Volume 9, No. 3, March - 2018 (Special Issue) International Journal of Mathematical Archive-9(3), 2018, 6-9 MAAvailable online through www.ijma.info ISSN 2229 - 5046 #### PAIRWISE FUZZY e -CONNECTEDNESS BETWEEN FUZZY SETS ## M. POONGUZHALI¹, C. LOGANATHAN² AND A. VADIVEL³ ¹Department of Mathematics, SSM College of Arts and Science, Komarapalayam, Namakkal, Tamil Nadu-638 183, India. ²Department of Mathematics, Maharaja Arts and Science College, Coimbatore, Tamil Nadu- 641 407, India. ³Department of Mathematics, Govt. Arts College (Autonomous), Karur, Tamil Nadu-639 005, India. E-mail: poonguzhaliwin86@gmail.com1, clogu@rediffmail.com2 and avmaths@gmail.com3. #### **ABSTRACT** In this paper the concept of fuzzy e -connectedness between fuzzy sets is generalized to fuzzy bitopological spaces and some of its properties are studied. Key words and phrases: Fuzzy bitopological spaces, pairwise fuzzy, e - Connectedness, (i, j) -fuzzy e -clopen. AMS (2000) subject classification: 54A40. ## 1. INTRODUCTION The concept of fuzzy set was introduced by Zadeh [21] provided a natural foundation for building new branches in mathematics. Fuzzy sets have applications in many fields such as information [17] and control [18]. In 1968 Chang [4] introduced fuzzy topological space using fuzzy sets. Kandil [7] defined and studied the concept of fuzzy bitopological spaces as a generalization of bitopological spaces [9] in fuzzy setting. Since then many results from classical topology are being extended in both fuzzy topological and fuzzy bitopological spaces ([2], [3], [6], [7], [8], [12]-[15], [20]) and their properties were also investigated. The initiations of e -open sets in topological spaces are due to Ekici [5]. In fuzzy topology, e -open sets were introduced by Seenivasan in 2015 [16]. In 1993, Maheswari [10] introduced the concept of connectedness between fuzzy sets. In this paper the concepts of fuzzy e-connectedness between fuzzy sets generalized to fuzzy bitopological spaces and some of its properties are studied. ### 2. PRELIMINARIES Let X and Y be non-empty sets. A fuzzy set λ in X is a mapping from X to the unit interval [0, 1]. The null fuzzy set 0 (resp. the whole fuzzy set 1) is the mapping from X to the unit interval [0, 1] which takes the only value 0 (resp. 1) in that interval. The closure denoted by Cl (λ) (interior, denoted by I nt(λ)) of a fuzzy set λ of X is the intersection (union) of all fuzzy closed supersets (fuzzy open subsets, respectively) of λ [4]. For a fuzzy set λ of a fuzzy topological space X, $1 - I \, nt(\lambda) = Cl(l - \lambda)$ and $1 - Cl(\lambda) = I \, nt(\lambda)$. A fuzzy set λ in X is said to be quasi-coincident [11] with a fuzzy set μ in X denoted by $\lambda q\mu$ if there exists a point $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ and μ , are two fuzzy sets of X, then $\lambda \leq \mu$ if and only if λ and $1-\mu$ are not quasi-coincident. A fuzzy topological space (X, τ) is said to be fuzzy connected [6] if there is no proper fuzzy set in X which is both fuzzy open and fuzzy closed. A fuzzy topological space (X, τ) is said to be fuzzy connected [10] between its subsets λ and μ if and only if there is no fuzzy closed fuzzy open set δ in X such that $\lambda \leq \delta$ and \neg ($\delta q\mu$). # M. Poonguzhali¹, C. Loganathan² and