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ABSTRACT 
In this paper, we introduce and study the notion of  Ig**-closed sets along with their properties Furthermore A𝑔𝐼 -set is 
introduced and characterized. 
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INTRODUCTION 
 
An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following 
properties : (1) A ∈ I and B ⊆ A implies B ∈ I, (2) A ∈ I and B ∈ I implies A ∪ B ∈ I. An ideal topological space is a 

topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I). For a subset A ⊆ X, A*(I, τ) = {x ∈ X: A ∩ U 

∉ I for every U ∈ τ(x)} is called the local function of A with respect to I and τ [7]. We simply write A* in case there is 

no chance for confusion. A Kuratowski closure operator cl*(.) for a topology τ*(I, τ) called the ∗-topology, finer than τ 

is defined by cl*(A) = A ∪ A* [18]. A subset A of an ideal topological space (X, τ, I) is ∗-closed [6], if A* ⊆ A and a 

subset A of an ideal topological space (X, τ, I) is said to be ∗-perfect [5] if A* = A. A subset A of an ideal topological 

space (X, τ) is said to be g-closed [3, 8], if cl(A) ⊆ U whenever A ⊆ U and U is open. The complement of a g-closed set 
is g-open set [3, 8]. The collection of all g-open sets in a topological space (X, τ) is denoted by τg . For each subset A of 
X, Ag* (I, τ) = {x ∈ X: Ux ∩ A ∉ I. For every g-open set Ux containing x}, is called the g-local function of A [1] with 
respect to I and τg and is denoted by Ag*. 
 
Also clg*(A) = A ∪ Ag* [1] is a Kurotowski closure operator for a topology, τ

∗
𝑔 = {X–A: clg*(A) = A} [1] on X which 

is finer than τg and the g-interior of A denoted by Intg(A) [1] is the union of all g-open sets contained in A. In this paper 
we introduced Ig**-closed sets and investigated some of their basic properties. Also we define A𝑔𝐼 -set and study its 
properties. 
 
PRELIMINARIES 
 
Definition 0.1: A subset A of an ideal topological space (X, τ, I) is said to be 

(i)    τ
∗
𝑔 - closed [1] if Ag* ⊆ A . 

(ii)   ∗-g-closed [11] if cl(A) ⊆ U whenever A ⊆ U and U is ∗-open in X. 

(iii)   Ig-∗-closed [9] if A* ⊆ U whenever A ⊆ U and U is ∗-open in X. 
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Definition: 0.2. A subset A of an ideal topological space (X, τ, I) is said to be 

(i) Ig-closed [14] if A* ⊆ U whenever A ⊆ U and U is open in X. 

(ii) rgI-closed [13] if A∗ ⊆ U whenever A ⊆ U and U is regular open in X. 

(iii) Irg-closed [15] if A* ⊆ U whenever A ⊆ U and U is regular open in X. 

(iv) Igδ-closed [17] if A* ⊆ U whenever A ⊆ U and U is δ-open in X. 
 
Definition 0.3: A subset A of a topological space (X, τ) is said to be 

(i) rg-closed [16] if cl(A) ⊆ U whenever A ⊆ U and U is regular open in X. 

(ii) gδ-closed [10] if cl(A) ⊆ U whenever A ⊆ U and U is δ-open in X. 
 
Definition 0.4: A subset A of an ideal topological space (X, τ, I) is said to be 

(i) I-locally ∗-closed [12] if A = U ∩ V where U is open and V is ∗-closed.        

(ii) I-locally τ
∗
𝑔-closed [2] if A = U ∩ V where U is τ

∗
𝑔-open and V is τ

∗
𝑔-closed.  

(iii) I-locally closed [4] if A = U ∩ V where U is open and V is ∗-perfect.  
 
Definition 0.5: [3] A space (X, τ, I) is called a T1-space if every Ig-closed subset of X is ∗-closed. 
 
1. Ig∗∗- CLOSED SETS 
 
In this section, a new class of generalized closed set called Ig∗∗- closed set is introduced and some properties of this 
notion have been studied in ideal topological space and several characterizations of this notion are derived. 
 
