 

𝑥𝑛 = 𝑧𝑛 − 𝑝𝑛𝑥𝑛−𝑘𝛼 ≥ (𝑧𝑛1−𝛼 − 𝑝𝑛)𝑧𝑛𝛼 ≥  (𝑀1−𝛼 − 𝑝𝑛)𝑧𝑛𝛼 ,𝑛 ≥  𝑛1.                                                    (8) 
 
From (7) and (8), we have 

Δ(𝑎𝑛Δ 𝑧𝑛) + 𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛+1−𝑙  )𝛽𝑧𝑛+1−𝑙
𝛼𝛽 ≤ 0,𝑛 ≥  𝑛1.                                                                            (9) 

 
Summing equation (9) from 𝑛1 to 𝑛 and using 𝑧𝑛 ≥  𝑀, the last inequality yields 

𝑀𝛼𝛽 �  
𝑛

𝑠=𝑛1

𝑞𝑠(𝑀1−𝛼 − 𝑝𝑠+1−𝑙 )𝛽 < ∞ 

which contradicts (6) as 𝑛 → ∞. This completes the proof of the theorem. 
 
In the next theorem, we reduce the oscillation of equation (1) to that of a first order delay difference equation. Define 

𝑅𝑛 = �
1
𝑎𝑠

.
𝑛−1

𝑠=𝑛0

 

 
Theorem 2: Assume that (𝐻1) − (𝐻4) and (4) hold. If the first order delay difference equation 

Δ 𝑤𝑛 + 𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛+1−𝑙 )𝛽𝑅𝑛+1−𝑙
𝛼𝛽 𝑤𝑛+1−𝑙

𝛼𝛽 = 0                                                                              (10) 
is oscillatory, then every solution of equation (1) is oscillatory. 
 
Proof: Assume to the contrary that equation (1) has an eventually positive solution {𝑥𝑛}, say 𝑥𝑛 > 0, 𝑥𝑛−𝑘 > 0, and 
𝑥𝑛−𝑙 > 0 for all 𝑛 ≥  𝑛1 for some 𝑛1 ≥  𝑛0. Proceeding as in proof of Theorem 1 we obtain (9).  
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Now 
 

𝑧𝑛 = 𝑧𝑛1 + �  
𝑛−1

𝑠=𝑛1

𝑎𝑠Δ𝑧𝑠
𝑎𝑠

 ≥  𝑎𝑛 Δ 𝑧𝑛𝑅𝑛,   𝑛 ≥  𝑛1                                                                                        (11) 

where we have used {𝑎𝑛Δ 𝑧𝑛} is positive and decreasing for all 𝑛 ≥  𝑛1. Combining (9) and (11), we obtain 
Δ(𝑎𝑛Δ 𝑧𝑛) + 𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛+1−𝑙 )𝛽𝑅𝑛+1−𝑙

𝛼𝛽 (𝑎𝑛+1−𝑙Δ 𝑧𝑛+1−𝑙 )𝛼𝛽 ≤ 0,𝑛 ≥  𝑛1. 
 
Set 𝑤𝑛 = 𝑎𝑛Δ𝑧𝑛. Then {𝑤𝑛} is a positive solution of the inequality 

Δ𝑤𝑛 + 𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛+1−𝑙 )𝛽𝑅𝑛+1−𝑙
𝛼𝛽 𝑤𝑛+1−𝑙

𝛼𝛽 ≤ 0,. 
 
It follows from Lemma 2.7 of [7], the corresponding difference equation (10) also has a positive solution, which is a 
contradiction. The proof is now completed. 
 
Remark 1: Employing sufficient conditions for oscillation of equation (10), one can obtain easily verifiable criteria for 
the oscillation of all solutions of equation (1). 
 
Corollary 3: Assume that (𝐻1) − (𝐻4) and (4) hold. If 𝛼𝛽 = 1, 𝑙 ≥ 2, and 

 𝑙𝑖𝑚𝑛→∞ 𝑖𝑛𝑓 �  
𝑛−1

𝑠=𝑛−𝑙+1

𝑞𝑠(𝑀1−𝛼 − 𝑝𝑠+1−𝑙 )𝛽 𝑅𝑠+1−𝑙 > �
𝑙 − 1
𝑙
�
𝑙

                                                               (12) 

then every solution of equation (1) is oscillatory. 
 
