Volume 9, No. 3, March - 2018 (Special Issue) International Journal of Mathematical Archive-9(3), 2018, 1-5 MAAvailable online through www.ijma.info ISSN 2229 - 5046

CHARACTERIZATION OF NEUTROSOPHIC NOWHERE DENSE SETS

R. DHAVASEELAN^{1*}, R. NARMADA DEVI² AND S. JAFARI³

^{1*}Department of Mathematics, Sona College of Technology, Salem-636005, Tamil Nadu, India.

²Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai, Tamil Nadu, India.

³Department of Mathematics, College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark.

E-mail: dhavaseelan.r@gmail.com1, narmadadevi23@gmail.com2 and jafaripersia@gmail.com3

ABSTRACT

In this paper, the concept of neutrosophic nowhere dense set is introduced and characterizations of neutrosophic nowhere dense sets are studied.

Keywords: Neutrosophic dense set; neutrosophic open hereditarily irresolvable; neutrosophic nowhere dense set.

2010 Mathematics Subject Classification: 54A40, 03E72.

1. INTRODUCTION AND PRELIMINARIES

The fuzzy concept has imposed a great influence in almost all branches of mathematics since the introduction of fuzzy sets by L. A. Zadeh [14]. The theory of fuzzy topological space was introduced and developed by C. L. Chang [6] and since then various notions in classical topology have been extended into the context of fuzzy topological space. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1] and some research in this respect have been done by him and his colleagues [2, 3, 4]. Later, this concept was generalized to "intuitionistic L - fuzzy sets" by Atanassov and Stoeva [5]. The concept of nowhere dense set in intuitionistic fuzzy topological space introduced by S. S. Thakur and R. Dhavaseelan in [13]. F. Smarandache introduced the important and useful concepts of neutrosophy and neutrosophic set [[11], [12]]. The concepts of neutrosophic crisp set and neutrosophic crisp topological space were introduced by A. A. Salama and S. A. Alblowi [10]. The Basic definitions and Proposition related to neutrosophic topological spaces was introduced and discussed by Dhavaseelan et al. [8].

In this paper, we introduce the concept of neutrosophic nowhere dense set and study its fundamental properties. Her we mention some well-known notions which will be used in what follows.

Definition 1.1: Let T,I,F be real standard or non standard subsets of $]0^-,1^+[$, with $sup_T = t_{sup}$, $inf_T = t_{inf}$ $sup_I = i_{sup}$, $inf_I = i_{inf}$ $sup_F = f_{sup}$, $inf_F = f_{inf}$ $n - sup = t_{sup} + i_{sup} + f_{sup}$ $n - inf = t_{inf} + i_{inf} + f_{inf}$. T,I,F are neutrosophic components.

Definition 1.2: Let X be a nonempty fixed set. A neutrosophic set (briefly NS) A is an object having the form $A = \{\langle x, \mu_{_A}(x), \sigma_{_A}(x), \gamma_{_A}(x) \rangle : x \in X\}$ where $\mu_{_A}(x), \sigma_{_A}(x)$ and $\gamma_{_A}(x)$ which represents the degree of membership function (namely $\mu_{_A}(x)$), the degree of indeterminacy (namely $\sigma_{_A}(x)$) and the degree of nonmembership (namely $\gamma_{_A}(x)$) respectively of each element $x \in X$ to the set A.

International Journal of Mathematical Archive- 9(3), March – 2018

Remark 1.1:

- A neutrosophic set $A = \{\langle x, \mu_{_A}(x), \sigma_{_A}(x), \gamma_{_A}(x) \rangle : x \in X \}$ can be identified to an ordered triple $\langle \mu_{_A}, \sigma_{_A}, \gamma_{_A} \rangle$ in $]0^-, 1^+[$ on X.
- For the sake of simplicity, we shall use the symbol $A = \langle \mu_A, \sigma_A, \gamma_A \rangle$ for the neutrosophic set $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X \}$.