Definition 1.1: A subset A of an ideal topological space (X, τ, I) is said to be an Ig∗∗- closed set if Ag* ⊆ U whenever    

A ⊆ U and U is ∗-open in X . 
 
Example 1.2: Let X= {a, b, c, d}, τ = {φ, X, {a}, {a, c}} and I = {φ}. Then {a, b} is an Ig∗∗-closed set. 
 
Example 1.3: Let X= {a, b, c}, τ = {φ, X, {a}, {a, b}} and I = {φ}. Then {b} is not an Ig**-closed set.  
 
Theorem 1.4: Every τ

∗
𝑔-closed set is an Ig**-closed set. 

 
Proof: Let A be a τ

∗
𝑔-closed set and U be a ∗-open set containing A. Since A is τ

∗
𝑔-closed, Ag* ⊆ A.  

Hence Ag* ⊆ A ⊆ U. Consequently A is an Ig∗∗-closed set. 
 
Remark 1.5: The converse of the above theorem is not true as seen from the following example. 
 
Example 1.6: Let X= {a, b, c, d}, τ = {φ, X, {b}, {a, b}, {b, c}, {a, b, c}, {a, b, d}} and I= {φ, {a}, {c}, {a, c}}. Then 

{b} is an Ig∗∗-closed set but not an τ
∗
𝑔-closed set 

 
Theorem 1.7: Every ∗-closed set is an Ig∗∗-closed set. 
 
Proof: Let A be a ∗-closed set and U be a ∗-open set containing A. Since A is ∗-closed set, A* ⊆ A. By theorem 3.10 

[1], Ag* ⊆ A* ⊆ A ⊆ U and so Ag* ⊆ U. Hence A is an Ig∗∗-closed set. 
 
Remark 1.8: The converse of the above theorem is not true as seen from the following example.. 
 
Example 1.9: Let X= {a, b, c} ,τ = {φ, X, {a}, {a, b}} and I= {φ}. Then {a, c} is an Ig∗∗-closed set but not a ∗-closed 
set. 
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Theorem 1.10: Every ∗-g-closed set is an Ig∗∗-closed set. 
 
Proof: Let A be a ∗-g-closed set such that A ⊆ U where U is ∗-open. Since A is ∗-g-closed, cl(A) ⊆ U. By theorem 3.10 

[1], Ag* ⊆ cl(A) ⊆ U and so Ag* ⊆ U. Hence A is an Ig∗∗-closed set. 
 
Remark 1.11: The converse of the above theorem is not true as seen from the following example. 
 
Example 1.12: Let X= {a, b, c}, τ = {φ, X, {a}, {b, c}} and I= {φ, {a}, {b}, {a, b}}. Then {c} is an Ig∗∗-closed set but 

not a ∗-g-closed set. 
 
Theorem 1.13: Every Ig-∗-closed set is a Ig**-closed set. 
 
Proof: Let A be a Ig-∗-closed set such that A ⊆ U where U is ∗-open. Since A is 
 
Ig-∗-closed set, A* ⊆ U. By theorem 3.10 [1], Ag* ⊆ A*. Hence Ag* ⊆ U and hence A is an Ig∗∗-closed set. 
 
Remark 1.14: The converse of the above theorem is not true as seen from the following example. 
 
Example 1.15: Let X= {a, b, c, d}, τ = {φ, X, {a}, {b}, {a, b}} and I= {φ, {c}}. Then {a} is an Ig∗∗-closed set but not 

an Ig-∗-closed set. 
 
Remark 1.16: The following table shows the relations between Ig**-closed sets and other known existing closed sets in 
ideal topological space. where the symbol ”1”in a cell means that a set implies the other set and the symbol ”0” means 
that a set does not imply the other set. 
 

sets Ig∗∗ - closed τ
∗
𝑔 - closed ∗ - closed ∗-g- closed Ig-∗-closed 

Ig∗∗ - closed 1 0 0 0 0 

τ
∗
𝑔  - closed 1 1 0 0 0 

∗ - closed 1 1 1 0 0 

∗-g- closed 1 1 0 1 1 

Ig-∗-closed 1 0 0 0 1 

 
Remark 1.17: Ig-closed sets and Ig∗∗-closed sets are independent of each other as seen from the following example. 
 
