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ABSTRACT

In this paper the concept of fuzzy e -connectedness between fuzzy sets is generalized to fuzzy bitopological spaces
and some of its properties are studied.
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1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [21] provided a natural foundation for building new branches in
mathematics. Fuzzy sets have applications in many fields such as information [17] and control [18]. In 1968 Chang
[4] introduced fuzzy topological space using fuzzy sets. Kandil [7] defined and studied the concept of fuzzy
bitopological spaces as a generalization of bitopological spaces [9] in fuzzy setting. Since then many results from
classical topology are being extended in both fuzzy topological and fuzzy bitopological spaces ([2], [3], [6], [7], [8].
[12]-[15], [20]) and their properties were also investigated. The initiations of e -open sets in topological spaces are
due to Ekici [5]. In fuzzy topology, e -open sets were introduced by Seenivasan in 2015 [16]. In 1993, Maheswari
[10] introduced the concept of connectedness between fuzzy sets. In this paper the concepts of fuzzy
e-connectedness between fuzzy sets generalized to fuzzy bitopological spaces and some of its properties are studied.

2. PRELIMINARIES

Let X and Y be non-empty sets. A fuzzy set A in X is a mapping from X to the unit interval [0, 1]. The null fuzzy set
0 (resp. the whole fuzzy set 1) is the mapping from X to the unit interval [0, 1] which takes the only value O
(resp. 1) in that interval.

The closure denoted by CI () (interior, denoted by I nt(A)) of a fuzzy set A of X is the intersection (union) of all
fuzzy closed supersets (fuzzy open subsets, respectively) of A [4]. For a fuzzy set A of a fuzzy topological space X,
1-Int(d) = Cl(l — ) and 1- CI(A) = I nt(d) . A fuzzy set A in X is said to be quai-coincident [11] with a
fuzzy set p in X denoted by Aqu if there exists a point x € X such that A(x) + p(x) > 1. If A and p, are two fuzzy
sets of X, then A < pifand only if X and 1—p are not quasi-coincident. A fuzzy topological space (X, 7) is said to
be fuzzy connected [6] if there is no proper fuzzy set in X which is both fuzzy open and fuzzy closed. A fuzzy
topological space (X, ) is said to be fuzzy connected [10]between its subsets A and p if and only if there is no
fuzzy closed fuzzy open set § in X such that 4 < & and =( dqu).
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Definition 2.1: A fuzzy subset X in an fts (X, 1) is ¢ Called fuzzy regular open (fro, for Short) [1] if A = I ntCI(1)
and regular closed if A = Clint(A).

Definition 2.2: [16] The fuzzy §-interior of subset A of X is the union of all fuzzy regular open sets contained in A
and fuzzy § closure of subset A of X is the intersection of all fuzzy regular closed sets containing A.

Definition 2.3: [19] A subset is A called fuzzy & open if 1 = §Int(4). The complement of fuzzy & open set is called
fuzzy & closed (i.e., A = 8 CL(A).)

Definition 2.4:A subset A is called fuzzy e -open [16] if A < IntCls () V Clintg (1). The complement of a fuzzy
e -open is called fuzzy e -closed.

Definition 2.5: [16] The intersection of all fuzzy e-closed sets containing A is called fuzzy e-closure of A and is
denoted by feCl(4) and the union of all fuzzy e-open sets contained A is called fuzzy e-interior of A and is denoted
by felnt(X) .

A system (X, t,, T,) consisting of a set X with two topologies 7; and t, on X is called a fuzzy bitopological space
[7]. A fuzzy bitopological space (X, 7,,7,) is said to be pairwise fuzzy connected [11] if it has no proper fuzzy set
which is both 7;fuzzy open and t;-fuzzy closed, i, j =1, 2, i#j. The purpose of this paper is to introduce and study
the concept of pairwise fuzzy e -connectedness between fuzzy sets in fuzzy bitopological spaces.

Throughout this paper i, j = 1, 2 where i 7. If P is any fuzzy topological property then 7;- P and 7;- P denote the
property P with respect to the fuzzy topology 7; and t; respectively and A denotes the characteristic function of a
subset A of X.

3. PAIRWISE FUZZY e -CONNECTEDNESS BETWEEN FUZZY SETS

Definition 3.1: A fuzzy bitopological space (X, t;, 1) is said to be pairwise fuzzy e - connected between fuzzy sets
A and p if there is no (i, j) -fuzzy e —clopen (z;-fuzzy e -closed and t; -fuzzy e -open) set 6 in X such that 4 < § and

—(dqu)

Remark 3.1: Pairwise fuzzy e -connectedness between fuzzy sets A and p is not equal to the fuzzy connectedness
of (X, t,) and (X, t,) between A and p.

