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ABSTRACT 
In this article, we introduce the concept of stochastic differential equations (SDEs) with fractional Brownian motion. 
Using the concept of dynamic process under multitime scale in sciences and engineering, a mathematical model 
described by a system of multi-time scale SDEs is formulated. 
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1. INTRODUCTION 
 
We study the concept of dynamic process operating under multi-time scales in sciences and engineering. A 
mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The 
classical Picard-Lindelf successive approximations scheme is applied to the model validation problem, viz existence 
and uniqueness of solution process. This leads to the problem of finding closed form solutions of both linear and 
nonlinear multi-time scale stochastic differential equations of Ito-Doob type. We also discuss the solutions of multi-
time scale fractional stochastic differential equations driven by fractional Brownian motions.  The rest of the paper is 
structured as follows: In Section 2, we give the preliminaries. Fractional Stochastic Differential Equations driven by 
fractional Brownian motion are presented in Section 3. Results related to the Fractional Stochastic Differential 
Equations are presented here. Finally conclusion is given in Section 4. 
 
2. PRELIMINARIES 
 
In this paper, we present some known concepts and results in the fields of fractional and stochastic differential 
equations. 
 
Definition 2.1: Let 0 < 𝛼 < 1 and 𝑓 ∈ 𝐿1[𝑎, 𝑏](𝐿1[𝑎, 𝑏] = 𝐿1�[𝑎, 𝑏]ℝ𝑛� = {𝑦|𝑦: [𝑎, 𝑏] → ℝ𝑛 and 𝑦 is Lebesgue 
integrable}). The left-sided and right-sided Riemann –Liouville fractional integrals of order 𝛼 are defined for almost all 
𝑡 ∈ (𝑎, 𝑏) by  

(𝐼𝑎+𝛼 )(𝑡) =
1

Γ(𝛼)�
(𝑡 − 𝑠)(𝛼−1) 𝑓(𝑠)𝑑𝑠,      𝑡 > 𝑎                                                                                        (1)
𝑡

𝑎
 

 

(𝐼𝑏−𝛼  𝑓)(𝑡) =
1

Γ(𝛼)�
(𝑡 − 𝑠)𝛼−1
𝑏

𝑡
𝑓(𝑠)𝑑𝑠,      𝑡 < 𝑏                                                                                       (2) 

respectively, where Γ(𝛼) = ∫ 𝑟𝛼−1𝑒−𝑟𝑑𝑟 ∞
0 is the Euler function.  

 
Definition 2.2: A function 𝑓 is said to be absolutely continuous  on an interval 𝐽, if for 𝜀 > 0 there exists  a 𝛿 > 0 such 
that for any pair wise nonintersecting intervals [𝑎𝑘 , 𝑏𝑘] ⊂ 𝐽, 𝑘 = 1, … ,𝑛 such that ∑ (𝑏𝑘 − 𝑎𝑘) < 𝛿,𝑛

𝑘=1   the inequality 
∑ |𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| < 𝜀𝑛
𝑘=1  holds. 

 
It is known that the space 𝐴𝐶[𝑎, 𝑏] of absolutely continuous functions on [𝑎, 𝑏] coincides with the Lebesgue summable 
functions. 

𝑓 ∈ 𝐴𝐶[𝑎, 𝑏] ⇔ 𝑓(𝑥) = 𝑐 + � 𝜑(𝑡)𝑑𝑡
𝑥

𝑎
       (φ ∈ L1[𝑎, 𝑏]).                                                                       (3) 
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Definition 2.3: Let  𝑓 be defined and absolutely continuous on an interval [𝑎, 𝑏], and let 0 < 𝛼 < 1, 

(𝐷𝑎+𝛼 )(𝑡) =
1

Γ(1 − 𝛼) �
𝑓(𝑎)

(𝑡 − 𝑎)𝛼 + � (𝑡 − 𝑠)−𝛼𝑓′(𝑠)𝑑𝑠
𝑡

𝑎
�                                                                           (4) 

(𝐷𝑏−𝛼 )(𝑡) =
1

Γ(1 − 𝛼) �
𝑓(𝑏)

(𝑏 − 𝑡)𝛼
− � (𝑠 − 𝑡)−𝛼𝑓′(𝑠)𝑑𝑠

𝑏

𝑡
�                                                                           (5) 

are called left-sided and right-sided Riemann-Liouville fractional derivatives, respectively. 
 