Example 1.18: Let X= {a, b, c, d}, τ = {φ, X, {a}, {b}, {a, b}} and I= {φ, {b}, {c}, {b, c}}. Then {a} is an                  
Ig **-closed set but not an Ig-closed set. 
 
Example 1.19: Let X= {a, b, c}, τ = {φ, X, {a, b}} and I= {φ, {a}, {b}, {a, b}}. Then {a, b} is an Ig -closed set but not 
an Ig**-closed set. 
 
Remark: 1.20. Irg-closed sets and Ig**-closed sets are independent of each other as seen from the following example. 
 
Example 1.21: Let X= {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and I= {φ}. Then {a, b} is an Irg -closed set but not an 
Ig**-closed set. 
 
Example 1.22: Let X= {a, b, c, d}, τ = {φ, X, {a}, {b}, {a, b}} and I= {φ, {b}, {c}, {b, c}}.Then {a} is an Ig **-closed 
set but not an Irg-closed set. 
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1.1 CHARACTERIZATIONS OF Ig **- CLOSED SETS 
 
Theorem 1.23: Let (X, τ, I) be an ideal topological space. If A and B are Ig**-closed sets, then A ∪ B is an Ig**-closed 
set. 
 
Proof: Let U be a ∗-open such that A ∪ B ⊆ U .Then A ⊆ U and B ⊆ U. Since A and B are Ig**-closed sets, Ag* ⊆ U 

and Bg* ⊆ U and so Ag* ∪ Bg* ⊆ U. By theorem 3.7 [1], (A ∪ B)g* = Ag* ∪ Bg* which implies (A ∪ B)g* ⊆ U. 

Consequently A ∪ B is an Ig**-closed set. 
 
Theorem 1.24: Let (X, τ, I) be an ideal topological space and A ⊆ X. Then the following are equivalent. 

(i)    A is an Ig**-closed set 
(ii)    clg*(A) ⊆ U whenever A ⊆ U and U is ∗-open in X. 

(iii)   For all x ∈ clg*(A), cl({x}) ∩ A ≠ ∅. 
 
Proof: 
(i)⇒(ii): Let A be an Ig**-closed set and U be a ∗-open set containing A. Then Ag* ⊆ U which implies  

clg*(A) = A ∪ Ag* ⊆ U therefore clg*(A) ⊆ U. 

(ii)⇒(iii): Suppose that x ∈ clg*(A). If cl({x}) ∩ A = ∅, then A ⊆ (cl({x}))c where (cl({x}))c  is open. Since every open 

set is ∗-open, (cl({x}))c  is ∗-open .By (ii), clg*(A) ⊆ (cl({x}))c which is a contrary to x ∈ clg*(A). 

(iii)⇒(i): Suppose A is not an Ig**-closed set. Then there exist a ∗-open set U such that A ⊆ U and Ag* ⊄  U. Then there 

exists x ∈ Ag* such that x ∉ U and hence {x} U = ∅. Since A ⊆ U, cl({x}) ∩ A = ∅ which is a contradiction to (iii). 
Hence A is an Ig**-closed set. 
 
Theorem 1.25: If a subset A of an ideal topological space (X, τ, I) is an Ig**-closed set, then clg* (A) – A contains no 
non-empty ∗-closed set. 
 
Proof: Let A be an Ig**-closed set and U be a ∗-closed subset of clg* (A) – A. Then U ⊆ clg* (A) – A = Ag* ∩ A c 

which implies U ⊆ Ag*. Moreover U ⊆ Ac implies A Uc where Uc is ∗-open. Since A is an Ig**-closed set, Ag* ⊆ Uc. 

Hence we have U ⊆ (Ag*)c and so U ⊆ Ag* ∩ (Ag*)c = ∅. Consequently clg*(A) – A contains no non-empty ∗-closed 
set. 
 
Theorem 1.26: If a subset A of an ideal topological space (X, τ, I) is an Ig**-closed set, then Ag* – A contains no non-
empty ∗-closed set. 
 
Proof: Since clg*(A) – A = Ag* – A , proof follows from theorem 1.25. 
 