Proof: Condition (12) and Theorem 7.5.1 of [3] implies oscillation of equation (10). The assertion now follows from 
Theorem 2. This completes the proof. 
 
Corollary 4: Assume that (𝐻1) − (𝐻4) and (4) hold. If 𝛼𝛽 < 1, and 

�  
∞

𝑛=𝑛1

𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛+1−𝑙)𝛼𝑅𝑛+1−𝑙
𝛼𝛽 = ∞ 

then every solution of equation (1) is oscillatory. 
 
Proof: Condition (13) and Theorem 1 of [4] implies oscillation of equation (10). The assertion now follows from 
Theorem 2. The proof is now completed. 
 
Corollary 5: Assume that (𝐻1) − (𝐻4) and [4] hold. If 𝛼𝛽 > 1, 𝑙 ≥ 2, and there exists a 𝜆 > 1

𝑙−1
log𝛼𝛽 such that 

lim
n→∞

 �𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛+1−𝑙)𝛽𝑅𝑛+1−𝑙
𝛼𝛽 exp(−𝑒𝜆𝑛)�   > 0 

then every solution of equation (1) is oscillatory. 
 
Proof: Condition (14) and Theorem 2 of [4] implies oscillation of equation (10). The conclusion now follows from 
Theorem 2, and the proof is completed. 
 
Our next results are for the case where (5) holds in place of (4). We let 

𝐴𝑛 = �
1
𝑎𝑠

∞

𝑠=𝑛

. 

We will also need the condition 

𝐸𝑛 =
𝐾1−𝛼

𝐴𝑛1−𝛼
�1 −

𝑝𝑛𝐴𝑛−𝑘𝛼

𝐾1−𝛼𝐴𝑛
� > 0 

for all constant K>0 and all 𝑛 ≥  𝑛1 ≥  𝑛0. 
 
Theorem 6: Let 𝛼𝛽 ≥ 1 and (𝐻1) − (𝐻4), (5) and (15) hold. If there exists a positive nondecreasing real sequence {𝜌𝑛} 
such that 

 lim
n→∞

 sup � �𝜌𝑠𝑞𝑠(𝑀1−𝛼 − 𝑝𝑠+1−𝑙)𝛽 −
𝑎𝑠−𝑙(Δ𝜌𝑠)2

4𝛼𝛽𝜌𝑠
�

𝑛

𝑠=𝑛1

= ∞,                                                                   (16) 

and 

lim
n→∞

 sup � �𝜌𝑠𝑞𝑠(𝑀1−𝛼 − 𝑝𝑠+1−𝑙)𝛽 −
𝑎𝑠−𝑙(Δ𝜌𝑠)2

4𝛼𝛽𝜌𝑠
�

𝑛

𝑠=𝑛1

= ∞,                                                                    (17) 

hold for all constants 𝑀 > 0 and 𝐾 > 0, then every solution of equation (1) is oscillatory. 
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Proof: Assume to the contrary that equation (1) has an eventually positive solution such that 𝑥𝑛 > 0, 𝑥𝑛−𝑘 > 0, and 
𝑥𝑛−𝑙 > 0 for all 𝑛 ≥  𝑛1 ≥  𝑛0. From equation (1) that (7) holds, we then have either Δ 𝑧𝑛 > 0 or Δ 𝑧𝑛 < 0 eventually. 
If Δ 𝑧𝑛 > 0 holds, then we can proceed as in the proof of Theorem 1, we obtain (9). Define 

𝑤𝑛 = 𝜌𝑛
𝑎𝑛Δ𝑧𝑛
𝑧𝑛−𝑙
𝛼𝛽 ,𝑛 ≥  𝑛1.                                                                                                                                 (18) 