Example 3.1: Let X = {a, b, c} and let pu, W , K, K, 71,71, M2, M3 and be fuzzy sets on X defined as follows:
H,(@) =07, p,(b) =1, p () = 0; p,(a) =0.2, p, (0) =0, p, () =Ly, (@) = 0.7, hy () =1, , (c) =1;p,(a) =02,
H, (0) =0, 1, () =0;ny(a) =0, m1(b) = 0.3, n4(c) = 0; mx(a) = 0, m,(b) = 0, n,(c) = 1, n3 (8) =0, 3 (b) = 0.3,
n3(c) = 1, m, (8) = 0.3, m4(b) =0, n,(c) = 0.2. Let 7;,= {0, 1, W, W,, Wy, K, } andz, = {0, 1, 0y, 15, n3}be fuzzy
topologies on X. Then (X, 7,) and (X,7,) are fuzzy e (resp. 6s and dp)-connected between the fuzzy sets i, and ,
But (X, 74, 7,) is not pairwise fuzzy e (resp. 6s and p)-connected between p, and 7,,.

Example 3.2: Let X = {a, b}. Let fuzzy sets y, W, W, s, N6 and n, be defined as follows: p(a) = 0.2, p, (b) =0,
M () = 0; (@) = 0.5, py(b) = 0.5, p (c) = 0.5; p,(a) = 0.3, u, (b) = 0.2, p,(c) = 0; Yy (a) = 0.3, yg(b) = 0.3,
Hg (¢) = 0.1; ns(a) = 0.2, ns(b) = 0.1,75(c) = 0; n (a) = 0.6,76(b) = 0.6, 16(c) = 0.6; ny(a) = 0.5,1,(b) = 0.4,
ns(c) =1 Let 1, ={0, 1, g, P} and1, = {0, 1,ns, W} be fuzzy topologies on X. Then the fuzzy bitopological
space (X, 7y, T,) is pairwise fuzzy e (resp. 6s and dp)-connected between W, and 7, but neither (X, z,) nor (X, 7,)
are fuzzy e (resp. ds and dp)-connected between L, and 7.

Theorem 3.1: A fuzzy bitopological space (X, 7,,7,) is pairwise fuzzy e - connected between fuzzy sets A and p if
and only if there is no (i, j) -fuzzy e -clopen set 3 in X such that 1 < § < 1 — .

Proof: Obvious.

Theorem 3.2: If a fuzzy bitopological space (X, t,,t,) is pairwise fuzzy e - connected between fuzzy sets A and p
then and p are non-empty.

Proof: Evident.
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Theorem 3.3: If a fuzzy bitopological space (X, t,,t,) is pairwise fuzzy e - connected between fuzzy sets A and p
andif A < 4; and pu < , then (X, 7,, 7,) is pairwise fuzzy e -connected between 4, and .

Proof: Suppose the fuzzy bitopological space (X, 7,,7,) is not pairwise fuzzy e -connected between the fuzzy sets
Ay and p,. Then there is an (i, j) -fuzzy e - clopen set 8 in X such that 1; < 6 and ~(8qu, ). Clearly < 6. Now we
claim that = ( dqu). If (5qu) then there exists a point x € X such that § (x) + p(x) > 1. Therefore

3(x) + Wy (x) > 8(x) + w(x) >1 and 6q,, a contradiction. Consequently, (X, 74, 7,) is not pairwise fuzzy e -connected
between A and p.

Theorem 3.4: A fuzzy bitopological space (X, t,,t,) is pairwise fuzzy e - connected between A and p if and only if
it is pairwise fuzzy e -connected between t; - eCI(1) and t;-eCl(p).

Proof:
Necessity: It follows by using Theorem 3.3.

Sufficiency: Suppose the fuzzy bitopological space (X, t,,t,) is not pairwise fuzzy e -connected between A and p.
Then there is an (i, j) -fuzzy e -clopen set 6 in X such that 1 < § and —(5qp).
Since 1 <6, 7;- eCl(A) <7 - eCl(5) < & because 6 is 7; - fuzzy e -closed. Now, =(Sqn) = § <1 —p

=6 < 15-elnt(1 —p)
=6 <1-1 — eCl(w

= =(8qt; — eCl(p).
Hence X is not pairwise fuzzy e -connected between 7;- eCl(4) and ;- eCl(p) , a contradiction.