Definition 1.3: Let X be a nonempty set and the neutrosophic sets A and B in the form

$$A = \{\langle x, \mu_{_A}(x), \sigma_{_A}(x), \gamma_{_A}(x) \rangle : x \in X \} \,, \ B = \{\langle x, \mu_{_B}(x), \sigma_{_B}(x), \gamma_{_B}(x) \rangle : x \in X \} \,. \text{ Then }$$

- $\bullet \ A \subseteq B \ \text{ iff } \ \mu_{_{A}}(x) \leq \mu_{_{B}}(x) \,, \ \sigma_{_{A}}(x) \leq \sigma_{_{B}}(x) \ \text{ and } \ \gamma_{_{A}}(x) \geq \gamma_{_{B}}(x) \ \text{ for all } \ x \in X \ ;$
- A = B iff $A \subset B$ and $B \subset A$;
- $\overline{A} = \{\langle x, \gamma_{_A}(x), \sigma_{_A}(x), \mu_{_A}(x) \rangle : x \in X \}$; [Complement of A]
- $\bullet \ A \cap B = \{\langle x, \mu_{_A}(x) \wedge \mu_{_B}(x), \sigma_{_A}(x) \wedge \sigma_{_B}(x), \gamma_{_A}(x) \vee \gamma_{_B}(x) \rangle : x \in X\};$
- $\bullet \ A \cup B = \{\langle x, \mu_{_A}(x) \vee \mu_{_R}(x), \sigma_{_A}(x) \vee \sigma_{_R}(x), \gamma_{_A}(x) \wedge \gamma_{_R}(x) \rangle : x \in X\};$
- [] $A = \{\langle x, \mu_{_A}(x), \sigma_{_A}(x), 1 \mu_{_A}(x) \rangle : x \in X\}$;
- $\langle A = \{ \langle x, 1 \gamma_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X \}$.

Definition 1.4: Let $\{A_i : i \in J\}$ be an arbitrary family of neutrosophic sets in X. Then

- $\bullet \ \bigcap A_i = \{\langle x, \land \mu_{A_i}(x), \land \sigma_{A_i}(x), \lor \gamma_{A_i}(x) \rangle : x \in X\};$
- $\bigcup A_i = \{\langle x, \vee \mu_{A_i}(x), \vee \sigma_{A_i}(x), \wedge \gamma_{A_i}(x) \rangle : x \in X \}$.

Since our main purpose is to construct the tools for developing neutrosophic topological spaces, we must introduce the neutrosophic sets 0_{X} and 1_{X} in X as follows:

Definition 1.5:
$$0_N = \{\langle x, 0, 0, 1 \rangle : x \in X \}$$
 and $1_N = \{\langle x, 1, 1, 0 \rangle : x \in X \}$.

Definition 1.6: [8] A neutrosophic topology (briefly NT) on a nonempty set X is a family T of neutrosophic sets in X satisfying the following axioms:

- $0_{N}, 1_{N} \in T$,
- $G_1 \cap G_2 \in T$ for any $G_1, G_2 \in T$,
- $\cup G_i \in T$ for arbitrary family $\{G_i \mid i \in \Lambda\} \subseteq T$.

In this case the ordered pair (X,T) or simply X is called a neutrosophic topological space (briefly NTS(X)) and each neutrosophic set in T is called a neutrosophic open set (briefly NOS). The complement \overline{A} of a NOS A in X is called a neutrosophic closed set (briefly NCS) in X.

Definition 1.7: [8] Let A be a neutrosophic set in a NTS(X). Then

$$Nint(A) = \bigcup \{G \mid G \text{ is an } NOS \text{ in X and } G \subseteq A\}$$
 is called the neutrosophic interior of A ; $Ncl(A) = \bigcap \{G \mid G \text{ is an } NCS \text{ in X and } G \supseteq A\}$ is called the neutrosophic closure of A .