 
Definition 2.4: Let 𝑎, 𝑏 ∈ ℝ and 0 < 𝛼 < 1.  The 𝐿∞1  space is defined as follows  

𝐿∞1 [𝑎, 𝑏] ≔ {𝑦 ∈ 𝐿1[𝑎, 𝑏]:𝐷𝑎+𝛼 𝑦 ∈ 𝐿1[𝑎, 𝑏]},                                                                                                  (6) 
where 𝐿1[𝑎, 𝑏] is the space of summable or integrable functions in a finite interval [𝑎, 𝑏] of the real line ℝ. 
 
Definition 2.5: For 0 < 𝛼 < 1, the left-hand caputo derivatives of order 𝛼, denoted by  𝑐𝐷𝑎+𝛼 𝑓, is defined as  the 
Riemann-Liouville  type fractional derivatives  

 (𝑐𝐷𝑎+𝛼 𝑓)(𝑡) = 𝐷𝑎+𝛼 [𝑓(𝑡) − 𝑓(𝑎)] = 1
Γ(1−α)∫ (𝑡 − 𝑠)−𝛼𝑓′(𝑠)𝑑𝑠𝑡

𝑎                                                         (7) 
and hence  

 (𝑐𝐷𝑎+𝛼 𝑓)(𝑡) = (𝐷𝑎+𝛼 𝑓)(𝑡) − (𝐷𝑎+𝛼 𝑓)(𝑎) = (𝐷𝑎+𝛼 𝑓)(𝑡) −
𝑓(𝑎)

Γ(1 − 𝛼)
(𝑡 − 𝑎)−𝛼                                      (8) 

 
Definition 2.6: A dynamic process is said to be operating under multi-time scales if the effects of certain intra 
structural and external environmental perturbations are characterized by a set of linearly independent time scales 
monitored by the classical time. 
 
Definition 2.7: Let {𝑇1(𝑡) = 𝑡,𝑇2(𝑡) = 𝐵(𝑡),𝑇3(𝑡) = 𝑡^𝛼} be the set of linearly independent time scales. A random 
process 𝑥 = {𝑥(𝑡), 𝑡0 < 𝑡 < 𝑡0 + 𝑇} is called solution of the Initial Value Problem (IVP), if the composite function 
𝑥(𝑥(𝑡) ≡ 𝑥(𝑡,𝑤(𝑡), 𝑡𝛼))  is sample continuous with respect to each of the time scales 𝑇𝑗 , 𝑗 = 1,2,3.    
 
Definition 2.8: A one dimensional fractional Brownian motion (fBm) 𝐵𝐻 = {𝐵𝐻(𝑡), 𝑡 ∈ [0,𝑇]} of Hurst index           
𝐻 ∈ (0,1) on [0,𝑇] is a continuous and centered Gaussian process on some probability space (Ω,𝐹,𝑃) with covariance 
function  

𝐸[𝐵𝐻(𝑡)𝐵𝐻(𝑠)] =
1
2

(𝑡2𝐻 + 𝑠2𝐻 − |𝑡 − 𝑠|2𝐻),    𝑡, 𝑠 ∈ [0,𝑇] 
 
If 𝐻 = 1

2
, then the corresponding fBm is the usual standard Brownian motion. If 𝐻 > 1

2
,  then the process fBm exhibits a 

long-rang dependence  
 
Definition 2.9: Let 𝛼 > 0. Then the Riemann-Liouville fractional integral of order 𝛼 with respect to 𝑡  is defined as  

𝐼𝑡𝛼𝑓(𝑡) =
1

Γ(𝛼)�
(𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏,          𝑡 > 0
𝑡

0
                                                                                          (9) 

where Γ(⋅) is the Gamma function. 
 