A. Vadivel³/ Pairwise Fuzzy e -connectedness Between Fuzzy Sets / IJMA- 9(3), March-2018, (Special Issue) **Definition 2.1:** A fuzzy subset λ in an fts (X, τ) is c Called fuzzy regular open (fro, for Short) [1] if $\lambda = I \, nt \, Cl(\lambda)$ and regular closed if $\lambda = ClInt(\lambda)$. **Definition 2.2:** [16] The fuzzy δ-interior of subset λ of X is the union of all fuzzy regular open sets contained in λ and fuzzy δ closure of subset λ of X is the intersection of all fuzzy regular closed sets containing λ . **Definition 2.3:** [19] A subset is λ called fuzzy δ open if $\lambda = \delta Int(\lambda)$. The complement of fuzzy δ open set is called fuzzy δ closed (i.e., $\lambda = \delta Cl(\lambda)$.) **Definition 2.4:** A subset λ is called fuzzy e -open [16] if $\lambda \leq IntCl_{\delta}(\lambda) \vee ClInt_{\delta}(\lambda)$. The complement of a fuzzy e -open is called fuzzy e -closed. **Definition 2.5:** [16] The intersection of all fuzzy e-closed sets containing λ is called fuzzy e-closure of λ and is denoted by $feCl(\lambda)$ and the union of all fuzzy e-open sets contained λ is called fuzzy e-interior of λ and is denoted by $feInt(\lambda)$. A system (X, τ_1, τ_2) consisting of a set X with two topologies τ_1 and τ_2 on X is called a fuzzy bitopological space [7]. A fuzzy bitopological space (X, τ_1, τ_2) is said to be pairwise fuzzy connected [11] if it has no proper fuzzy set which is both τ_i fuzzy open and τ_j -fuzzy closed, i, j = 1, 2, i \neq j. The purpose of this paper is to introduce and study the concept of pairwise fuzzy e -connectedness between fuzzy sets in fuzzy bitopological spaces. Throughout this paper i, j = 1, 2 where $i \neq j$. If P is any fuzzy topological property then τ_i - P and τ_j - P denote the property P with respect to the fuzzy topology τ_i and τ_j respectively and χA denotes the characteristic function of a subset A of X. #### 3. PAIRWISE FUZZY e -CONNECTEDNESS BETWEEN FUZZY SETS **Definition 3.1:** A fuzzy bitopological space (X, τ_1, τ_2) is said to be pairwise fuzzy e - connected between fuzzy sets λ and μ if there is no (i, j) -fuzzy e -clopen $(\tau_i$ -fuzzy e -closed and τ_j -fuzzy e -open) set δ in X such that $\lambda \leq \delta$ and $\neg (\delta q \mu)$ **Remark 3.1:** Pairwise fuzzy e -connectedness between fuzzy sets λ and μ is not equal to the fuzzy connectedness of (X, τ_1) and (X, τ_2) between λ and μ . **Example 3.1:** Let X = {a, b, c} and let μ_1 , μ_2 , μ_3 , μ_4 , η_1 , η_1 , η_2 , η_3 and be fuzzy sets on X defined as follows: $\mu_1(a) = 0.7$, $\mu_1(b) = 1$, $\mu_1(c) = 0$; $\mu_2(a) = 0.2$, $\mu_2(b) = 0$, $\mu_2(c) = 1$; $\mu_3(a) = 0.7$, $\mu_3(b) = 1$, $\mu_3(c) = 1$; $\mu_4(a) = 0.2$, $\mu_4(b) = 0$, $\mu_4(c) = 0$; $\eta_1(a) = 0$, $\eta_1(b) = 0.3$, $\eta_1(c) = 0$; $\eta_2(a) = 0$, $\eta_2(b) = 0$, $\eta_2(c) = 1$; $\eta_3(a) = 0$, $\eta_3(b) = 0.3$, $\eta_3(c) = 1$; $\eta_4(a) = 0.3$, $\eta_4(b) = 0$, $\eta_4(c) = 0.2$. Let $\tau_1 = \{0, 1, \mu_1, \mu_2, \mu_3, \mu_4\}$ and $\tau_2 = \{0, 1, \eta_1, \eta_2, \eta_3\}$ be fuzzy topologies on X. Then (X, τ_1) and (X, τ_2) are fuzzy e (resp. δs and δp)-connected between the fuzzy sets μ_4 and η_4 . But (X, τ_1, τ_2) is not pairwise fuzzy e (resp. δs and δp)-connected between μ_4 and η_4 . **Example 3.2:** Let