Definition 1.8: Let X be a nonempty set. If r,t,s be real standard or non standard subsets of $]0^-,1^+[$ then the neutrosophic set $x_{r,t,s}$ is called a neutrosophic point(briefly NP) in X given by

$$x_{r,t,s}(x_p) = \begin{cases} (r,t,s), & \text{if } x = x_p \\ (0,0,1), & \text{if } x \neq x_p \end{cases}$$

for $x_p \in X$ is called the support of $x_{r,t,s}$, where r denotes the degree of membership value, t denotes the degree of indeterminacy and s is the degree of non-membership value of $x_{r,t,s}$.

2. NEUTROSOPHIC NOWHERE DENSE SETS

Definition 2.1: A neutrosophic set A in NTS (X,T) is called neutrosophic dense if there exists no neutrosophic closed set B in (X,T) such that $A \subset B \subset 1_N$

Definition 2.2: A neutrosophic set A in NTS (X,T) is called neutrosophic nowhere dense set if there exists no NOS, U in (X,T) such that $U \subset Ncl(A)$. That is $NintNcl(A) = 0_N$.

Example 2.1: Let $X = \{a, b, c\}$. Define the neutrosophic sets A, B and C as follows:

$$A = \langle x, (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.5}) \rangle \ B = \langle x, (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.6}), (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.6}), (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}) \rangle \ , \text{ and }$$

$$C = \langle x, (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.4}), (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.4}) (\frac{a}{0.7}, \frac{b}{0.7}, \frac{c}{0.4}) \rangle \ . \text{ Then the family } \ T = \{0_N, 1_N, A\} \ \text{ is an } \ NT$$
on X. Thus, (X, T) is an Neutrosophic Topology .

Now $NintNcl(\overline{A}) = 0_N$, $NintNcl(\overline{B}) = 0_N$, $NintNcl(C) = 0_N$, $NintNcl(B) = 1_N \neq 0_N$, $NintNcl(\overline{C}) = 1_N \neq 0_N$. and \overline{A} , \overline{B} and \overline{C} are neutrosophic nowhere dense sets in (X,T). B and \overline{C} are not neutrosophic nowhere dense set in (X,T).

Proposition 2.1: Let A be a neutrosophic set. If A is a neutrosophic closed set in (X,T) with $Nint(A) = 0_N$, then A is a neutrosophic nowhere dense set in (X,T).

Proof: Let A be a neutrosophic closed set in (X,T). Then Ncl(A) = A. Now $Nint(Ncl(A)) = Nint(A) = 0_N$ and hence A is a neutrosophic nowhere dense set A in (X,T).

Proposition 2.2: Let A be a neutrosophic set. If A is a neutrosophic nowhere dense set in (X,T), then $Nint(A) = 0_N$.

Proof: Let A be a neutrosophic nowhere dense set in (X,T). Now $A \subseteq Ncl(A)$ implies that $Nint(A) \subseteq NintNcl(A) = 0_N$. Hence we have $Nint(A) = 0_N$.

The converse of Proposition 2.2, need not be true as shown in Example 2.2.

Example 2.2: Let $X = \{a, b, c\}$. Define the neutrosophic sets

$$A = \langle x, (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.5}), (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.5}), (\frac{a}{0.4}, \frac{b}{0.5}, \frac{c}{0.5}) \rangle B = \langle x, (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.4}), (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.4}), (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.6}) \rangle, \\ C = \langle x, (\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.5}), (\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.5}), (\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.4}) \rangle, \text{ and } D = \langle x, (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.4}), (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.4}), (\frac{a}{0.7}, \frac{b}{0.5}, \frac{c}{0.5}) \rangle. \text{ Clearly } T = \{0_N, 1_N, A, B, C\} \text{ is an } NT \text{ on } X \text{ . Thus } (X, T) \text{ is an } NT \text{ . Now } Nint(D) = 0_N,$$

where as $NintNcl(D) = B \neq 0_N$. Also $Ncl(D) = \overline{C} \neq D$. Hence D is not a neutrosophic nowhere dense set in (X,T). Also D is not a neutrosophic closed set in (X,T).

