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ABSTRACT

In this article, methods of optimal eighth-order iterative methods are presented. The new methods are developed by
combining special case of Al-Subaihi's method of fourth-order and adding Newton’s method as a third step. Using the
forward divided difference and three real-valued functions in the third step to increase the convergence order and
reduce the number of function evaluations to be optimal. Numerical examples are provided to show the good
performance of the new method.
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1. INTRODUCTION

Solving nonlinear equations is one and old important problems in science and engineering. In this article, we construct
iterative methods to find a simple root of a nonlinear equation, f (y) = 0, where f: D € R — R for an open interval D.

One the most famous method for solving nonlinear equation is Newton method (NM), [3].
_ f(xn)
Tt = X0 i,y )
which converges quadratically. In the last years, many researchers worked to develop iterative methods for solving
nonlinear equations. For example using weighted functions in iterative methods to find a simple root has been

presented, for example, [5, 10]. Three-step methods with eighth-order convergence developed, for example, [1, 4].

In this article, we present to a new method which use Al-Subaihi's method [2], in the first two steps of fourth order
convergence (SM1).
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The efficiency index (ET) is defined by E = p'/%, where p is the order of convergence and § is the number of function
or derivative evaluations per iteration [6]. The optimal order of any multipoint iterative method is given by 25~ [7].

So, the efficiency index of Newton method, (NM), (1), is 2'/2~ 1.4142 and the efficiency index of the optimal fourth
order Al-Subaihi's method, (SM1), (2), is 4'/3 ~ 1.5874.

Theorem 1]9]: Let B, (x), B,(x), ..., B (x) be iterative functions with the orders p;, p, ..., ps, respectively. Then the
composition of iterative functions g (ﬁz (... (B;(x))... )) defines the iterative method of the order p,p,...ps

Using theorem 1, adding the Newton’s method as a third step as follows, (SM1).
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The method (3) has EI = 8'/s ~ 1.5157, and is not optimal. To reduce the number of functions evaluation of method

(3) to four, by replacing f'(z,) to W using the divided difference [11] to develop a family of optimal eight-
order of convergence methods.

2. DEVELOPMENT OF METHOD AND CONVERGENCE ANALYSIS

The order of convergence of the proposed method (3) is eight but it is not optimal. To construct an optimal eighth-order
method without using more evaluations, we present a new family of optimal eighth-order as follows, (SSM1).

_ _ f(xn)
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where H(s,),K(s,), B(s3), are three real-valued weight functions, and
f(wn) f(zn) f(zn)
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The weight functions H(s;), K(s,) and B(s3) have be chosen such that the order of convergence of method (4) comes
at an optimal level of eight. In the next theorem, we prove that method (4) has an optimal eighth-order of convergence
under conditions for the weighted functions.

Theorem 2: Let y in D be a simple root of a sufficiently differentiable function f: D € R —» R. If x, is sufficiently
close to y then the family of iterative methods (4) has an optimal eighth-order of convergence when

H(0)=1, H'(0) = H"(0) = 0, H"(0) = =6, [HW(0)| < oo,
K(0) =1,K'(0) =0, |K"(0)] < o,
B(0) =1,B(0) = 1.

Proof: Let e, = x,, — y be the error at the nth iteration, by Taylor expansion, we have

fx) =f')[e+ ce? + czed + cpe* + cse® + cge® + ce” + cge® + 0(e?)]. (6)
@)
Where, ¢, =2-2 k=23, ...
klf(v)
') = /@)1 + 2c,e + 3cze? + 4c e + 5cse + 6¢cge® + 7c,e6 + 8cge” + 9cqe + 0(e?)]. (7

Dividing (6) by (7), gives us
f&x 2 2 _ 3
o = €T C2e + (2¢2 —2¢c5)e* +. ..
—64c] +304c5c; — 176¢c5¢, — 408c¢3 +92c3cs + 348cZcsc, + 135¢,¢5 —
44c2cy — 118cyc5¢5 — 64cyc2 — 75¢%¢, + 19 ¢y + 27¢3¢4 + 31c,c5 — 7cg

)es + 0(e%). (8)