X = {a, b}. Let fuzzy sets μ_5 , μ_6 , μ_7 , η_5 , η_6 and η_7 be defined as follows: μ_5 (a) = 0.2, μ_5 (b) = 0, μ_5 (c) = 0; μ_6 (a) = 0.5, μ_6 (b) = 0.5, μ_6 (c) = 0.5; μ_7 (a) = 0.3, μ_7 (b) = 0.2, μ_7 (c) = 0; μ_8 (a) = 0.3, μ_8 (b) = 0.3, μ_8 (c) = 0.1; η_5 (a) = 0.2, η_5 (b) = 0.1, η_5 (c) = 0; η_6 (a) = 0.6, η_6 (b) = 0.6, η_6 (c) = 0.6; η_7 (a) = 0.5, η_7 (b) = 0.4, η_7 (c) = 1. Let τ_1 = {0, 1, μ_5 , μ_6 } and τ_2 = {0, 1, η_5 , μ_6 } be fuzzy topologies on X. Then the fuzzy bitopological space (X, τ_1 , τ_2) is pairwise fuzzy e (resp. δs and δp)-connected between μ_7 and η_6 , but neither (X, τ_1) nor (X, τ_2) are fuzzy e (resp. δs and δp)-connected between μ_7 and η_6 . **Theorem 3.1:** A fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy e - connected between fuzzy sets λ and μ if and only if there is no (i, j) -fuzzy e -clopen set δ in X such that $\lambda \leq \delta \leq 1 - \mu$. **Proof:** Obvious. **Theorem 3.2:** If a fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy e - connected between fuzzy sets λ and μ then and μ are non-empty. Proof: Evident. # M. Poonguzhali¹, C. Loganathan² and A. Vadivel³/ Pairwise Fuzzy e -connectedness Between Fuzzy Sets / IJMA- 9(3), March-2018, (Special Issue) **Theorem 3.3:** If a fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy e - connected between fuzzy sets λ and μ and if $\lambda \leq \lambda_1$ and $\mu \leq \mu_1$ then (X, τ_1, τ_2) is pairwise fuzzy e -connected between λ_1 and μ_2 . **Proof:** Suppose the fuzzy bitopological space (X, τ_1, τ_2) is not pairwise fuzzy e -connected between the fuzzy sets λ_I and μ_I . Then there is an (i, j) -fuzzy e - clopen set δ in X such that $\lambda_I \leq \delta$ and $\neg(\delta q \mu_1)$. Clearly $\leq \delta$. Now we claim that \neg ($\delta q \mu$). If $(\delta q \mu)$ then there exists a point $x \in X$ such that $\delta(x) + \mu(x) > 1$. Therefore $\delta(x) + \mu_I(x) > \delta(x) + \mu(x) > 1$ and $\delta q \mu_I$, a contradiction. Consequently, (X, τ_1, τ_2) is not pairwise fuzzy e -connected between λ and μ . **Theorem 3.4:** A fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy e - connected between λ and μ if and only if it is pairwise fuzzy e -connected between τ_i - $eCl(\lambda)$ and τ_i - $eCl(\mu)$. #### **Proof:** **Necessity:** It follows by using Theorem 3.3. **Sufficiency:** Suppose the fuzzy bitopological space (X, τ_1, τ_2) is not pairwise fuzzy e -connected between λ and μ . Then there is an (i, j) -fuzzy e -clopen set δ in X such that $\lambda \leq \delta$ and $\neg(\delta q\mu)$. Since $\lambda \leq \delta$, τ_i - $eCl(\lambda) \leq \tau_j$ - $eCl(\delta) < \delta$ because δ is τ_i - fuzzy e -closed. Now, $\neg(\delta q\mu) \Rightarrow \delta \leq 1 - \mu$ $\Rightarrow \delta \leq \tau_j$ - $eInt(1 - \mu)$ $\Rightarrow \delta \leq 1 - \tau_i$ - $eCl(\mu)$ $$\Rightarrow \delta \leq 1 - \tau_j - eCl(\mu)$$ \Rightarrow \cap(\delta q \tau_i - eCl(\mu). Hence X is not pairwise fuzzy e -connected between τ_i - $eCl(\lambda)$ and τ_i - $eCl(\mu)$, a contradiction. **Theorem 3.5:** Let (X, τ_1, τ_2) be a fuzzy bitopological space and let λ and μ be two fuzzy sets in X. If $\lambda q \mu$ then (X, τ_1, τ_2) is pairwise fuzzy e -connected between λ and μ . **Proof:** If δ is any (i, j) -fuzzy e -clopen set in X such