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ABSTRACT 
In this paper, we study semiprime near-ring using a map 𝐹:𝑁 → 𝑁, generalized derivation and a map 𝐻:𝑁 → 𝑁, right 
centralizer, under some conditions.  Inspired by the work of Ali et al [1] and Khan [7], we also study similar situations 
admitting generalized derivation on a semiprime near-ring. 
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1. INTRODUCTION 
 
The idea of generalized derivation was introduced in 1991 by Daif [3].  Ali et al. [1] proceed it further by taking some 
more identities admitting generalized derivation in prime and semiprime rings.  The study of derivations of near-rings 
was initiated by H. E. Bell and G.Mason in 1987[2].  Generalized derivations have been primarily studied on operator 
algebras. Therefore any investigation from the algebraic point of view might be interesting. Recently, there has been a 
great deal of work concerning commutativity of prime and semiprime rings admitting suitably constrained derivations 
and generalized derivations [11].  In this paper, we have proved comparable results of [4, 5] for near-rings. 
 
2. PRELIMINARIES 

 
In this section, we collect all basic concepts and results in near-rings mostly from H. E. Heatherly [6], Mehsin Jabel 
Atteya, Dalal Jbrahee Rasen [8], Nurcan Argac [9], G. Pilz [10] and M. Samman, L. Outkhtite, A. Boua [11] which are 
required for our study. 
 
Definition 2.1: [10: 7] A left near-ring (resp. right near-ring) is a set 𝑁  together with two binary operations “+” 
and “.” such that 

a)   (𝑁, +)  is a group (not necessarily abelian); 
b)  (𝑁,⋅) is a semigroup and  
c)  ∀ 𝑛1,𝑛2,𝑛3 ∈ 𝑁: 𝑛1. (𝑛2 + 𝑛3) = 𝑛1 ⋅ 𝑛2 + 𝑛1 ⋅ 𝑛3  (“left distributive law”) 

 
Definition 2.2: [6: 63] A distributive near-ring is a near-ring satisfying both distributive laws. 
 
Definition 2.3: [11: 407] An additive mapping 𝑑:𝑁 → 𝑁 is said to be a derivation on 𝑁 if 𝑑(𝑥𝑦) = 𝑥𝑑(𝑦) + 𝑑(𝑥)𝑦 
for all 𝑥,𝑦 ∈ 𝑁 or equivalently, 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 +  𝑥𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝑁. 
 
Definition 2.4: [11: 407] An additive mapping 𝐹:𝑁 → 𝑁 is said to be a right (resp., left) generalized derivation with 
associated derivation 𝑑 if 𝐹(𝑥𝑦) = 𝐹(𝑥)𝑦 + 𝑥𝑑(𝑦) (resp., 𝐹(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝐹(𝑦)) for all 𝑥,𝑦 ∈ 𝑁, and 𝐹 is said to 
be a generalized derivation with associated derivation 𝑑 on 𝑁 if it is both a right and left generalized derivation on 𝑁 
with associated derivation 𝑑. 
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Definition 2.5: [8: 37] A near-ring 𝑁 is said to be semiprime if 𝑥𝑁𝑥 = 0 for 𝑥 ∈ 𝑁 implies that 𝑥 = 0.   
 
Definition 2.6: [8: 38] For any 𝑥, 𝑦 ∈ 𝑁, [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 will denote the commutator and (𝑥 ∘ 𝑦) = 𝑥𝑦 + 𝑦𝑥 will 
denote the anti-commutator. 
 
For any 𝑥, 𝑦, 𝑧 ∈ 𝑁, the following identities hold: 

i)   [𝑥,𝑦𝑧] = 𝑦[𝑥, 𝑧] + [𝑥,𝑦]𝑧   
ii)  [𝑥𝑦, 𝑧] = 𝑥[𝑦, 𝑧] + [𝑥, 𝑧]𝑦 

 
Definition 2.7: [11: 407] An additive mapping 𝐹:𝑁 → 𝑁 satisfying 𝐹(𝑥𝑦) = 𝐹(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑁 is called left 
multiplier.                                                                   
 
Definition 2.8: [10: 15-16] A normal subgroup 𝐼 of (𝑁, +) is called ideal of 𝑁 (𝐼 ⊴ 𝑁) if  

𝛼) 𝐼𝑁 ⊆ 𝐼 
𝛽) ∀ 𝑛,𝑛, ∈ 𝑁  ∀ 𝑖 ∈ 𝐼 ∶ 𝑛(𝑛, + 𝑖) − 𝑛𝑛, ∈ 𝐼. 