Theorem 1.27: Let (X, τ, I) be an ideal topological space and A ⊆ X. If A ⊆ Ag* and A is Ig**-closed, then A is  

(i) rgI-closed. 
(ii) Ig-closed. 
(iii) rg-closed. 
(iv) Irg-closed. 
(v)   Igδ-closed. 
(vi) gδ-closed. 

 
Proof: 

(i) Let A be an Ig**-closed set and U be a regular open set containing A. Then A ⊆ U where U is ∗-open. Since A 

is Ig**-closed, Ag* ⊆ U and by theorem 3.10, Ag* = A* and so A is rgI-closed. 

 Let A be a Ig**-closed set and A ⊆ U whenever U is an open set. Since every open set is ∗-open,  Ag* ⊆ U and 
by theorem 3.10 [1], Ag* = A*. Hence A is an Ig-closed set. 

(ii) Let A be an Ig**-closed set and U be a regular open set containing A. Since regular open set is open and open 
set is ∗-open, A ⊆ U where U is ∗-open. 
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       Now A is an Ig**-closed and by theorem 3.10 [1], Ag* = cl(A) ⊆ U. Hence A is a rg-closed set. 

(iii) Let A be an Ig**-closed set. Suppose A ⊆ U where U is regular open and consequently A ⊆ U where U is        

∗-open. Since A is a Ig**-closed set Ag* ⊆ U By theorem 3.10 [1], Ag* = A* which implies A* ⊆ U. Hence A 
is a Irg-closed set. 

 Let A be an Ig**-closed set and then A ⊆ U where U is δ-open. Since every δ-open set is open and every open 

set is ∗-open, A ⊆ U where U is ∗-open. Since A is an Ig**-closed set, Ag* ⊆ U and by theorem 3.10 [1],     

Ag* = A* which implies A* ⊆ U. Hence A is an Igδ-closed set. 

(vi) Let A be an Ig**-closed set and  U be a δ-open set. suchthat A ⊆ U where U is ∗-open. Now A is an            

Ig**-closed set implies Ag* ⊆ U. By theorem 3.10 [1], Ag* = cl(A) ,which implies cl(A) ⊆ U . Hence A is a 
gδ-closed set. 

 
Remark 1.28: The converses of the above theorem are not true as seen from the following example. 
 
Example 1.29: Let X= {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and I= {φ}. Then {a} is a rgI-closed set but not an       
Ig**-closed set. 
 
Example 1.30: Let X= {a, b, c}, τ = {φ, X, {a, b}} and I={φ, {a}, {b}, {a, b}}. Then {a, b} is an Ig -closed set but not 
an Ig**-closed set. 
 
Example 1.31: Let X= {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and I= {φ}. Then {a, b} is a rg-closed set but not an    
Ig**-closed set. 
 
Example 1.32: Let X= {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and  I= {φ}. Then {a, b} is an Irg-closed but not an        
Ig**-closed set. 
 
Example 1.33: Let X= {a, b, c}, τ = {φ, X, {c}, {a, c}} and I= {φ}. Then {a} is an Igδ -closed set but not an Ig**-closed 
set. 
  
Example 1.34: Let X= {a, b, c, d}, τ = {φ, X, {b}, {c, d}, {b, c, d}} and I= {φ, {a}, {b}, {a, b}}. Then {a, b} is a        
gδ-closed set but not an Ig**-closed set. 
 
Theorem 1.35: If A is an Ig**-closed set of (X, τ, I) such that A ⊆ B ⊆ Ag*, then B is also an Ig**-closed set. 
 
Proof: Let B ⊆ U where U is ∗-open. Now A ⊆ B ⊆ U implies A ⊆ U. Since A is an Ig**-closed set, Ag* ⊆ U. Now      

B ⊆ Ag* and by theorem 3.7 [1], Bg* ⊆ (Ag*)g* ⊆ Ag* ⊆ U .Hence B is an Ig**-closed set. 
 
Theorem 1.36: Let (X, τ, I) be an ideal topological space. For every A ∈ I and A ⊆ X where I = P(X), A is an          
Ig**-closed set. 
 
Proof: Let A ⊆ U where U is ∗-open. By theorem 3.5 [1], Ag* = ∅ ⊆ U. Hence A is an Ig**-closed set. 
 
