International Journal of Mathematical Archive-9(9), 2018, 115-123 MAAvailable online through www.ijma.info ISSN 2229 - 5046 ## ON Ig**-CLOSED SETS IN IDEAL TOPOLOGICAL SPACE ### Dr. C. SANTHINI¹ AND S. NIVETHA*² ¹Associate Professor, Department of Mathematics, V. V. Vanniaperumal College for Women, Virudhunagar-626 001, India. ²Department of Mathematics, V. V. Vanniaperumal College for women, Virudhunagar-626 001, India. (Received On: 28-06-18; Accepted On: 19-09-18) #### **ABSTRACT** In this paper, we introduce and study the notion of I_g^{**} -closed sets along with their properties Furthermore A_I^g -set is introduced and characterized. **Keywords:** I_g **-closed set, τ_q^* - closed set, *-g-closed set, A_I^g -set. #### INTRODUCTION An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties : (1) $A \in I$ and $B \subseteq A$ implies $B \in I$, (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subseteq X$, $A^*(I, \tau) = \{x \in X: A \cap U \notin I \text{ for every } U \in \tau(x)\}$ is called the local function of A with respect to I and τ [7]. We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I, \tau)$ called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*$ [18]. A subset A of an ideal topological space (X, τ, I) is *-closed [6], if $A^* \subseteq A$ and a subset A of an ideal topological space (X, τ, I) is said to be *-perfect [5] if $A^* = A$. A subset A of an ideal topological space (X, τ) is said to be g-closed [3, 8], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. The complement of a g-closed set is g-open set [3, 8]. The collection of all g-open sets in a topological space (X, τ) is denoted by τ_g . For each subset A of X, A_g^* $(I, \tau) = \{x \in X: U_x \cap A \notin I$. For every g-open set U_x containing $x\}$, is called the g-local function of A [1] with respect to I and τ_g and is denoted by A_g^* . Also $\operatorname{cl}_g^*(A) = A \cup A_g^*$ [1] is a Kurotowski closure operator for a topology, $\tau_g^* = \{X - A : \operatorname{cl}_g^*(A) = A\}$ [1] on X which is finer than τ_g and the g-interior of A denoted by $\operatorname{Int}_g(A)$ [1] is the union of all g-open sets contained in A. In this paper we introduced I_g^{**} -closed sets and investigated some of their basic properties. Also we define A_I^g -set and study its properties. #### **PRELIMINARIES** **Definition 0.1:** A subset A of an ideal topological space (X, τ, I) is said to be - (i) τ_q^* closed [1] if $A_g^* \subseteq A$. - (ii) *-g-closed [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *-open in X. - (iii) I_g -*-closed [9] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is *-open in X. Corresponding Author: S. Nivetha*2 ²Department of Mathematics, V. V. Vanniaperumal College for women, Virudhunagar-626 001, India. **Definition: 0.2.** A subset A of an ideal topological space (X, τ, I) is said to be - (i) I_g -closed [14] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open in X. - (ii) rgI-closed [13] if $A_* \subseteq U$ whenever $A \subseteq U$ and U is regular open in X. - (iii) I_{rg} -closed [15] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is regular open in X. - (iv) $I_{g\delta}$ -closed [17] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is δ -open in X. **Definition 0.3:** A subset A of a topological space (X, τ) is said to be - (i) rg-closed [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X. - (ii) $g\delta$ -closed [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in X. **Definition 0.4:** A subset A of an ideal topological space (X, τ, I) is said to be - (i) I-locally *-closed [12] if $A = U \cap V$ where U is open and V is *-closed. - (ii) I-locally τ_q^* -closed [2] if $A = U \cap V$ where U is τ_q^* -open and V is τ_q^* -closed. - (iii) I-locally closed [4] if $A = U \cap V$ where U is