Then 𝑤𝑛 > 0 for 𝑛 ≥  𝑛1, and from (18) and (19), we obtain 

Δ𝑤𝑛  ≤ −𝜌𝑛 𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛+1−𝑙)𝛽 +
Δ𝜌𝑛
𝜌𝑛+1

𝑤𝑛+1 −
𝜌𝑛
𝜌𝑛+1

𝑤𝑛+1
𝛥𝑧𝑛−𝑙

𝛼𝛽

𝑧𝑛−𝑙
𝛼𝛽 .                                                  (19) 

 
By Mean value theorem, we have 

Δ 𝑧𝑛−𝑙
𝛼𝛽 ≤ 𝛼𝛽 𝑧𝑛+1−𝑙

𝛼𝛽−1 Δ 𝑧𝑛−𝑙  
and from (19), we obtain 

Δ𝑤𝑛 ≤  −𝜌𝑛𝑞𝑛(𝑀1−𝛼 − 𝑝𝑛+1−𝑙)𝛽 +
Δ𝜌𝑛+1
𝜌𝑛+1

𝑤𝑛+1 − 𝛼𝛽
𝜌𝑛

𝜌𝑛+12 𝑎𝑛−𝑙
𝑤𝑛+12                                                (20) 

for 𝑛 ≥  𝑛1, where we have used 𝑎𝑛Δ 𝑧𝑛 is decreasing and 𝑧𝑛 is increasing. Using the completing square in (20), and 
then summing the resulting inequality from 𝑛1 to 𝑛, we obtain 

�  
𝑛

𝑠=𝑛1

�𝜌𝑠 𝑞𝑠(𝑀1−𝛼 − 𝑝𝑠+1−𝑙)𝛽 −
𝑎𝑠−𝑙(Δ𝜌𝑠)2

4𝛼𝛽𝜌𝑠
� ≤  𝑤𝑛1 

which contradicts (16) as 𝑛 → ∞. 
 
Next assume that Δ 𝑧𝑛 < 0 for all 𝑛 ≥  𝑛1. Define 

𝑢𝑛 =
𝑎𝑛Δ𝑧𝑛
𝑧𝑛
𝛼𝛽 ,𝑛 ≥  𝑛1.                                                                                                                                    (21) 

 
Thus 𝑢𝑛 < 0 for all 𝑛 ≥  𝑛1 and from (7) we have 

Δ 𝑧𝑠 ≤
𝑎𝑛Δ𝑧𝑛
𝑎𝑠

, 𝑠 ≥  𝑛. 

 
Summing the last inequality from 𝑛 to 𝑗, we obtain 

𝑧𝑗+1 − 𝑧𝑛 ≤  𝑎𝑛Δ 𝑧𝑛�
1
𝑎𝑠

𝑗

𝑠=𝑛

 

and then letting 𝑗 → ∞ gives 
𝑎𝑛Δ𝑧𝑛𝐴𝑛

𝑧𝑛
≥  −1,𝑛 ≥ 𝑛1.                                                                                                                                 (22) 

Thus −𝑎𝑛Δ𝑧𝑛(−𝑎𝑛Δ𝑧𝑛)𝛼𝛽−1𝐴𝑛
𝛼𝛽

𝑧𝑛
𝛼𝛽 ≤ 1 for 𝑛 ≥  𝑛1. Since −𝑎𝑛Δ 𝑧𝑛 > 0 and (7) and (21) hold, we have 

−
1

𝐿𝛼𝛽−1
≤ 𝑢𝑛𝐴𝑛

𝛼𝛽 ≤ 0,                                                                                                                                    (23) 

where 𝐿 = −𝑎𝑛1Δ𝑧𝑛1 . On the other hand from (22), 

 Δ �
𝑧𝑛
𝐴𝑛
� ≥ 0,𝑛 ≥  𝑛1.                                                                                                                                         (24) 