Remark 2.1: The complement of a neutrosophic nowhere dense set need not be a neutrosophic nowhere dense set. See Example 2.3.

Example 2.3: Let $X = \{a, b, c\}$. Define the neutrosophic sets

 $A = \langle x, (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.5}), (\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.5}) \rangle \text{ and } B = \langle x, (\frac{a}{0.4}, \frac{b}{0.3}, \frac{c}{0.5}), (\frac{a}{0.4}, \frac{b}{0.3}, \frac{c}{0.5}), (\frac{a}{0.6}, \frac{b}{0.7}, \frac{c}{0.5}) \rangle. \text{ Clearly } T = \{0_N, 1_N, A\} \text{ is a neutrosophic topology on X. Thus } (X, T) \text{ is an } NT \text{ . Now } B \text{ is a neutrosophic nowhere dense set in } (X, T) \text{ where as } \overline{B} \text{ is not a neutrosophic nowhere dense set, since } NintNcl(\overline{B}) = Nint(1_N) = 1_N \neq 0_N.$

Proposition 2.3: If A is a neutrosophic dense, NOS in (X,T), such that $B \subseteq \overline{A}$, then B is a neutrosophic nowhere dense set in (X,T).

Proof: Let A be a neutrosophic open set in (X,T) such that $Ncl(A) = 1_N$. Now $B \subseteq \overline{A}$ implies that $Ncl(B) \subseteq Ncl(\overline{A}) = \overline{A}$. Then we have $NintNcl(B) \subseteq Nint(\overline{A}) = \overline{Ncl(A)} = 0_N$ and hence $NintNcl(B) = 0_N$. Therefore B is a neutrosophic nowhere dense sets in (X,T).

Proposition 2.4: If A is a neutrosophic closed set in (X,T), then A is a neutrosophic nowhere dense set in (X,T) if and only if $Nint(A) = 0_N$.

Proof: Let A be a neutrosophic closed set in (X,T), with $Nint(A)=0_N$. Then by Proposition 2.1, A is a neutrosophic nowhere dense set in (X,T). Conversely, let A be a neutrosophic nowhere dense set in (X,T). Then $NintNcl(A)=0_N$ which implies that $Nint(A)=0_N$. Since A is a neutrosophic closed, Ncl(A)=A. The proofs of following propositions are obvious.

Definition 2.3: Let A be a neutrosophic set. The NT, (X,T) is called neutrosophic open hereditarily irresolvable if $NintNcl(A) \neq 0_N$, then $Nint(A) \neq 0_N$ for any non-zero neutrosophic set in (X,T)

Proposition 2.5: If (X,T) is a neutrosophic open hereditarily irresolvable space, any non zero neutrosophic set A with $Nint(A) = 0_N$ is a neutrosophic nowhere dense set in (X,T).

Proof: Let A be a non zero neutrosophic set in a neutrosophic open hereditarily irresolvable space (X,T) with $Nint(A) = 0_N$. Suppose that $NintNcl(A) \neq 0_N$. Since (X,T) is neutrosophic open hereditarily irresolvable space, $Nint(A) \neq 0_N$, which is contradiction to $Nint(A) = 0_N$. Hence we must have $NintNcl(A) = 0_N$ and therefore A is a neutrosophic nowhere dense set in (X,T).

Proposition 2.6: If A is a neutrosophic nowhere dense set in (X,T), then \overline{A} is a neutrosophic dense set in (X,T).

Proof: Let A be a neutrosophic nowhere dense set in (X,T). Then by Proposition 2.2, we have, $Nint(A) = 0_N$.

Now $Ncl(\overline{A}) = \overline{Nint(A)} = 1_N$. Therefore \overline{A} is a neutrosophic dense set in (X,T).

Proposition 2.7: If A is an intuition sitic fuzzy dense and neutrosophic open set in (X,T), then \overline{A} is a neutrosophic nowhere dense set in (X,T).