Definition 2.10: Let 𝑓 ∈ 𝐶([0,𝑇]) and 𝑚− 1 < 𝛼 ≤ 𝑚, where 𝑚 ∈ ℕ+. The Riemann-Liouville fractional derivative 
of order 𝛼 with respect to 𝑡 is defined as  

𝐷𝑡𝛼𝑓(𝑡) =
1

Γ(𝑚 − 𝛼) 
𝑑𝑚

𝑑𝑡𝑚
� (𝑡 − 𝜏)𝑚−𝛼−1𝑓(𝜏)𝑑𝜏,     𝑡 > 0
𝑡

0
                                                                   (10) 

 
There exists the following relationship between the Riemann-Liouville fractional integral and the Riemann-Liouville 
fractional derivative. 
 
Definition 2.11: Suppose that the Laplacian (−Δ) has a complete set of orthonormal eigenfunctions 𝜑𝑛 corresponding 
to eigenvalues 𝜆𝑛2   on a bounded region 𝐷; i.e., (−Δ)𝜑𝑛 = 𝜆𝑛2𝜑𝑛 on 𝐷;𝐵(𝜑𝑛) = 0 on 𝜕𝐷 , where 𝐵(𝜑𝑛) is one of the 
standard three homogenous boundary conditions. Let 

𝐺 = �𝑔 = �𝑐𝑛𝜑𝑛 ,   𝑐𝑛 = 〈𝑔,𝜑𝑛〉,�|𝑐𝑛|2|𝜆𝑛|𝛼 < ∞
∞

𝑛

∞

𝑛=1

� ,                                                                         (11) 

then for any 𝑔 ∈ 𝐺, (−Δ)
𝛼
2  is defined by , 

(−Δ)
𝛼
2𝑔 = �𝑐𝑛𝜆𝑛𝛼𝜑𝑛.                                                                                                                                     (12)

∞

𝑛=1
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3. FRACTIONAL BROWNIAN MOTION 
 
In this section, we use some theorems and results based on fractional stochastic differential equations driven by 
fractional Brownian motion.  
 
Theorem 3.1: (Existence and Uniqueness). Assume that, for (𝑡, 𝑥) ∈ [𝑡0, 𝑡0 + 𝑇] × ℝ𝑛,𝛼 ∈ � 1

2,1
� , 𝑏,𝜎2 ∈

𝐶�[𝑡0, 𝑡0 + 𝑇] × ℝ𝑛 ,ℝ𝑛�,𝜎1 ∈ 𝐶[[𝑡0, 𝑡0 + 𝑇] × ℝ𝑛 ,ℝ𝑛𝑚]and 𝐵 = {𝐵(𝑡), 𝑡 ≥ 0} is a 𝑚-dimensional Brownian motion 
on a complete probability space Ω ≡ (Ω,𝐹,𝑃) the following inequalities hold:  

|𝑏(𝑡, 𝑥)|2 + |𝜎1(𝑡, 𝑥)|2 + |𝜎2(𝑡, 𝑥)|2 ≤ 𝐾2(1 + |𝑥|2); (linear growth bound)                                  (13) 
for some constant 𝐾 > 0, the lipchitze condition  