 
Normal subgroups 𝑅 of (𝑁, +) with 𝛼) are called right ideals of 𝑁 (𝑅 ⊴𝑟 𝑁), while normal subgroups 𝐿 of (𝑁, +) with 
𝛽) are said to be left ideals of 𝑁 (𝐿 ⊴𝑙 𝑁). 
 
Definition 2.9: [2: 31] The derivation 𝐷 will be called commuting if [𝑥,𝐷(𝑥)] = 0 for all 𝑥 ∈ 𝑁. 
 
3. GENERALIZED DERIVATIONS ON SEMIPRIME NEAR-RINGS 
 
We need the following Lemmas to prove the main Theorems of this section. 
 
Definition 3.1: An additive mapping 𝐻:𝑁 → 𝑁 satisfying 𝐻(𝑥𝑦) = 𝑥𝐻(𝑦) for all 𝑥,𝑦 ∈ 𝑁 is called right multiplier 𝐻 
is said to be a multiplier if it is both a right and left multiplier. 
 
Lemma 3.2: Let 𝑁 be a semiprime distributive near-ring. If 𝐹 is a left generalized derivation associated with the map 
𝑓, then 𝑓 is a derivation, that is, 𝑓(𝑥𝑧) = 𝑥𝑓(𝑧) + 𝑓(𝑥)𝑧 for all 𝑥, 𝑦 ∈ 𝑁. 
 
Proof: Since 𝐹 is a generalized derivation, we have 

𝐹(𝑥𝑦) = 𝑥𝐹(𝑦) + 𝑓(𝑥)𝑦 for all 𝑥,𝑦 ∈ 𝑁. 
 
Replace 𝑥 by 𝑥𝑧, 

𝐹�(𝑥𝑧)𝑦� = 𝑥𝑧𝐹(𝑦) + 𝑓(𝑥𝑧)𝑦 for all 𝑥,𝑦, 𝑧 ∈ 𝑁 and 
𝐹�𝑥(𝑧𝑦)� = 𝑥𝐹(𝑧𝑦) + 𝑓(𝑥)𝑧𝑦 = 𝑥𝑧𝐹(𝑦) + 𝑥𝑓(𝑧)𝑦 + 𝑓(𝑥)𝑧𝑦 for all 𝑥,𝑦, 𝑧 ∈ 𝑁. 

 
By the associativity, we get 

𝑓(𝑥𝑧)𝑦 =  𝑥𝑓(𝑧)𝑦 + 𝑓(𝑥)𝑧𝑦. 
 
Since 𝑁 is distributive near-ring,  

(𝑓(𝑥𝑧) − 𝑥𝑓(𝑧) − 𝑓(𝑥)𝑧)𝑦 = 0 ⟹ 𝑓(𝑥𝑧) − 𝑥𝑓(𝑧)− 𝑓(𝑥)𝑧 = 0 
                                                 ⟹ 𝑓(𝑥𝑧) = 𝑥𝑓(𝑧) + 𝑓(𝑥)𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑁. 

 
Lemma 3.3: Let 𝑁 be a semiprime near-ring and 𝐹 be a left generalized derivation associated with 𝑓.  If 𝐹(𝑥𝑦) = 0 
holds for all 𝑥, 𝑦 ∈ 𝑁, then 𝐹 = 0. 
 
Proof: By the hypothesis, we have 

𝐹(𝑥𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑁. 
 
If we replace 𝑦 by 𝑦𝑧 with 𝑧 ∈ 𝑁, we get 

𝐹�𝑥(𝑦𝑧)� = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝑁. 
 
Since 𝐹 is a left generalized derivation, we get 

𝑥𝐹(𝑦𝑧) + 𝑓(𝑥)𝑦𝑧 = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑁. 
 
Using the hypothesis,   

 𝑓(𝑥)𝑦𝑧 = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝑁 
                        ⟹ 𝑓(𝑥)𝑧 = 0 for all 𝑥, 𝑧 ∈ 𝑁 ⟹ 𝑓 = 0. 
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Thus 𝐹(𝑥𝑦) = 𝑥𝐹(𝑦) for all 𝑥,𝑦 ∈ 𝑁.  By the hypothesis, 

𝑥𝐹(𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑁 ⟹ 𝐹 = 0. 
 
Lemma 3.4: Let 𝑁 be a semiprime near-ring and 𝐹 be a left generalized derivation associated with 𝑓 and 𝐻 be a right 
multiplier. If the map 𝐺:𝑁 → 𝑁 is defined as 𝐺(𝑥) = 𝐹(𝑥) ∓𝐻(𝑥) for all 𝑥 ∈ 𝑁. Then 𝐺 is a left generalized 
derivation associated with 𝑓. 
 