that $\lambda \leq \delta$ then $\lambda q \mu \Rightarrow \delta q \mu$. **Remark 3.2:** The converse of Theorem 3.5. may not be true as is shown by the next example. **Example 3.3:** In Example 3.2, the fuzzy bitopological space (X, τ_1, τ_2) is pairwise connected between μ_8 and η_7 but not $\neg(\mu_8 q \eta_7)$. **Theorem 3.6:** If a fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy e - connected neither between λ and μ_0 , nor between λ and μ_1 , then it is not pairwise fuzzy e -connected between λ and $\mu_0 \cup \mu_1$. **Proof:** Since X is pairwise fuzzy e -connected neither between λ and μ_0 nor between λ and μ_1 , there exists (i, j) fuzzy e -clopen fuzzy sets δ_0 and δ_1 in (X, τ_1, τ_2) such that $\lambda \leq \delta_0$, $\neg (\delta_0 q \mu_0)$ and $\leq \delta_1$, $\neg (\delta_1 q \mu_1)$. Put $\delta = \delta_0 \cap \delta_{01}$. Then δ is (i, j) -fuzzy e -clopen and $\lambda \leq \delta$. Now we claim that $\neg (\delta q(\mu_0 \cup \mu_1))$. If $\delta q(\mu_0 \cup \mu_1)$ then there exists a point $x \in X$ such that $(x) + (\mu_0 \cup \mu_1)(x) > 1$. This implies that $\delta q \mu_0$ or $\delta q \mu_1$, a contradiction. Hence X is not pairwise fuzzy e -connected between λ and $\mu_0 \cup \mu_1$. **Theorem 3.7:** A fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy e - connected if and only if it is pairwise fuzzy e -connected between every pair of its non-empty fuzzy subsets. **Proof:** Necessity: Let λ and μ be any pair of non-empty fuzzy subsets of X. Suppose (X, τ_1, τ_2) is not pairwise fuzzy e -connected between λ and μ . Then there is an (i, j)-fuzzy e -clopen set δ in X such that $\lambda \leq \delta$ and $\neg (\delta q \mu)$. Since λ and μ are non-empty, it follows that δ is a non-empty proper (i, j) -fuzzy e -clopen subset of X. Hence (X, τ_1, τ_2) is not pairwise fuzzy e -connected. Sufficiency: Suppose (X, τ_1, τ_2) is not pairwise fuzzy e -connected. Then there exists a non-empty proper (i, j)-fuzzy e -clopen subset δ of X. Consequently, (X, τ_1, τ_2) is not pairwise fuzzy e -connected between δ and $1 - \delta$, a contradiction. **Remark 3.3:** If fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy e - connected between a pair of its subsets then it need not necessarily hold that (X, τ_1, τ_2) is pairwise fuzzy between every pair of its subsets and so it is not necessarily pairwise fuzzy e -connected as is shown by the next example. # M. Poonguzhali¹, C. Loganathan² and A. Vadivel³/ Pairwise Fuzzy e -connectedness Between Fuzzy Sets / IJMA- 9(3), March-2018, (Special Issue) **Example 3.4:** In Example 3.3, the fuzzy sets μ_9 , η_8 and η_9 be defined as follows: $\mu_g(a) = 0.4$, $\mu_g(b) = 0.3$, $\mu_g(c) = 0.1$; $\eta_8(a) = 0.4$, $\eta_8(b) = 0.4$, $\eta_8(c) = 0.3$; $\eta_8(a) = 0.6$, $\eta_9(b) = 0.6$, $\eta_9(c) = 0.5$. Then (X, τ_1, τ_2) is pairwise fuzzy e (resp. δ s and δ p)-connected between μ_g , and η_g , but it is not pairwise fuzzy e -connected between μ_g , and η_g . Also (X, τ_1, τ_2) is not pairwise fuzzy e (resp. δ s and δ p)-connected. **Theorem 3.8:** Let $(Y, (\tau_1)Y, (\tau_2)Y)$ be a subspace of a fuzzy bitopological space (X, τ_1, τ_2) and let λ , μ be fuzzy sets of Y. If $(Y, (\tau_1)Y, (\tau_2)Y)$ is pairwise fuzzy e -connected between λ and μ then (X, τ_1, τ_2) is also pairwise