Theorem 1.37: Let (X, τ, I) be an ideal topological space, then Ag* is an Ig**-closed set for every subset A of X. 
 
Proof: Let Ag* ⊆ U where U is a ∗-open set in X. By theorem 3.7 [1], (Ag*)g* ⊆ Ag* ⊆ U. Hence Ag* is an Ig**-closed 
set. 
 
Theorem 1.38: Let (X, τ, I) be an ideal topological space. Then every ideal I is Ig**-closed set. 
 
Proof: By theorem 3.12 [1], I is a τ

∗
𝑔 -closed set. By theorem 1.4, I is an Ig**- closed set. 

 
Theorem 1.39: Let (X, τ, I) be an ideal topological space and A be an Ig**-closed subset of X. Then the following are 
equivalent: 

(a) A is τ
∗
𝑔 -closed. 

(b) Ag* – A is ∗-closed. 
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Proof: 
(a) ⇒(b): Since A is a τ

∗
𝑔-closed set, Ag* ⊆ A which implies Ag* – A = ∅. Therefore Ag* – A is a ∗-closed set. 

(b) ⇒(a): Suppose that Ag* – A is a ∗-closed set. Since A is an Ig**-closed set.  
 
By theorem 1.26, Ag* – A = ∅ and so Ag* = A which implies Ag* ⊆ A. Consequently A is a τ

∗
𝑔-closed set. 

  
Theorem 1.40: Let (X, τ, I) be an ideal topological space and A ⊆ X. Then the following are equivalent: 

(a) A is an Ig**-closed set. 
(b) clg*(A) ∩ F = ∅ whenever A ∩ F = ∅ and F is ∗-closed. 

 
Proof: 
(a) ⇒(b): Suppose that A ∩ F = ∅ and F is ∗-closed. Then A ⊆ X – F where X – F is ∗-open. Since A is an Ig**-closed 

set, clg*(A) ⊆ X – F which implies that clg*(A) ∩ F = ∅. 
 
(b) ⇒ (a): Let U be a ∗-open set containing A. Then A ∩ (X–U) = ∅ where X–U is a ∗-closed set.  

By (b), clg*(A) ∩ (X–U) = ∅ and so clg*(A) ⊆ U which implies A is an Ig**-closed set. 
 
1.2 Ig** - OPEN SETS 
 
In this section, we define Ig** -open sets and basic properties of this notion are derived. 
 
Definition 1.41: A subset A of an ideal topological space (X, τ, I) is said to be Ig**-open if X – A is an Ig**- closed set. 
 
Theorem 1.42: Let (X, τ, I) be an ideal topological space then the following hold:                                                                                                                                                                                                                                                           

(i) Every τ
∗
𝑔 -open set is Ig**-open but not conversely. 

(ii) Every ∗-open set is Ig**-open but not conversely. 

(iii) Every ∗-g-open set is Ig**-open but not conversely. 

(iv) Every Ig-∗-open set is Ig**-open but not conversely. 
 
Theorem: 1.43: Intersection of two Ig**-open sets is Ig**-open. 
  
Proof: Let A and B be two Ig**-open sets. Then Ac and Bc are Ig**-closed. By theorem1.23, Ac ∪ Bc is Ig**-closed and 
so (A ∩ B)c is an Ig**-closed set. Hence A ∩ B is an Ig**-open set. 
 
Theorem 1.44: Let (X, τ, I) be an ideal topological space and A ⊆ X, then A is Ig**-open iff F ⊆ intg*(A) whenever      

F ⊆ A and F is ∗-closed. 
  
Proof: Let A be an Ig**-open set and F is a ∗-closed set such that F ⊆ A. Then X–A ⊆ X – F where X – F is ∗-open. 

Since X–A is Ig**-closed and clg*(X – A) ⊆ X – F  

which implies F ⊆ X – (clg*(X – A)). Hence F ⊆ intg*(A). 

Conversely, let U be a ∗-open set such that X–A ⊆ U. Then X–U ⊆ A where X–U is ∗-closed and so X–U ⊆ intg*(A) 

implies clg*(X–A) ⊆ U which implies X–A is Ig**-closed. Hence A is an Ig**-open set. 
 
Theorem 1.45: Let (X, τ, I) be an ideal topological space. Then for each x ∈ X either {x} is ∗-closed (or) Ig**-open.   
 