Proof: For all 𝑥 ∈ 𝑁, by the hypothesis  

𝐺(𝑥𝑦) = 𝐹(𝑥𝑦)∓ 𝐻(𝑥𝑦) = 𝑥𝐹(𝑦) + 𝑓(𝑥)𝑦 ∓ 𝑥𝐻(𝑦) 
= 𝑥 �𝐹(𝑦)∓𝐻(𝑦)� +  𝑓(𝑥)𝑦 
= 𝑥 𝐺(𝑦) +  𝑓(𝑥)𝑦 for all 𝑥,𝑦 ∈ 𝑁 

Hence 𝐺 is a left generalized derivation associated with 𝑓. 
 
Theorem 3.5: Let 𝑁 be a semiprime near-ring and 𝐹:𝑁 → 𝑁 be a left generalized derivation associated with 𝑓 and    
𝐻:𝑁 → 𝑁 be a right multiplier.  If 𝐹(𝑥𝑦)∓𝐻(𝑥𝑦) = 0 holds for all 𝑥, 𝑦 ∈ 𝑁, then 𝑓 = 0.  Moreover, 𝐹(𝑥𝑦) = 𝑥𝐹(𝑦) 
holds for all 𝑥, 𝑦 ∈ 𝑁 and for all 𝑥,𝑦 ∈ 𝑁 and for all 𝐹 = ±𝐻. 
 
Proof: By the hypothesis, we have 

𝐹(𝑥𝑦)− 𝐻(𝑥𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑁 
               𝐺(𝑥𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑁, by Lemma 3.3 

Where Using Lemma 3.3, 𝐺 = 0         
 
Thus                     𝐹 = 𝐻                                                                                                                                (1) 
 
Using the definition of  𝐹 and (1) in the hypothesis, we get 

0 = 𝐹(𝑥𝑦)− 𝐻(𝑥𝑦) = 𝑥𝐹(𝑦) + 𝑓(𝑥)𝑦 − 𝑥𝐻(𝑦) 
                                   = 𝑓(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑁 

 
We obtain 𝑓 = 0.  Thus 𝐹(𝑥𝑦) =  𝑥𝐹(𝑦) for all 𝑥, 𝑦 ∈ 𝑁. 
 
By using the similar argument in the case of 𝐹(𝑥𝑦) + 𝐻(𝑥𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑁, we get 𝐹 = −𝐻 and 𝑓 = 0.   
 
Hence 𝐹 = ±𝐻. 
 
Theorem 3.6: Let 𝑁 be a semiprime near-ring, 𝐹:𝑁 → 𝑁 be a left generalized derivation associated with 𝑓 and           
𝐻:𝑁 → 𝑁 be a right multiplier.  If 𝐹(𝑥)𝐹(𝑦)∓𝐻(𝑥𝑦) = 0 holds for all 𝑥, 𝑦 ∈ 𝑁, then 𝑓 = 0.  Moreover,                
𝐹(𝑥𝑦) = 𝑥𝐹(𝑦) for all 𝑥,𝑦 ∈ 𝑁. 
 
Proof: By the hypothesis, we have 

𝐹(𝑥)𝐹(𝑦)−𝐻(𝑥𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑁                                                                                             (2) 
 
Replacing 𝑥 by 𝑥𝑧 with 𝑧 ∈ 𝑁 

𝐹(𝑥𝑧)𝐹(𝑦)−𝐻�(𝑥𝑧)𝑦� = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝑁 
 
Since 𝐹 is a left generalized derivation, we have 

𝑥�𝐹(𝑧) 𝐹(𝑦)−𝐻(𝑧𝑦)�+ 𝑓(𝑥)𝑧 𝐹(𝑦) = 0 
 
Using equation (2), we get 

𝑓(𝑥)𝑧 𝐹(𝑦) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑁                                                             (3) 
 
Replacing 𝑦 by 𝑢𝑦 with 𝑢 ∈ 𝑁 in (3) and using (3), from the definition of 𝐹, we obtain 

𝑓(𝑥)𝑧 𝑓(𝑢)𝑦 = 0 for all 𝑢,𝑥,𝑦, 𝑧 ∈ 𝑁 
 
In the last equation replacing 𝑧 by 𝑧𝑟, 𝑟 ∈ 𝑁 and using 𝑁 is a semiprime near-ring, we get 𝑓 = 0.   
 