 
From the definition of 𝑧𝑛 and (24), we have 

𝑥𝑛 = 𝑧𝑛 − 𝑝𝑛𝑥𝑛−𝑘𝛼 ≥ 𝑧𝑛 − 𝑝𝑛𝑧𝑛−𝑘𝛼 ≥ 𝑧𝑛 − 𝑝𝑛
𝐴𝑛−𝑘𝛼

𝐴𝑛𝛼
𝑧𝑛𝛼 

                                                                ≥ �𝐾1−𝛼𝐴𝑛1−𝛼 −
𝑝𝑛𝐴𝑛−𝑘𝛼

𝐴𝑛𝛼
� 𝑧𝑛𝛼 ,𝑛 ≥ 𝑛1,                                          (25) 

where we have used 𝑧𝑛
𝐴𝑛
≥ 𝐾 > 0 for all 𝑛 ≥  𝑛1. From (7) and (25), we obtain 

Δ(𝑎𝑛Δ𝑧𝑛) ≤ −𝑞𝑛𝐸𝑛+1−𝑙
𝛽 𝑧𝑛+1−𝑙

𝛼𝛽 ,𝑛 ≥  𝑛1. 
 
From (18), we have 

Δ 𝑢𝑛 =
Δ(𝑎𝑛Δ 𝑧𝑛)

𝑧𝑛+1
𝛼𝛽 −

𝑎𝑛Δ𝑧𝑛
𝑧𝑛
𝛼𝛽𝑧𝑛+1

𝛼𝛽 Δ𝑧𝑛
𝛼𝛽 ,𝑛 ≥ 𝑛1. 
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By Mean value theorem 

Δ𝑧𝑛
𝛼𝛽 = �

αβzn+1
αβ−1Δzn, if  αβ > 1;                                                                 

 αβ zn
αβ−1Δzn,       if  αβ < 1,                                                         

�                                            (28) 

 
So combining (28) and (27) and then using the fact that Δ 𝑧𝑛 < 0 gives 

Δ𝑢𝑛 ≤
Δ(𝑎𝑛Δ𝑧𝑛)

𝑧𝑛+1
𝛼𝛽 − 𝛼𝛽

𝑢𝑛2

𝑎𝑛 
𝑧𝑛
𝛼𝛽−1 

        ≤ −𝑞𝑛𝐸𝑛+1−𝑙𝛼 − 𝛼𝛽𝐾𝛼𝛽−1𝐴𝑛
𝛼𝛽−1 𝑢𝑛2

𝑎𝑛
,𝑛 ≥  𝑛1,                                                                              (29) 

where we have used 𝑧𝑛+1−𝑙
𝑧𝑛+1

≥ 1 for all 𝑛 ≥  𝑛1. Multiplying (29) by 𝐴𝑛+1
𝛼𝛽 , and then summing it from 𝑛1 to 𝑛 − 1, we 

have 

�  
𝑛−1

𝑠=𝑛1

𝐴𝑠+1
𝛼𝛽 Δ 𝑢𝑠 +  �  

𝑛−1

𝑠=𝑛1

𝐴𝑠+1
𝛼𝛽 𝑞𝑠𝐸𝑠+1−𝑙

𝛽 +  �  
𝑛−1

𝑠=𝑛1

𝛼𝛽 𝐾𝛼𝛽−1𝐴𝑠
𝛼𝛽−1𝐴𝑠+1

𝛼𝛽 𝑢𝑛2

𝑎𝑛
≤ 0.                                    (30) 

 
By summation by parts formula and Mean value theorem, we obtain 

 �  
𝑛−1

𝑠=𝑛1

𝐴𝑠+1
𝛼𝛽 Δ𝑢𝑠 ≥  𝐴𝑛

𝛼𝛽𝑢𝑛 − 𝐴𝑛1
𝛼𝛽𝑢𝑛1 + �  

𝑛−1

𝑠=𝑛1

𝛼𝛽𝑢𝑠𝐴𝑠
𝛼𝛽−1

𝑎𝑠
.                                                                      (31) 