open and V is *-perfect. **Definition 0.5:** [3] A space (X, τ, I) is called a T_1 -space if every I_g -closed subset of X is *-closed. ## 1. I, **- CLOSED SETS In this section, a new class of generalized closed set called $I_g^{\star\star}$ - closed set is introduced and some properties of this notion have been studied in ideal topological space and several characterizations of this notion are derived. **Definition 1.1:** A subset A of an ideal topological space (X, τ, I) is said to be an $I_{g^{**}}$ - closed set if $A_g^* \subseteq U$ whenever $A \subseteq U$ and U is *-open in X. **Example 1.2:** Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $I = \{\phi\}$. Then $\{a, b\}$ is an I_g^{**} -closed set. **Example 1.3:** Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}\$ and $I = \{\phi\}$. Then $\{b\}$ is not an I_{σ}^{**} -closed set. **Theorem 1.4:** Every τ_q^* -closed set is an I_g^{**} -closed set. **Proof:** Let A be a τ_g^* -closed set and U be a *-open set containing A. Since A is τ_g^* -closed, $A_g^* \subseteq A$. Hence $A_g^* \subseteq A \subseteq U$. Consequently A is an I_g^{**} -closed set. **Remark 1.5:** The converse of the above theorem is not true as seen from the following example. **Example 1.6:** Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $I = \{\phi, \{a\}, \{c\}, \{a, c\}\}$. Then $\{b\}$ is an I_g^{**} -closed set but not an τ_g -closed set **Theorem 1.7:** Every *-closed set is an I_g^{**} -closed set. **Proof:** Let A be a *-closed set and U be a *-open set containing A. Since A is *-closed set, $A^* \subseteq A$. By theorem 3.10 [1], $A_g^* \subseteq A^* \subseteq A \subseteq U$ and so $A_g^* \subseteq U$. Hence A is an I_g^{**} -closed set. **Remark 1.8:** The converse of the above theorem is not true as seen from the following example... **Example 1.9:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $I = \{\phi\}$. Then $\{a, c\}$ is an I_g^{**} -closed set but not a *-closed set. **Theorem 1.10:** Every *-g-closed set is an I_{σ}^{**} -closed set. **Proof:** Let A be a *-g-closed set such that $A \subseteq U$ where U is *-open. Since A is *-g-closed, $cl(A) \subseteq U$. By theorem 3.10 [1], $A_g^* \subseteq cl(A) \subseteq U$ and so $A_g^* \subseteq U$. Hence A is an I_g^{**} -closed set. **Remark 1.11:** The converse of the above theorem is not true as seen from the following example. **Example 1.12:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{c\}$ is an I_g^{**} -closed set but not a *-g-closed set. **Theorem 1.13:** Every I_g -*-closed set is a I_g **-closed set. **Proof:** Let A be a I_g -*-closed set such that $A \subseteq U$ where U is *-open. Since A is I_g -*-closed set, $A^* \subseteq U$. By theorem 3.10 [1], $A_g^* \subseteq A^*$. Hence $A_g^* \subseteq U$ and hence A is an I_g^{**} -closed set. **Remark 1.14:** The converse of the above theorem is not true as seen from the following example. **Example 1.15:** Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi, \{c\}\}$. Then $\{a\}$ is an I_g^{**} -closed set but not an I_g^{-*} -closed set. **Remark 1.16:** The following table shows the relations between I_g^{**} -closed sets and other known existing closed sets in ideal topological space, where the symbol "1" in a cell means that a set implies the other set and the symbol "0" means that a set does not imply the other set. | sets | Ig** - closed | $ rac{*}{g}$ - closed | * - closed | *-g- closed | I _g -*-closed | |--------------------------|---------------|-----------------------|------------|-------------|--------------------------| | Ig** - closed | 1 | 0 | 0 | 0 | 0 | | $ au_g^*$ - closed | 1 | 1 | 0 | 0 | 0 | | * - closed | 1 | 1 | 1 | 0 | 0 | | *-g- closed | 1 | 1 | 0 | 1 | 1 | | I _g -*-closed | 1 | 0 | 0 | 0 | 1 | **Remark 1.17:** I_g -closed sets and I_g^{**} -closed sets are independent of each other as seen from the following example. **Example 1.18:** Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Then $\{a\}$ is an I_g **-closed set but not an I_g -closed set. **Example 1.19:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, b\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{a, b\}$ is an I_g -closed set but not an I_g **-closed set. **Remark: 1.20.