Proof: Let A be a neutrosophic open set in (X,T) such that $Ncl(A) = 1_N$.

Now $NintNcl(\overline{A}) = \overline{NclNint(A)} = \overline{Ncl(A)} = 0_N$. Hence \overline{A} is a neutrosophic nowhere dense set in (X,T).

Proposition 2.8: If A is a neutrosophic nowhere dense set in (X,T), then Ncl(A) is a neutrosophic nowhere dense set in (X,T).

Proof: Let Ncl(A) = B. Now $NintNcl(B) = NintNcl(Ncl(A)) = NintNcl(A) = 0_N$. Hence B = Ncl(A) is a neutrosophic nowhere dense set in (X,T).

Proposition 2.9: If A is a neutrosophic nowhere dense set in (X,T), then $\overline{Ncl(A)}$ is a neutrosophic dense set in (X,T).

Proof: By Proposition 2.8, we have Ncl(A) is a neutrosophic nowhere dense set in (X,T). By Proposition 2.6, we have $\overline{Ncl(A)}$ is a neutrosophic dense set in (X,T).

Proposition 2.10: Let A be a neutrosophic dense set in a neutrosophic topological space (X,T). If B is a neutrosophic set in (X,T), then B is a neutrosophic nowhere dense set in (X,T) if and only if $A \cap B$ is a neutrosophic nowhere dense set in (X,T).

Proof: Let B be a neutrosophic nowhere dense set in (X,T).

Now

 $NintNcl(A \cap B) = Nint(Ncl(A)) \cap Nint(Ncl(B)) = Nint(1_N) \cap Nint(Ncl(B)) = NintNcl(B) = 0_N.$ Therefore $A \cap B$ is a neutrosophic nowhere dense set in (X,T).

Conversely, let $A \cap B$ be a neutrosophic dense set in (X,T). Then $NintNcl(A \cap B) = 0_N$ implies that $Nint(Ncl(A)) \cap Nint(Ncl(B)) = 0_N$. Hence $Nint(1_N) \cap Nint(Ncl(B)) = 0_N$ and therefore $Nint(Ncl(B)) = 0_N$ which means that B is a neutrosophic nowhere dense set in (X,T).

REFERENCES

- 1. K. Atanassov, Intuitionistic fuzzy sets, in: V. Sgurev, Ed., VII ITKR's Session, Sofia(June 1983 Central Sci. and Techn. Library, Bulg. Academy of Sciences, 1984).
- 2. K. Atanassov, intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- 3. K. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88, Sofia, 1988.
- 4. K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, in: *Polish Syrup. on Interval &Fuzzy Mathematics*, *Poznan*, (August 1983) 23-26.
- 5. K. Atanassov and S. Stoeva, Intuitionistic L-fuzzy sets, in: *R. Trappl, Ed., Cyberneticand System Research, Vol.* 2 (Elsevier, Amsterdam, 1984) 539-540.
- 6. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182-190.
- 7. D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems., 88, (1997), 81-89.
- 8. R. Dhavaseelan and S. Jafari, Generalized neutrosophic closed sets (to appear).
- 9. R. Dhavaseelan, E. Roja and M. K. Uma, Intuitionistic fuzzy resolvable and intuitionistic fuzzy irresolvable spaces, *Scientia Magna*, 7, (2011), 59-67.
- 10. A. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces, *IOSR Journal of Mathematics*, Volume 3, Issue 4 (Sep-Oct. 2012), PP 31-35
- 11. F. Smarandache , Neutrosophy and neutrosophic Logic, First International Conference on Neutrosophy , Neutrosophic Logic , Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002) , smarand@unm.edu
- 12. F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.
- 13. S. S. Thakur and R. Dhavaseelan, Nowhere Dense sets in intuitionistic fuzzy topological spaces, Proceedings of National Seminar on Recent Developments in Topology,11-12 February, 2015.
- 14. L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965) 338-353.

Source of support: National Conference on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.