 
From (31) and (30), we obtain 

𝐴𝑛
𝛼𝛽𝑢𝑛 − 𝐴𝑛1

𝛼𝛽𝑢𝑛1 +  �  
𝑛−1

𝑠=𝑛1

𝛼𝛽𝑢𝑠𝐴𝑠
𝛼𝛽−1

𝑎𝑠
+ �  

𝑛−1

𝑠=𝑛1

𝛼𝛽 𝐾𝛼𝛽−1𝐴𝑠
𝛼𝛽−1𝐴𝑠+1

𝛼𝛽 𝑢𝑛2

𝑎𝑛
 

+ �  
𝑛−1

𝑠=𝑛1

𝐴𝑠+1
𝛼𝛽 𝑞𝑠𝐸𝑠+1−𝑙

𝛽 ≤ 0 

 

�  
𝑛−1

𝑠=𝑛1

�𝐴𝑠+1
𝛼𝛽 𝑞𝑠𝐸𝑠+1−𝑙

𝛽 −
𝛼𝛽𝐾1−𝛼𝛽𝐴𝑠

𝛼𝛽−1

4𝑎𝑠𝐴𝑠+1
𝛼𝛽 � ≤

1
𝐿𝛽−1

+ 𝐴𝑛1
𝛼𝛽𝑢𝑛1 

when using (23). This contradicts (17) as 𝑛 → ∞, and the proof is now completed. 
 
Corollary 7: Let 𝛼𝛽 > 1 and (𝐻1) − (𝐻4), (5) and (15) hold. If condition (17) and 𝑙 ≥ 2 hold, and there exists a 
𝜆 > 1

𝑙−1
log𝛼𝛽 such that (14) holds then every solution of equation (1) is oscillatory. 

 
Proof: The proof follows from Corollary 5 and Theorem 6. This completes the proof. 
 
Theorem 8: Let 0 < 𝛼𝛽 < 1 and (𝐻1) − (𝐻4), (5) and (15) hold. If condition (13) holds, and 

lim
n→∞

 sup  �  
𝑛−1

𝑠=𝑛0

�𝐾𝛼𝛽−1𝐴𝑠+1 𝑞𝑠𝐸𝑠+1−𝑙
𝛽 −

1
4𝑎𝑠𝐴𝑠+1

� = ∞                                                                             (32) 

for all constant 𝐾 > 0, then every solution of equation (1) is oscillatory. 
  
Proof: Proceeding as in the proof of Theorem 6, we see that Δ 𝑧𝑛 > 0 or Δ 𝑧𝑛 < 0 eventually. If Δ 𝑧𝑛 > 0 for all 
𝑛 ≥  𝑛1  then by Corollary 4, we obtain a contradiction to (13). Next we assume that Δ 𝑧𝑛 < 0  for all 𝑛 ≥  𝑛1. 
Proceeding as in the proof of Theorem 6 we obtain (26). Define 

𝑢𝑛 =
𝑎𝑛Δ𝑧𝑛
𝑧𝑛

,𝑛 ≥  𝑛1.                                                                                                                                       (33) 

Thus 𝑢𝑛 < 0 for all 𝑛 ≥  𝑛1.  
 
From (33) and (26), we see that 

Δ 𝑢𝑛 ≤  −𝑞𝑛𝐸𝑛+1−𝑙
𝛽 𝑧𝑛+1−𝑙

𝛼𝛽

𝑧𝑛+1
−
𝑢𝑛2

𝑎𝑛
,𝑛 ≥  𝑛1.                                                                                                   (34) 

 
Since {𝑧𝑛} is positive and decreasing there exists a constant 𝐾 > 0 such that 𝑧𝑛 ≤  𝐾 for all 𝑛 ≥  𝑛 ≥ 1. Using the last 
inequality in (34), we obtain 

Δ 𝑢𝑛 ≤  −𝑞𝑛
𝐸𝑛+1−𝑙
𝛽

𝐾1−𝛼𝛽 −
𝑢𝑛2

𝑎𝑛
,𝑛 ≥  𝑛1. 
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Multiplying the last inequality 𝐴𝑛+1 and then summing it from 𝑛1 to 𝑛 − 1, we have 