** I_{rg} -closed sets and I_{g} **-closed sets are independent of each other as seen from the following example. **Example 1.21:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi\}$. Then $\{a, b\}$ is an I_{rg} -closed set but not an I_{g} **-closed set. **Example 1.22:** Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi, \{b\}, \{c\}, \{b, c\}\}\}$. Then $\{a\}$ is an I_g **-closed set but not an I_{rg} -closed set. ## 1.1 CHARACTERIZATIONS OF Ig **- CLOSED SETS **Theorem 1.23:** Let (X, τ, I) be an ideal topological space. If A and B are I_g^{**} -closed sets, then $A \cup B$ is an I_g^{**} -closed set. **Proof:** Let U be a *-open such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are I_g^{**} -closed sets, $A_g^{*} \subseteq U$ and $B_g^{**} \subseteq U$ and so $A_g^{**} \cup B_g^{**} \subseteq U$. By theorem 3.7 [1], $(A \cup B)_g^{**} = A_g^{**} \cup B_g^{**}$ which implies $(A \cup B)_g^{**} \subseteq U$. Consequently $A \cup B$ is an I_g^{**} -closed set. **Theorem 1.24:** Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then the following are equivalent. - (i) A is an I_g**-closed set - (ii) $cl_{\mathfrak{g}}^*(A) \subseteq U$ whenever $A \subseteq U$ and U is *-open in X. - (iii) For all $x \in cl_g^*(A)$, $cl(\{x\}) \cap A \neq \emptyset$. #### Proof: (i) \Rightarrow (ii): Let A be an I_g^{**} -closed set and U be a *-open set containing A. Then $A_g^{*} \subseteq U$ which implies $cl_g^{*}(A) = A \cup A_g^{*} \subseteq U$ therefore $cl_g^{*}(A) \subseteq U$. (ii) \Rightarrow (iii): Suppose that $x \in cl_g^*(A)$. If $cl(\{x\}) \cap A = \emptyset$, then $A \subseteq (cl(\{x\}))^c$ where $(cl(\{x\}))^c$ is open. Since every open set is *-open, $(cl(\{x\}))^c$ is *-open .By (ii), $cl_g^*(A) \subseteq (cl(\{x\}))^c$ which is a contrary to $x \in cl_g^*(A)$. (iii) \Rightarrow (i): Suppose A is not an I_g^{**} -closed set. Then there exist a *-open set U such that $A \subseteq U$ and $A_g^{*} \not\subset U$. Then there exists $x \in A_g^{*}$ such that $x \notin U$ and hence $\{x\}\ U = \emptyset$. Since $A \subseteq U$, $cl(\{x\}) \cap A = \emptyset$ which is a contradiction to (iii). Hence A is an I_g^{**} -closed set. **Theorem 1.25:** If a subset A of an ideal topological space (X, τ, I) is an I_g^{**} -closed set, then $cl_g^{*}(A) - A$ contains no non-empty *-closed set. **Proof:** Let A be an I_g^{**} -closed set and U be a *-closed subset of $cl_g^{*}(A) - A$. Then $U \subseteq cl_g^{*}(A) - A = A_g^{*} \cap A^c$ which implies $U \subseteq A_g^{*}$. Moreover $U \subseteq A^c$ implies A Uc where U^c is *-open. Since A is an I_g^{**} -closed set, $A_g^{*} \subseteq U^c$. Hence we have $U \subseteq (A_g^{*})^c$ and so $U \subseteq A_g^{*} \cap (A_g^{*})^c = \emptyset$. Consequently $cl_g^{*}(A) - A$ contains no non-empty *-closed set. **Theorem 1.26:** If a subset A of an ideal topological space (X, τ, I) is an I_g^{**} -closed set, then A_g^{*} – A contains no non-empty *-closed set. **Proof:** Since $cl_g^*(A) - A = A_g^* - A$, proof follows from theorem 1.25. **Theorem 1.27:** Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If $A \subseteq A_g^*$ and A is I_g^{**} -closed, then A is - (i) rgI-closed. - (ii) I_g-closed. - (iii) rg-closed. - (iv) I_{rg}-closed. - (v) $I_{g\delta}$ -closed. - (vi) gδ-closed. #### **Proof:** - (i) Let A be an I_g^{**} -closed set and U be a regular open set containing A. Then $A \subseteq U$ where U is *-open. Since A is I_g^{**} -closed, $A_g^{*} \subseteq U$ and by theorem 3.10, $A_g^{*} = A^{*}$ and so A is rgI-closed. - Let A be a I_g^{**} -closed set and $A \subseteq U$ whenever U is an open set. Since every open set is *-open, $A_g^{*} \subseteq U$ and by theorem 3.10 [1], $A_g^{*} = A^{*}$. Hence A is an I_g -closed set. - (ii) Let A be an I_g^{**} -closed set and U be a regular open set containing A. Since regular open set is open and open set is *-open, A \subseteq U where U is *-open. Now A is an I_g^{**} -closed and by theorem 3.10 [1], $A_g^{*} = cl(A) \subseteq U$. Hence A is a rg-closed set. - (iii) Let A be an I_g^{**} -closed set. Suppose $A \subseteq U$ where U is regular open and consequently $A \subseteq U$ where U is *-open. Since A is a I_g^{**} -closed set $A_g^{*} \subseteq U$ By theorem 3.10 [1], $A_g^{*} = A^{*}$ which implies $A^{*} \subseteq U$. Hence A is a I_{rg} -closed set. - Let A be an I_g^{**} -closed set and then $A \subseteq U$ where U is δ -open. Since every δ -open set is open and every open set is *-open, $A \subseteq U$ where U is *-open. Since A is an I_g^{**} -closed set, $A_g^{*} \subseteq U$ and by theorem 3.10 [1], $A_g^{*} = A^*$ which implies $A^* \subseteq U$. Hence A is an $I_{g\delta}$ -closed set. - (vi) Let A be an I_g^{**} -closed set and U be a δ -open set. suchthat $A \subseteq U$ where U is *-open. Now A is an I_g^{**} -closed set implies $A_g^{*} \subseteq U$. By theorem 3.10 [1], $A_g^{*} = cl(A)$, which implies $cl(A) \subseteq U$. Hence A is a $g\delta$ -closed set. **Remark 1.28:** The converses of the above theorem are not true as seen from the following example. **Example 1.29:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi\}$. Then $\{a\}$ is a rgI-closed set but not an $I_g **-closed$ set. **Example 1.30:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, b\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{a, b\}$ is an I_g -closed set but not an I_g **-closed set. **Example 1.31:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi\}$. Then $\{a, b\}$ is a rg-closed set but not an $I_g **-closed$ set. **Example 1.32:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi\}$. Then $\{a, b\}$ is an I_{rg} -closed but not an I_{g} **-closed set. **Example 1.33:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}, \{a, c\}\}$ and $I = \{\phi\}$. Then $\{a\}$ is an $I_{g\delta}$ -closed set but not an I_g **-closed set. **Example 1.34:** Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{b\}, \{c, d\}, \{b, c, d\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{a, b\}$ is a $g\delta$ -closed set but not an I_g^{**} -closed set. **Theorem 1.35:** If A is an I_g^{**} -closed set of (X, τ, I) such that $A \subseteq B \subseteq A_g^{*}$, then B is also an I_g^{**} -closed set. **Proof:** Let $B \subseteq U$ where U is *-open. Now $A \subseteq B \subseteq U$ implies $A \subseteq U$. Since A is an I_g^{**} -closed set, $A_g^{*} \subseteq U$. Now $B \subseteq A_g^{*}$ and by theorem 3.7 [1], $B_g^{*} \subseteq (A_g^{*})_g^{*} \subseteq A_g^{*} \subseteq U$. Hence B is an I_g^{**} -closed set. **Theorem 1.36:** Let (X, τ, I) be an ideal topological space. For every $A \in I$ and $A \subseteq X$ where I = P(X), A is an $I_g **-closed$ set. **Proof:** Let $A \subseteq U$ where U is *-open. By theorem 3.5 [1], $A_g^* = \emptyset \subseteq U$. Hence A is an I_g^{**} -closed set. **Theorem 1.37:** Let (X, τ, I) be an ideal topological space, then A_g^* is an I_g^{**} -closed set for every subset A of X. **Proof:** Let $A_g^* \subseteq U$ where U is a *-open set in X. By theorem 3.7 [1], $(A_g^*)_g^* \subseteq A_g^* \subseteq U$. Hence A_g^* is an I_g^{**} -closed set. **Theorem 1.38:** Let (X, τ, I) be an ideal topological space. Then every ideal I is I_g^{**} -closed