|𝑏(𝑡, 𝑥) − 𝑏(𝑡,𝑦)| + |𝜎1(𝑡, 𝑥) − 𝜎1(𝑡,𝑦)| + |𝜎2(𝑡, 𝑥) − 𝜎2(𝑡,𝑦)| ≤ 𝐿|𝑥 − 𝑦|                                    (14) 
for some constant 𝐿 > 0. Let 𝑥0 be a random variable defined on (Ω,𝐹,𝑃) and it is independent of the 𝜎 −algebra 
𝐹𝑠𝑡 ⊆ 𝐹 generated by {𝐵(𝑠), 𝑡 ≥ 𝑠 ≥ 0} and such that 𝐸|𝑥0|2 < ∞.  
Then the IVP 𝑑𝑥 = 𝑏(𝑡, 𝑥)𝑑𝑡 + 𝜎1(𝑡, 𝑥)𝑑𝐵(𝑡) + 𝜎2(𝑡, 𝑥)(𝑑𝑡)𝛼 ,    𝑥(𝑡0) = 𝑥0  has a unique solution which is                  
𝑡-continuous with the property that 𝑥(𝑡,𝜔) is adapted to the filtration 𝐹𝑡

𝑥0  generated by 𝑥0  and {𝐵(𝑠)(⋅), 𝑠 ≤ 𝑡}, and  

𝐸 �� |𝑥(𝑡,𝜔)|2
𝑇

𝑡0
< ∞. �                                                                                                                                      (15) 

 
Remark: The Existence and uniqueness theorem was motivated by the long range delay dependent dynamic process. 
However, we propose to investigate the proposed problem for not only 0 < 𝛼 < 1, but also more general set of linearly 
independent multi time-scales. 
 
Lemma 3.2: 𝑋(𝑡) satisfies  

𝑑𝑋(𝑡) = 𝑢(𝑡)𝑑𝑡 + 𝑣(𝑡)𝑑𝐵𝐻(𝑡)                                                                                                                      (16) 
where 𝑢, 𝑣 are given functions, Furthermore, let 𝑓 ∈ 𝐶2(ℝ),  and assume that 𝑓′(𝑋) and 𝑓′′(𝑋) exists and are 
continuous for 𝑋 ∈ ℝ.  Then, it has 

𝑑𝑓�𝑋(𝑡)� = �𝑓′�𝑋(𝑡)�𝑢(𝑡) + 𝐻𝑓′′�𝑋(𝑡)�𝑡2𝐻−1𝑣2(𝑡)� 𝑑𝑡 + 𝑓′�𝑋(𝑡)�𝑣(𝑡)𝑑𝐵𝐻(𝑡)                         (17)   
 
It is intersecting to note that if 𝐻 = 1

2
 is formally substituted in the equation (17), then the well-known in to formula for 

classical Brownian motion is obtained. 
 
Lemma 3.3: Suppose that the one-dimensional Laplacian (−Δ) defined with Dirichlet boundary conditions at 𝑥 = 0 
and 𝑥 = 𝐿 has a complete set of orthonormal eigenfuntions 𝜑𝑛 corresponding to eigenvalues 𝜆𝑛2  on a bounded region 
[𝑜, 𝐿]. If �–Δ�𝜑𝑛 = 𝜆𝑛2𝜑𝑛 on [0, 𝐿], and  𝜑𝑛(0) = 𝜑𝑛(𝐿) = 0, then, the eigen values are given by 𝜆𝑛2 = 𝑛2𝜋2

𝐿2
,  and the 

corresponding eigen functions are 𝜑𝑛(𝑥) = sin (𝑛𝜋𝑥/𝐿),𝑛 = 1,2, …  
 
Lemma 3.4: Let 1

2
< 𝐻 < 1 and 𝜎 ∈ 𝐶([0,𝑇]).  Then the solution of the equation  
𝑑𝑌𝑠(𝑡) = 𝜎(𝑡)𝑌𝑠(𝑡)𝑑𝐵𝐻(𝑡),     𝑌𝑠(0) = 𝑦0𝑠   
     

𝑌𝑠(𝑡) = 𝑦0𝑠𝑒𝑥𝑝 �−𝐻� 𝜏2𝐻−1𝜎2(𝜏)𝑑𝜏 + � 𝜎(𝜏)𝑑𝐵𝐻(𝜏)
𝑡

0

𝑡

0
�                                                                    (18) 