Proof: Suppose {x} is not a ∗-closed set. Then {x}c is not a ∗-open set and hence X is the only ∗-open set containing      
X – {x} and so X – {x} is Ig**closed. Consequently {x} is an Ig**-open set. 
 
Theorem 1.46: In a T1-space, every Ig-closed set is an Ig**-closed set. 
 
Proof: Let (X, τ, I) be a T1-space.Then every Ig-closed set in X is ∗-closed. By theorem 1.7, the result follows.  
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1.3 A𝑔𝐼 -set 
 
In this section, we introduce A𝑔𝐼 -set and investigated some of its properties. 
 
Definition 1.47: A subset A of an  ideal topological space (X, τ, I) is said to be an  A𝑔𝐼 -set if A = U ∩ V where U is       

∗-open and V is a τ
∗
𝑔-closed set.  

 
Example 1.48: Consid er the id eal top olog ical sp ace (X, τ, I) where Let X= {a, b, c}, T= {φ, X, {a}, {a, b}} and           
I= {φ, {a}}. Then {b,c} is an A𝑔𝐼 -set. 
 
Remark 1.49: Let (X, τ, I) be an ideal topological space. Then 

(i) Every ∗-open set is an A𝑔𝐼 -set. 

(ii) Every τ
∗
𝑔-closed set is an A𝑔𝐼 -set. 

 
Proof: 

(i) Let A be a ∗-open set. Then A = A ∩ X where A is ∗-open and X is τ
∗
𝑔-closed and hence A is an A𝑔𝐼 -set. 

(ii) Let A be an τ
∗
𝑔-closed set. Then A = X ∩ A where X is ∗-open and A is τ

∗
𝑔-closed and hence A is an A𝑔𝐼 -set. 

 
Remark 1.50: The converses of the above theorem are not true as shown in the following example 
 
Example 1.51: Let X= {a, b, c}, τ = {φ, X, {a}, {a, b}} and I= {φ, {a}}. Then {c} is an A𝑔𝐼 -set but not a ∗-open set. 
 
Example 1.52: Let X= {a, b, c}, τ = {φ, X, {a}, {a, b}} and I= {φ, {a}}. Then {b} is an A𝑔𝐼 -set but not a τ

∗
𝑔 -closed 

set. 
 
Theorem: 1.53: Every I-locally ∗-closed set is an A𝑔𝐼 -set. 
 
Proof: Let A be an I-locally ∗-closed set. Then A = U ∩ V where U is open and  V is a ∗-closed set .Since every           

∗-closed set is a τ
∗
𝑔-closed set, V is τ

∗
𝑔-closed. Hence A is an A𝑔𝐼 -set. 

 
Remark 1.54: The converse of the above theorem is not true as shown in the following example. 
 
Example 1.55: Let X= {a, b, c}, τ = {φ, X, {a}, {b, c}} and I= {φ, {a}, {b}, {a, b}}. 
 
Then {a, c} is an A𝑔𝐼 -set but not an I-locally ∗-closed set. 
 
Theorem 1.56: Every A𝑔𝐼 -set is I-locally τ

∗
𝑔-closed. 

 

Proof: Let A be an A𝑔𝐼 -set. Then A=U ∩ V where U is ∗-open and V is τ
∗
𝑔-closed. 

Since every ∗-open set is τ
∗
𝑔-open, A = U ∩ V where U is τ

∗
𝑔-open and V is τ

∗
𝑔- closed. Hence A is an I-locally τ

∗
𝑔-

closed set. 
 
Remark 1.57: The converse of the above theorem is not true as seen from the following example 
 
Example 1.58: Let X= {a, b, c}, τ = {φ, X, {a}, {a, b}} and I= {φ}. Then {a, c} is an I-locally τ

∗
𝑔-closed set but not an 

A𝑔𝐼 -set. 
 
 
 
 



Dr. C. Santhini1 and S. Nivetha*2 / ON Ig**-Closed Sets in Ideal Topological Space / IJMA- 9(9), Sept.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       122  

 
Theorem 1.59: Every I-locally closed set is an A𝑔𝐼 -set. 
 