From (8), we have
W, =Y+ cye? + (—2c2 + 2¢c3)ed +. . .
64c] — 304c5cy + 176c5c, + 408c3c2 — 92c3cs — 48c2cycy — 135¢,¢3 ¢ +0(e%) ©)
+ 44cZcg + 118c,c5¢5 + 64c,¢2 + 75¢%c, — 19¢,0, — 7c3¢6 — 31cycs + 7cq '
Expanding f(w,,) about y to get
fw) = f')lcae® + (=265 + 2¢)e® + -
144c] — 552¢5¢c5 + 297c5¢, + 582c¢3c2 — 134c3cs — 455¢2c;¢, — 147¢,c3 ¢®] + 0(e”) (10)
+54cZcg + 134c,c5¢5 + 73¢,¢2 + 75¢2¢, — 19¢c,¢, — 27c¢3¢5 — 31cycs + 7cg
z, =7 + (2c3 — cyc5)et + (—9c¢s + 14c2c; — 2c,¢ — 2¢2)e5 +. . .
4 —204c7 + 99c3c; + 182c5c, + 385c3c2 — 113c3cg — 443c2czc, — 179¢,¢3 ¢ +0(e%) (11)
+35cZcg + 116¢,¢5¢5 + 64c,c% + 86¢3c, — 5¢,¢, — 13c3cq — 17c,4C5 '
From (11), we get
f(z,) = f'W)[Q2c3 — cyc3)e* + (—2c,c4 — 2¢2 + 14c3¢2 — 9ch)e +. . .
4 <—200c27 +95¢3c; + 182c5c, + 386¢3c2 — 113¢3 ¢ — 443c2c3¢, — 179¢,¢3

81+ 0(e?). 12
+35cZcg + 116¢,c5¢5 + 64c,¢2 + 86¢%c, — 5¢,0, — 13036, — 17¢4¢5 )e ] ) (12)
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From (6), (10) and (12), it can be easily determine that
flewn]l = W1+ ce +(c2 +c3)e? +. ..
—313c3 ¢3¢, + 116¢2 ¢3¢ + 56¢,¢%¢, — 36,05, — 40c,¢4¢5 — 256¢5 ¢4

+| + 184c5c, + 264cic2 —93cycs — 42¢2c3 + 45c3cg + 69cZc? — 20c2c, — 8cics |eB] + 0(e?). (13)
—8c3¢2 + 8c,cq + 8¢y, + 8cycq + A4S — 6CF + 4cE + ¢

flwn z, 1 = fFP[1 + c2e? + (—2c3 + 2¢,c3)e3 + (6¢5 — 7c2c; + 3c,c,)e*

+ (30c3c; — 12¢2c, — 4cyc2 + dcyes — 17¢3)e®] + 0(ef). (14)
flxnz,] = F/D[1+ ce + cze? +ce3 +. ..
+(—=10cyc3¢, — 73c5¢3 + 23c3cyd4c2cs — 3c2cs + 20¢ — 2¢3 + ¢,)eb] + 0(e7). (15)
By expanding H (s;), K(s,), B(s3) using Taylor series expansion, we have
H(s,) = H(0) + H'(0)s; + %H”(O)SIZ + %H”’(O)sf F. .. +0(s,9), (16)
K(sz) = K(0) + K'(0)s; +~K" (0)s5% +. . . +0(s;°), (17)
B(s3) = B(0) + B'(0)s3 +. . . +0(s59). (18)

Finally, using (11) - (15) and the conditions
H(0)=1, H'(0) = H"(0) =0, H"(0) = —6, [H®(0)| < oo,
K() =1,K'(0) =0, |K"(0)| < oo,
B(0) = 1,B(0) = 1.
We obtain the error expression
enyy =V + (iH(‘*)(O)czsc3 + 6c3K"(0)c; —3c3K"(0)cs + %czch”(O) —4c]JK"(0) — 9c3c5 + 2c5¢, +
4c23c32+2c27—c22c3c4—112/440c27e8+0e9. (19)

Method1: choosing
H(s;) =1-5s3+(ts;%),a=3, a,t ER
K(s;)=14+(s;*)u>1,u€R

B(s3) =1+ s;.
Then the method can be written as (SSM1).
Vo = Xp — f(xn)
n n f’(xn) !
. (fGe)” Fw),  fw)
= G —fe) e T ey
X1 = Zp — {{t $195," (5M + 1) + (s, (=53 + 1)) — 5.3 }s; + 1}}%. (20)

Method2: choosing
H(sp) =1-(s))%
K(s,)=1+s,*,u>1,u€R
B(s3) = 1 + sin (s3).