set. **Proof:** By theorem 3.12 [1], I is a τ_q^* -closed set. By theorem 1.4, I is an I_g^{**} -closed set. **Theorem 1.39:** Let (X, τ, I) be an ideal topological space and A be an I_g^{**} -closed subset of X. Then the following are equivalent: - (a) A is τ_q^* -closed. - (b) $A_g^* A$ is *-closed. #### Proof - (a) \Rightarrow (b): Since A is a τ_q^* -closed set, $A_g^* \subseteq A$ which implies $A_g^* A = \emptyset$. Therefore $A_g^* A$ is a *-closed set. - **(b)** \Rightarrow **(a)**: Suppose that $A_g^* A$ is a *-closed set. Since A is an I_g^{**} -closed set. By theorem 1.26, $A_g^* - A = \emptyset$ and so $A_g^* = A$ which implies $A_g^* \subseteq A$. Consequently A is a τ_g^* -closed set. **Theorem 1.40:** Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then the following are equivalent: - (a) A is an I_{σ}^{**} -closed set. - (b) $\operatorname{cl}_g^*(A) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is *-closed. #### Proof: - (a) \Rightarrow (b): Suppose that $A \cap F = \emptyset$ and F is *-closed. Then $A \subseteq X F$ where X F is *-open. Since A is an I_g **-closed set, cl_o *(A) $\subseteq X F$ which implies that cl_o *(A) $\cap F = \emptyset$. - (b) \Rightarrow (a): Let U be a *-open set containing A. Then A \cap (X-U) = \emptyset where X-U is a *-closed set. By (b), $cl_g*(A) \cap (X-U) = \emptyset$ and so $cl_g*(A) \subseteq U$ which implies A is an $I_g**-closed$ set. ## 1.2 I_g** - OPEN SETS In this section, we define I_g^{**} -open sets and basic properties of this notion are derived. **Definition 1.41:** A subset A of an ideal topological space (X, τ, I) is said to be I_g^{**} -open if X - A is an I_g^{**} - closed set. **Theorem 1.42:** Let (X, τ, I) be an ideal topological space then the following hold: - (i) Every τ_{a}^{*} -open set is I_{g}^{**} -open but not conversely. - (ii) Every *-open set is I_g **-open but not conversely. - (iii) Every *-g-open set is I_g^{**} -open but not conversely. - (iv) Every I_g -*-open set is I_g **-open but not conversely. **Theorem: 1.43:** Intersection of two I_g^{**} -open sets is I_g^{**} -open. **Proof:** Let A and B be two I_g^{**} -open sets. Then A^c and B^c are I_g^{**} -closed. By theorem1.23, $A^c \cup B^c$ is I_g^{**} -closed and so $(A \cap B)^c$ is an I_g^{**} -closed set. Hence $A \cap B$ is an I_g^{**} -open set. **Theorem 1.44:** Let (X, τ, I) be an ideal topological space and $A \subseteq X$, then A is I_g^{**} -open iff $F \subseteq \operatorname{int}_g^*(A)$ whenever $F \subseteq A$ and F is *-closed. **Proof:** Let A be an I_g^{**} -open set and F is a *-closed set such that $F \subseteq A$. Then $X-A \subseteq X-F$ where X-F is *-open. Since X-A is I_g^{**} -closed and $cl_g^*(X - A) \subseteq X - F$ which implies $F \subseteq X - (cl_g^*(X - A))$. Hence $F \subseteq int_g^*(A)$. Conversely, let U be a *-open set such that $X-A \subseteq U$. Then $X-U \subseteq A$ where X-U is *-closed and so $X-U \subseteq \operatorname{int}_g^*(A)$ implies $\operatorname{cl}_g^*(X-A) \subseteq U$ which implies X-A is I_g^{**} -closed. Hence A is an I_g^{**} -open set. **Theorem 1.45:** Let (X, τ, I) be an ideal topological space. Then for each $x \in X$ either $\{x\}$ is *-closed (or) I_g^* *-open. **Proof:** Suppose $\{x\}$ is not a *-closed set. Then $\{x\}^c$ is not a *-open set and hence X is the only *-open set containing $X - \{x\}$ and so $X - \{x\}$ is I_g **closed. Consequently $\{x\}$ is an I_g **-open set. **Theorem 1.46:** In a T_1 -space, every I_g -closed set is an I_g **-closed set. **Proof:** Let (X, τ, I) be a T_1 -space. Then every I_g -closed set in X is *-closed. By theorem 1.7, the result follows. Dr. C. Santhini and S. Nivetha $*^2$ / ON I_q** -Closed Sets in Ideal Topological Space / IJMA- 9(9), Sept.-2018. 