Proof: Let A be an I-locally closed set. Then A = U ∩ V where U is open and V is ∗-perfect. Since every ∗-perfect set 

is τ
∗
𝑔-closed. Hence A is an A𝑔𝐼 -set. 

 
Remark 1.60: From the above relations we get the following diagram where 1 → 2 represents 1 implies 2. 

 
 
 
 
 

Theorem 1.61: Let (X, τ, I) be an ideal topological space, then the intersection of two A𝑔𝐼 -sets is an A𝑔𝐼 -set. 
 
Proof: Let A and B be A𝑔𝐼 -sets .Then A = U1 ∩ V1 and B = U2 ∩ V2 where U1 and U2 are ∗-open sets and V1 and V2 are 

τ
∗
𝑔-closed sets. 

Now, A ∩ B =(U 1 ∩ V1) ∩ (U2 ∩ V2)= (U1 ∩ U2) ∩ (V1 ∩ V2) where U1 ∩ U2 is ∗-open and V1 ∩ V2 is τ
∗
𝑔-closed 

which implies that A ∩ B is an A𝑔𝐼 -set. 
 
Theorem: 1.62: Let (X, τ, I) be an ideal topological space and A be an A𝑔𝐼 -set of X, then the following hold 

(a) If B is a τ
∗
𝑔-closed set, then A ∩ B is an A𝑔𝐼 -set. 

(b) If B is a ∗-open set, then A ∩ B is an A𝑔𝐼 -set.. 
 
Proof: Since A is an A𝑔𝐼 -set, there exists a ∗-open set U and a τ

∗
𝑔-closed set F such that A = U ∩ F. 

 (a) A ∩ B = (U ∩ F) ∩ B = U ∩ (F ∩ B) where F ∩ B is a τ
∗
𝑔-closed set and so A ∩B is an A𝑔𝐼 -set. 

 (b) A ∩ B = (U ∩ F) ∩ B = (U ∩ B) ∩ F where U ∩ B is a ∗-open set and so A ∩ B is an A𝑔𝐼 -set. 
 
Theorem: 1.63: Let A be a subset of an ideal topological space (X, τ, I). Then the following are equivalent.        

(i)  A is an A𝑔𝐼 -set and an Ig**-closed set , 

(ii) A is a τ
∗
𝑔-closed set. 

 
Proof: 
(i) ⇒ (ii): Since A is an A𝑔𝐼 -set, A = U ∩ V where U is a ∗-open set and V is a τ

∗
𝑔-closed set. Therefore A ⊆ U and A ⊆ 

V. Since A is an Ig**-closed set, Ag* ⊆ U. Also V is a τ
∗
𝑔-closed and Ag* ⊆ Vg* ⊆ V which implies Ag* ⊆ V. 

Consequently, Ag* ⊆ U ∩ V = A and hence A is a τ
∗
𝑔-closed set. 

(ii) ⇒ (i):  A be a τ
∗
𝑔-closed set. By remark 1.49, A is an A𝑔𝐼 -set and by theorem 1.4, A is an Ig**-closed set. 

 
Theorem: 1.64. If A subset A of an ideal topological space (X, τ, I) is τ

∗
𝑔-closed Then A is I-locally τ

∗
𝑔-closed set and 

Ig**-closed set. 
 
Proof: Since A is τ

∗
𝑔-closed, by theorem 1.4, A is an Ig**-closed. Also since every τ

∗
𝑔-closed set is I-locally τ

∗
𝑔-closed 

set, A is I-locally τ
∗
𝑔-closed set. 

1: A𝑔𝐼 -set 2: I-locally ∗-closed 

3: I-locally closed set 4: I-locally τ
∗
𝑔-closed 



Dr. C. Santhini1 and S. Nivetha*2 / ON Ig**-Closed Sets in Ideal Topological Space / IJMA- 9(9), Sept.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       123  

 
Remark 1.65: The converse of the above theorem is not true as shown in the following example  
 
Example 1.66: Let X= {a, b, c}, τ = {φ, X, {a}, {a, b}} and I= {φ, {a}}. Then {b} is an I-locally τ

∗
𝑔-closed set and also 

Ig**-closed set but not a τ
∗
𝑔-closed Set. 
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