Then, (SSM2) will be as

S
PEERTEG
20 = Xy = Grieesl—s) - (1 + Gy2 + Ly,

f’ (xn)(f(xn) f(Wn)) fxn)
f(zn)f[xn.wnl
s = 7 — {0 = (5)?}{1 + 5,1 + sin(s, ) LC el 1)

2. NUMERICAL RESULTS

In this section, we present the numerical results obtained by employing the presented methods in (SSM1, SSM2) to
solve some nonlinear equations, Newton’s method (NM), (1), Al-Subaihi's method, (SM1), (2), and some optimal
eighth-order methods, as well as the Sharma method [11].

f(xn)
Wn = Xn = ac
Zn — Wn _ f(xn) . f(Wn)

f(xn)—Zf((Wn)) f'(x(n)') - ]

f(zn f(Zn)\2y f(@E)f[xnwn

= — 1 ’

Xnt1 “n ( + fen) + (f(xn)) )f[xnrzn]f[wnrzn]
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Wang and Liu method (BM8) [8].

fGen)
Wy, = Xp — f—,(x’;) ,
_ _ f(xn) . f(wn)
= Wn T G 2 e G o
f(z
xn+1 = Zn =

- 2f[Xn.zn]+f Wn.2n]=2f [XnWnl+(Wn —20) f [Wr Xn%n] *

Tables 2, show the numerical performances of the methods. The number of iterations (IT) required satisfying the
stopping criterion|x,, — y| < 107299, |f(x,,)| < 1072°0,

In addition, the computational order of convergence (COC) are also shown in Tables 2, the COC is defined by [12].
p= lnl(xn+1 - a)/(xn - a)l
In|Cx, — @)/ (xp-y — )|

Remark: The weighted function in (SSM1), a = 4,u = 4,t = 1 are chosen, and u = 6 for (SSM2).
3. CONCLUSION

In this work, we presented a new family of eighth—order methods based on a special case of Al-Subaihi’s method. The
method has been developed by replacing f'(z) using the divided difference and equivalent construction of weighted
functions to reduce the numbers of functions evaluation to four. Finally, other methods using numerical examples are
compared to explain the convergence of the new methods.

Table-1: Numerical properties of the methods are checked through five test examples
Functions Roots

f,(x) = xe*” — sin?(x) + 3cos(x) + 5 | ¥ =-1.20764782713092
L(x) =x>—(1-x)% y =0.143739259299754
f(x) =xe*+1log(1 +x+x*) y =0.0

fi(x) = x° + x* + 4x? — 15, 14
f:(x) = x% + log(1 + x), y =00

Table-2: Comparison of various iterative methods

Method | IT | f(x)] | Ix,—yl | coC
f,(x) = xe* —sin?(x) + 3cos(x) + 5,%x, = —1.1
NM 8 1.17628e-200 5.79239e-202 2
SM1 4 4.60169e-205 2.26601e-206 4
BM8 3 4.43873e-494 2.18577e-495 8
SHM - fails - -
SSM1 3 1.11912e-348 5.51091e-350 8
SSM2 3 8.07803e-361 3.97787e-362 8
f,(x) =x* - (1 —x)%5,x, =0.35
NM 10 3.32259e-325 3.73026e-325 2
SM1 5 1.27907e-210 1.43602e-210 4
BM8 - fails - -
SHM 4 0 0 6.4216
SSM1 4 3.48993e-663 3.91814e-663 8
SSM2 4 1.2724e-801 1.42852e-801 8
f:(x) =log (x* +x + 1) + xe*, x, = 0.25
NM 8 6.57994e-276 3.28997e-276 2
SM1 4 2.30177e-252 1.15088e-252 4
BM8 3 4.79076e-442 2.39538e-442 8
SHM 3 9.33255e-441 4.66628e-441 8
SSM1 3 1.52326e-454 7.61632e-455 8
SSM2 3 8.45612e-457 4.22806e-457 8
fo(x) = x> + x* +4x% — 15, x5 = 1.
NM 9 4.61266e-319 1.24511e-320 2
SM1 5 1.09129¢e-588 2.94576e-590 4
BM8 3 5.68394e-350 1.53429¢e-351 8
SHM 3 1.90069e-340 5.13061e-342 8
SSM1 3 3.87619e-317 1.04632e-318 8
SSM2 3 2.40633e-309 6.49549e-311 8
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fo(x) =x3+log (1 +x),x, =0.25
NM 8 6.0375e-307 6.0375e-307 2
SM1 4 6.11663e-212 6.11663e-212 4
BM8 3 1.29369e-444 1.29369e-444 8
SHM 3 1.66015e-423 1.66015e-423 8
SSM1 3 5.98477e-428 5.98477e-428 8
SSM2 3 9.75445e-425 9.75445e-425 8
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