fuzzy e -connected between λ and μ . #### Proof: Evident. **Theorem 3.9:** Let $(Y, (\tau_1)Y, (\tau_2)Y)$ be a subspace of a fuzzy bitopological space (X, τ_1, τ_2) and let λ , μ be fuzzy sets of Y. If (X, τ_1, τ_2) is pairwise fuzzy e -connected between λ and μ and χ_Y is bifuzzy clopen in (X, τ_1, τ_2) then $(Y, (\tau_1)Y, (\tau_2)Y)$ is pairwise fuzzy e -connected between λ and μ . **Proof:** Suppose $(Y,(\tau_1)Y,(\tau_2)Y)$ is not pairwise fuzzy e -connected between λ and μ then there exists an (i,j) -fuzzy e -clopen set δ in X such that $\lambda \leq \delta$ and $\neg(\lambda q \delta)$. Since χ_Y is bifuzzy open and bifuzzy closed in (X,τ_1,τ_2) , δ is (i,j)-fuzzy e -clopen in (X,τ_1,τ_2) . Therefore (X,τ_1,τ_2) is not pairwise fuzzy e -connected between λ and μ . Which is a contradiction. #### REFERENCES - 1. K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1) (1981), 14-32. - 2. A. S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy sets and systems, 44 (1991), 303-308. - 3. G. Balasubramanian, On extension of fuzzy topological spaces, Kybernetika, 28 (1992), 234-144. - 4. C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24 (1968), 182-190. - 5. E. Ekici, On e -open sets, DP^* -sets and DPe^* -sets and decompositions of continuity, Arabian Journal for Science and Engineering, 33 (2A) (2008), 269-282. - 6. U. V. Fatteh, and D. S. Bassan, Fuzzy connectedness and its stronger forms, J. Math. Anal. Appl., 111 (2) (1985), 449-464. - 7. A. Kandil, Biproximities and fuzzy bitopological spaces, Simen Stevin., 63 (1989), 45-66. - 8. A. Kandil, A. A. Nour and S. A. EL-Sheikh, On fuzzy bitopological spaces, Fuzzy sets and systems, 74(3) (1995), 353-363. - 9. J. C. Kelly, Bitopological Spaces, Proc. London Math. Soc., 13(3), (1963), 71-89. - 10. S. N. Maheshwari, S. S. Thakur and Rita Malviya, Connectedness between fuzzy sets, J. Fuzzy Math., 1(4) (1993), 757-759. - 11. Pu Pao Ming and Liu Ying Ming, Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore Smith Convergence, J. Math. Anal. Appl., 76 (2) (1980), 571-599. - 12. S. E. Rodabaugh, Separation axioms and the fuzzy real lines, Fuzzy sets and systems, 11 (1983), 163-183. - 13. S. E. Rodabaugh, A lattice of continuities for fuzzy topological spaces, J. Math. Anal. Appl., 79 (1981), 244-255. - 14. S. E. Rodabaugh, The Hausdorff separation axioms for fuzzy topological spaces, Topology Appl., (1980), 319-334. - 15. S.Sampathkumar, Connectedness and semi-connectedness in fuzzy bitopological spaces, National conference on fuzzy sets and their applications, July 9-10, (1997) IIT Madras. - 16. V.Seenivasan and K. Kamala, Some aspects of fuzzy e⁻-closed set, Ann. Fuzzy Math. Inform., 9(6) (2015) 1019-1027. - 17. P.Smets, The degree of belief in a fuzzy event, Information sciences, 25 (1) (1981), 1-19. - 18. M. Sugeno, An introductory survey of fuzzy control, Information sciences, 36 (1-2) (1985), 59-83. - 19. N. Velico, H -closed topological spaces, Amer. Math. Soc. Transl., 78(2) (1968), 103-118. - 20. R. H. Warren, Neighbourhoods, bases and continuity in fuzzy topological spaces, Rocky. Mount. J. Math., 8 (1978), 459-470. - 21. L. A. Zadeh, Fuzzy sets, Inform and Control, 8 (3) (1965), 338-353. Source of support: National Conference on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.