1.3 $$\mathbf{A}_{I}^{g}$$ -set In this section, we introduce \mathbf{A}_{I}^{g} -set and investigated some of its properties. **Definition 1.47:** A subset A of an ideal topological space (X, τ, I) is said to be an A_I^g -set if $A = U \cap V$ where U is *-open and V is a τ_g^* -closed set. **Example 1.48:** Consider the ideal topological space (X, τ, I) where Let $X = \{a, b, c\}$, $T = \{\phi, X, \{a\}, \{a, b\}\}$ and $I = \{\phi, \{a\}\}$. Then $\{b,c\}$ is an A_I^g -set. **Remark 1.49:** Let (X, τ, I) be an ideal topological space. Then - (i) Every *-open set is an A_I^g -set. - (ii) Every τ_g^* -closed set is an A_I^g -set. #### **Proof:** - (i) Let A be a *-open set. Then $A = A \cap X$ where A is *-open and X is τ_g^* -closed and hence A is an A_I^g -set. - (ii) Let A be an τ_g^* -closed set. Then $A = X \cap A$ where X is *-open and A is τ_g^* -closed and hence A is an A_I^g -set. Remark 1.50: The converses of the above theorem are not true as shown in the following example **Example 1.51:** Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}\)$ and $I = \{\phi, \{a\}\}.$ Then $\{c\}$ is an A_I^g -set but not a *-open set. **Example 1.52:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $I = \{\phi, \{a\}\}$. Then $\{b\}$ is an A_I^g -set but not a τ_g^* -closed set. **Theorem: 1.53:** Every I-locally *-closed set is an A_I^g -set. **Proof:** Let A be an I-locally *-closed set. Then $A = \mathbb{U} \setminus V$ where U is open and V is a *-closed set .Since every *-closed set is a τ_g^* -closed set, V is τ_g^* -closed. Hence A is an A_I^g -set. **Remark 1.54:** The converse of the above theorem is not true as shown in the following example. **Example 1.55:** Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}\$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}.$ Then $\{a, c\}$ is an A_I^g -set but not an I-locally *-closed set. **Theorem 1.56:** Every A_I^g -set is I-locally τ_q^* -closed. **Proof:** Let A be an A_I^g -set. Then A=U \cap V where U is *-open and V is τ_g^* -closed. Since every *-open set is τ_g^* -open, $A = U \cap V$ where U is τ_g^* -open and V is τ_g^* - closed. Hence A is an I-locally τ_g^* -closed set. Remark 1.57: The converse of the above theorem is not true as seen from the following example **Example 1.58:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $I = \{\phi\}$. Then $\{a, c\}$ is an I-locally τ_g^* -closed set but not an A_I^g -set. **Theorem 1.59:** Every I-locally closed set is an A_I^g -set. **Proof:** Let A be an I-locally closed set. Then $A = U \cap V$ where U is open and V is *-perfect. Since every *-perfect set is τ_q^* -closed. Hence A is an A_I^g -set. **Remark 1.60:** From the above relations we get the following diagram where $1 \rightarrow 2$ represents 1 implies 2. - 1: A_I^g -set - 2: I-locally *-closed - 3: I-locally closed set - 4: I-locally τ_g^* -closed **Theorem 1.61:** Let (X, τ, I) be an ideal topological space, then the intersection of two A_I^g -sets is an A_I^g -set. **Proof:** Let A and B be A_I^g -sets .Then $A = U_1 \cap V_1$ and $B = U_2 \cap V_2$ where U_1 and U_2 are *-open sets and V_1 and V_2 are τ_g -closed sets. Now, $A \cap B = (U_1 \cap V_1) \cap (U_2 \cap V_2) = (U_1 \cap U_2) \cap (V_1 \cap V_2)$ where $U_1 \cap U_2$ is *-open and $V_1 \cap V_2$ is τ_g^* -closed which implies that $A \cap B$ is an A_I^g -set. **Theorem: 1.62:** Let (X, τ, I) be an ideal topological space and A be an A_I^g -set of X, then the following hold - (a) If B is a τ_g^* -closed set, then $A \cap B$ is an A_I^g -set. - (b) If B is a *-open set, then A \cap B is an A g_I -set.. **Proof:** Since A is an A_I^g -set, there exists a *-open set U and a τ_g^* -closed set F such that $A = U \cap F$. - (a) $A \cap B = (U \cap F) \cap B = U \cap (F \cap B)$ where $F \cap B$ is a τ_g^* -closed set and so $A \cap B$ is an A_I^g -set. - (b) $A \cap