𝐴𝑛𝑢𝑛 − 𝐴𝑛1𝑢𝑛1 + �  
𝑛−1

𝑠=𝑛1

𝐾𝛼𝛽−1𝐴𝑠+1𝑞𝑠𝐸𝑠+1−𝑙
𝛽 + �  

𝑛−1

𝑠=𝑛1

�
𝑢𝑠
𝑎𝑠

+ 𝐴𝑠+1
𝑢𝑠2

𝑎𝑠
� ≤ 0 

 
which on using completing the square yields 

�  
𝑛−1

𝑠=𝑛1

�𝐾𝛼𝛽−1𝐴𝑠+1𝑞𝑠𝐸𝑠+1−𝑙
𝛽 −

1
4𝑎𝑠𝐴𝑠+1

� ≤ 1 + 𝐴𝑛1𝑢𝑛1 

when using (22). This contradicts (32) as 𝑛 → ∞, and the proof is now complete. 
 
EXAMPLES 
 
In this section, we present some examples to illustrate our main results. 
 
Example 1: Consider the neutral difference equation 

Δ� 1
2𝑛+1

Δ�𝑥𝑛 + 1
𝑛
𝑥𝑛−1
1
3 �� + � 4(𝑛+1)

(2𝑛+1)(2𝑛+3)
+ 2

𝑛(𝑛+2)
� 𝑥𝑛−13 = 0,𝑛 ≥ 1.                                           (35) 

Here 𝑎𝑛 = 1
2𝑛+1

,  𝑝𝑛 = 1
𝑛

,  𝑞𝑛 = 4(𝑛+1)
(2𝑛+1)(2𝑛+3)

+ 2
𝑛(𝑛+2)

,𝛼 = 1
3
,  𝛽 = 3,  𝑘 = 2  and 𝑙 = 2.  Simple calculation shows that 

𝑅𝑛 = 𝑛2 − 1 and we see that all conditions of Corollary 3 are satisfied. Hence every solution of equation (35) is 
oscillatory, and in fact {𝑥𝑛} = {(−1)3𝑛} is are such oscillatory solution of equation (35). 
 
 
Example 2:.Consider the neutral difference equation 

Δ�𝑛Δ �𝑥𝑛 + 1
𝑛
𝑥𝑛−2
1
3 �� + 1

𝑛
𝑥𝑛−1
1
5 = 0,𝑛 ≥ 1.                                                                                        (36) 

Here 𝑎𝑛 = 𝑛, 𝑝𝑛 = 1
𝑛
, 𝑞𝑛 = 1

𝑛
, 𝛼 = 1

3
, 𝛽 = 1

5
, 𝑘 = 1 and 𝑙 = 2. It is easy to see that all conditions of Corollary 4 are 

satisfied, and hence every solution of equation (36) is oscillatory. 
 
Example 3: Consider the neutral difference equation 

Δ�(𝑛 + 1)(𝑛 + 2)Δ�𝑥𝑛 + 1
𝑛(𝑛+1)

𝑥𝑛−1
1
3 �� + 4(𝑛 + 2)2𝑥𝑛−13 = 0,𝑛 ≥ 1.                                         (37) 

 
Here 𝑎𝑛 = (𝑛 + 1)(𝑛 + 2), 𝑝𝑛 = 1

𝑛(𝑛+1)
, 𝑞𝑛 = 4(𝑛 + 2)2,𝛼 = 1

3
, 𝛽 = 3, 𝑘 = 1 and 𝑙 = 2.  

Simple calculation shows that 𝐴𝑛 = 1
𝑛

+ 1, 𝛼𝛽 = 1 and  𝐾
2
3(𝑛 + 1)

2
3 �1 − 𝐾−

2
3

𝑛
4
3

 � > 0. The conditions (16) and (17) are 

also satisfied with 𝜌𝑛 = 1. Therefore by Theorem 8, every solution of equation (37) is oscillatory. 
 
We conclude this paper with the following remark. 
 
Remark 3.4: In this paper, we obtain oscillation criteria for equation (1) by employing comparison method and Riccati 
type transformation involving both  𝛼 and 𝛽. Therefore the results presented in this paper are new and complement to 
the existing results reported in the literature. Further condition (15) is some what restrictive and it implies that we must 
have {𝑝𝑛} → 0 as 𝑛 → ∞. It would be good to obtain a result that did not require this added condition. 
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