 
Theorem 3.5: Let 𝑎, 𝑏,𝜎 ∈ 𝐶([0,𝑇]), 0 < 𝛼 < 1 and 1

2
< 𝐻 < 1.  Then the solution of equation  

𝑑𝑌(𝑡) =
1

Γ(2 − α)𝑎
(𝑡)𝑌(𝑡)(𝑑𝑡)1−𝛼 + 𝑏(𝑡)𝑌(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑌(𝑡)𝑑𝐵𝐻(𝑡),𝑌(0) = 𝑦0                          (19) 

is given by 

𝑌(𝑡) = 𝑒𝑥𝑝 �� 𝑏(𝜏)𝑑𝜏 − 𝐻� 𝜏2𝐻−1𝜎2(𝜏)𝑑𝜏
𝑡

0
+ � 𝜎(𝜏)𝑑𝐵𝐻(𝜏)

𝑡

0

𝑡

0
��𝑅𝑎𝑖 𝑦0                                     (20)

∞

𝑖=0

 

where 𝑅𝑎 is defined as the equation,  

(𝑅𝑎𝜑)(𝑡) =
1

Γ(1 − 𝛼)�
(𝑡 − 𝜏)−𝛼𝑎(𝜏)𝜑(𝜏)𝑑𝜏
𝑡

0
                                                                                        (21) 

and 𝑅𝑎𝑖  denotes the 𝑖- times composition operator of 𝑅𝑎. 
 
We denote  

Φ(𝑡) = exp �∫ �𝑏(𝜏) − 𝐻𝜏2𝐻−1𝜎2(𝜏)�𝑑𝜏 + ∫ 𝜎(𝜏)𝑑𝐵𝐻(𝜏)𝑡
0

𝑡
0 �∑ 𝑅𝑎𝑖 .∞

𝑖=0                                            (22) 
One knows that Φ is the fundamental solution of equation (19). In the following, we will show that Φ is invertible on 
[0,𝑇] in an algebraic sense. 
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Theorem 3.6: Let Φ be the fundamental solution of equation (19). Then Φ is invertible on [0,𝑇], and its inverse is  

Φ−1 = exp �−∫ �𝑏(𝜏) − 𝐻𝜏2𝐻−1𝜎2(𝜏)�𝑑𝜏 − ∫ 𝜎(𝜏)𝑑𝐵𝐻(𝜏)𝑡
0

𝑡
0 � ∑ (−1)𝑖𝑅𝑎𝑖∞

𝑖=0 ,                               (23) 
where 𝑅𝑎 is the operator defined as the equation (21). 
 
Theorem 3.7: Let 𝑎, 𝑝, 𝑞, 𝑣,𝜎 ∈ 𝐶[0,𝑇], 0 < 𝛼 < 1 and 1

2
< 𝐻 < 1. Then the solution of equation (19) is given by  

𝑌(𝑡) = Φ(𝑡) + � Φ(𝑡, 𝜏)𝑝(𝜏)(𝑑𝜏)1−𝛼
𝑡

0
+ � Φ(𝑡, 𝜏)(𝑞(𝑡) − 2𝐻𝜏2𝐻−1𝑣(𝜏)𝜎(𝜏)𝑑𝜏)

𝑡

0
 

                                     +� Φ(𝑡, 𝜏)𝑣(𝜏)𝑑𝐵𝐻(𝜏)
𝑡

0
 

where,  Φ(𝑡, 𝜏) = Φ(𝑡)Φ−1(𝜏), Φ and Φ−1 are defined as the equations (22) and (23) respectively. 
 
4. CONCLUSION 
 
We introduced the concept of stochastic differential equations (SDEs) with fractional Brownian motion. Using the 
concept of dynamic process under multitime scale in sciences and engineering, a mathematical model described by a 
system of multi-time scale SDEs is formulated. 
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