B = (U \cap F) \cap B = (U \cap B) \cap F$ where $U \cap B$ is a *-open set and so $A \cap B$ is an A_I^g -set. **Theorem: 1.63:** Let A be a subset of an ideal topological space (X, τ, I) . Then the following are equivalent. - (i) A is an A_I^g -set and an I_g^{**} -closed set , - (ii) A is a τ_g^* -closed set. #### Proof: (i) \Rightarrow (ii): Since A is an A_I^g -set, $A = U \cap V$ where U is a *-open set and V is a τ_g^* -closed set. Therefore $A \subseteq U$ and $A \subseteq V$. Since A is an I_g^{**} -closed set, $A_g^{*} \subseteq U$. Also V is a τ_g^* -closed and $A_g^{*} \subseteq V_g^{*} \subseteq V$ which implies $A_g^{*} \subseteq V$. Consequently, $A_g^{*} \subseteq U \cap V = A$ and hence A is a τ_g^* -closed set. (ii) \Rightarrow (i): A be a τ_g^* -closed set. By remark 1.49, A is an A_I^g -set and by theorem 1.4, A is an I_g^{**} -closed set. **Theorem: 1.64.** If A subset A of an ideal topological space (X, τ, I) is τ_g^* -closed Then A is I-locally τ_g^* -closed set and I_e^{**} -closed set. **Proof:** Since A is τ_g^* -closed, by theorem 1.4, A is an I_g^{**} -closed. Also since every τ_g^* -closed set is I-locally τ_g^* -closed set, A is I-locally τ_g^* -closed set. **Remark 1.65:** The converse of the above theorem is not true as shown in the following example **Example 1.66:** Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $I = \{\phi, \{a\}\}$. Then $\{b\}$ is an I-locally τ_g^* -closed set and also I_g^{**} -closed set but not a τ_g^* -closed Set. #### REFERENCES - 1. Bhavani. K, On g-Local functions, Journal of advanced studies in topology, Modern science publishers, 5(1) (2013), 1-5. - 2. Bhavani. K, Generalized Locally-g-closed sets, Bol. Soc. Paran. Mat.v.352 (2017): 171-175. - 3. Dontchev. J, Ganster. M and Noiri. T, Unified approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-409. - 4. Dontchev. J, Idealization of Ganster Reilly Decomposition Theorems Math.GN/9901017, (5), Jan.1999. - 5. Hayashi. E, Topologies defined by local properties, Math.Ann, 156(1964), 205-215. - 6. Jankovic, D, Hamlett, T.R, New topologies from old via ideals, Amer.Math. Monthly, 1990, 97(4), 295-310. - 7. Kuratowski. K, Topology, Vol. I, Academic press, New york, 1966. - 8. Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2), 1970, 19, 89-96. - 9. Meena. K, Nethaji. O, Premkumar. R and Ravi. O, Ig-?-closed Sets, International Journal of Current Research in Science and Technology Volume 3, Issue 1 (2017), 2394-5745. - 10. Muthulakshmi. A, Ravi. O and Vijaya. S, gδ-closed sets in topological spaces, submitted. - 11. Mukherjee. M.N, Dhananjoy Mandala, Certain New Classes of Generalized Closed Sets and Their Applications in Ideal Topological Spaces (2015), 1113-1120. - 12. Navaneetha krishnan. M, Sivaraj. D, Generalised locally closed sets in ideal topological space, Bull. Allahabad Math.Soc. Vol.24, Part1, 2009.13-19. - 13. Nirmala Rebecca Paul, RgI-closed sets in ideal Topological Spaces, IJCA, Volume 69,(4), 2013 .23-27. - 14. Navaneethakrishnan. M and Sivaraj. D, Regular generalized closed sets in ideal topological space, Journal of Advanced Research in Pure Mathematics, Vol. 2, Issue 3(2010), 24-33. - 15. Navaneethakrishnan. M and Paulraj Joseph. J, g-closed sets in ideal topological spaces, Acta.Math. Hungar. 119 (2008), 365-371. - 16. Palaniappan. N and Rao. K.C, Regular generalized closed sets, Kyungpook Math. J., 33(2)(1993), 211-219. - 17. Ravi. O, Asokan. R, Thiripuram. A, Another Generalized Closed Sets in Ideal Topological Spaces, International Journal of Mathematics And its Applications, Volume 3, Issue 3-A (2015), 63-73. - 18. Vadiyanathaswamy. R, Set topology, Chelsea publishing company, New york, 1960. #### Source of support: Nil, Conflict of interest: None Declared. [Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]