Theorem 3.5: Let (X, 1,,7,) be a fuzzy bitopological space and let A and p be two fuzzy sets in X. If Aqu then
(X, 74, 7,) is pairwise fuzzy e -connected between L and U .

Proof: If & isany (i, j) -fuzzy e -clopen set in X such that A < § then Aqu = dqu .
Remark 3.2: The converse of Theorem 3.5. may not be true as is shown by the next example.

Example 3.3: In Example 3.2, the fuzzy bitopological space (X, 7, 7,) is pairwise connected between p, and n; but
not =( Hgqn,) -

Theorem 3.6: If a fuzzy bitopological space (X, 74, 7,) is pairwise fuzzy e - connected neither between A and W,
nor between A and |, , then it is not pairwise fuzzy e -connected between A and W, U I, .

Proof: Since X is pairwise fuzzy e -connected neither between A and W, nor between A and p,, there exists (i, j) -
fuzzy e -clopen fuzzy sets 6, and &; in (X, 74,7,) such that 2 < &y, —(d,q po)and < &;,-(6,qu,). Put
8 = 85N 6y,. Then J is (i, j) -fuzzy e -clopen and A< §. Now we claim that =( §q( Lo U 1y)). If 8q( 1y U 1y)
then there exists a point x € X such that (x)+ (uy U py)(x) > 1. This implies that §q p, or éq p,, a
contradiction. Hence X is not pairwise fuzzy e -connected between A and [, U 4, .

Theorem 3.7: A fuzzy bitopological space (X, t,,t,) is pairwise fuzzy e - connected if and only if it is pairwise
fuzzy e -connected between every pair of its non-empty fuzzy subsets.

Proof: Necessity: Let L and pu be any pair of non-empty fuzzy subsets of X. Suppose (X,t,,7,) iS not pairwise
fuzzy e -connected between A and p. Then there is an (i, j)-fuzzy e -clopen set 6 in X such that 1 < § and —=( dqp ).
Since A and p are non-empty, it follows that d is a non-empty proper (i, j) -fuzzy e -clopen subset of X. Hence

(X, 14,7,) isnot pairwise fuzzy e -connected.

Sufficiency: Suppose (X,t,,7,) is not pairwise fuzzy e -connected. Then there exists a non-empty proper (i, j)-
fuzzy e -clopen subset & of X. Consequently, (X, 74, 7,) is not pairwise fuzzy e -connected between 6 and 1— 9, a
contradiction.

Remark 3.3: If fuzzy bitopological space (X, t,,7,) is pairwise fuzzy e - connected between a pair of its subsets

then it need not necessarily hold that (X, t,,,) is pairwise fuzzy between every pair of its subsets and so it is not
necessarily pairwise fuzzy e -connected as is shown by the next example.
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Example 3.4: In Example 3.3, the fuzzy sets L, ng and 1o be defined as follows:

He(@) = 0.4, py(b) = 0.3, py(c) = 0.1;ng(a) = 0.4, ng(b) = 0.4, mg(c) = 0.3;15 (@) = 0.6, ne(b) = 0.6, nyc) = 0.5.
Then (X, 74, 7,) is pairwise fuzzy e (resp. s and dp)-connected between L, and ng, but it is not pairwise fuzzy
e -connected between i, and ny. Also (X, 7,,7,) is not pairwise fuzzy e (resp, s and dp)-connected.

Theorem 3.8: Let (Y, (7,)Y, (r,)Y) be a subspace of a fuzzy bitopological space (X, t,,7,) and let A, p be fuzzy
sets of Y. If (Y,(r,)Y, (7)Y ) is pairwise fuzzy e -connected between A and p then (X,7,,7,) is also pairwise
fuzzy e -connected between A and p.

Proof: Evident.

Theorem 3.9: Let (Y, (7,)Y, (r,)Y ) be a subspace of a fuzzy bitopological space (X, t,,7,) and let A, p be fuzzy
sets of Y. If (X, 7,,7,) is pairwise fuzzy e -connected between A and p and yy is bifuzzy clopen in (X, 7;,7,) then
(Y, (r))Y, (z,)Y ) is pairwise fuzzy e -connected between A and p.

Proof: Suppose (Y, (t,)Y, (7,)Y) is not pairwise fuzzy e -connected between A and p then there exists an (i, j) -
fuzzy e -clopen set 8 in X such that A < § and-(Aqé). Since yy is bifuzzy open and bifuzzy closed in (X, 7,,7;), 6
is (i, j)-fuzzy e -clopen in (X, t,,t,). Therefore (X, t,,7,) is not pairwise fuzzy e -connected between A and p.
Which is a contradiction.
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