Thus 𝐹(𝑥𝑦) =  𝑥𝐹(𝑦) for all 𝑥,𝑦 ∈ 𝑁. 
 
By the similar argument in the case of 𝐹(𝑥)𝐹(𝑦) +𝐻(𝑥𝑦) = 0 for all 𝑥,𝑦 ∈ 𝑁, we get 𝑓 = 0.  Thus 𝐹(𝑥𝑦) =  𝑥𝐹(𝑦) 
for all 𝑥,𝑦 ∈ 𝑁. 
 
 



L. Madhuchelvi1 and V. Suganya2/  
On Semiprime Near-Rings with Generalized Derivations / IJMA- 9(3), March-2018, (Special Issue) 

© 2018, IJMA. All Rights Reserved                                                                                                                                                       94 

 
Theorem 3.7: Let 𝑁 be a semiprime distributive near-ring and 𝐼 a nonzero left ideal of 𝑁.  If 𝐹:𝑁 → 𝑁 is a generalized 
derivation associated with a map 𝑓:𝑁 → 𝑁 such that 𝐹[𝑥,𝑦] ± 𝑥𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝐼. Then 𝐼[𝑥,𝑓(𝑥)] = 0 for all         
𝑦 ∈ 𝐼. 
 
Proof: Assume that 

𝐹[𝑥, 𝑦] ± 𝑥𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝐼                                  (4) 
 
Replace 𝑥 by 𝑦𝑥 and using equation (4), we obtain 𝐹[𝑦𝑥, 𝑦] ± (𝑦𝑥)𝑦 = 0 implies that     

𝑓(𝑦)[𝑥,𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝐼                                                             (5) 
 
Substituting 𝑦𝑓(𝑥) for 𝑦, 

𝑓(𝑦)[𝑥,𝑦𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
𝑓(𝑥)[𝑥, 𝑦𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
𝑓(𝑥)𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼                                                                                        (6) 

 
On replacing 𝑦 by 𝑥𝑦, we obtain  

𝑓(𝑥)𝑥𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼.                                                 (7) 
 
Left multiply (6) by 𝑥 and subtract (7), 

[𝑥, 𝑓(𝑥)]𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Replacing 𝑦 by 𝑟𝑦, 

[𝑥, 𝑓(𝑥)]𝑟𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Left multiply by 𝑦, 

𝑦[𝑥, 𝑓(𝑥)]𝑁𝑦[𝑥,𝑓(𝑥)] = 0 for all 𝑥, 𝑦 ∈ 𝐼 
 
Since the semiprime of 𝑁 yields that, 

𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Therefore, 𝐼[𝑥, 𝑓(𝑥)] = 0 for all 𝑥 ∈ 𝐼. 
 
Theorem 3.8: Let 𝑁 be a semiprime distributive near-ring and 𝐼 a nonzero left ideal of 𝑁.  If 𝐹:𝑁 → 𝑁 is a generalized 
derivation associated with a map 𝑓:𝑁 → 𝑁 such that 𝐹[𝑥,𝑦] ± 𝑦𝑥 = 0 for all 𝑥,𝑦 ∈ 𝐼. Then 𝐼[𝑥, 𝑓(𝑥)] = 0 for all         
𝑦 ∈ 𝐼. 
 
Proof: Given that  

𝐹[𝑥, 𝑦] ± 𝑦𝑥 = 0 for all 𝑥,𝑦 ∈ 𝐼                                                             (8) 
 
On replacing 𝑥 by 𝑦𝑥 and using equation (8), we obtain 𝐹[𝑦𝑥, 𝑦] ± 𝑦(𝑦𝑥) = 0 implies that    

𝑓(𝑦)[𝑥,𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝐼 
 
Further, proceed as Theorem 3.7 after the equation (5). Hence 𝐼[𝑥,𝑓(𝑥)] = 0 for all 𝑦 ∈ 𝐼. 
 
Theorem 3.9: Let 𝑁 be a semiprime distributive near-ring and 𝐼 a nonzero left ideal of 𝑁.  If 𝐹:𝑁 → 𝑁 is a generalized 
derivation associated with a map 𝑓:𝑁 → 𝑁 such that 𝐹(𝑥 ∘ 𝑦) ± 𝑥𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝐼. Then 𝐼[𝑥,𝑓(𝑥)] = 0 for all    
𝑦 ∈ 𝐼. 
 
Proof: We assume that 

𝐹(𝑥 ∘ 𝑦) ± 𝑥𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝐼                                                             (9) 
 
Replace 𝑥 by 𝑦𝑥 and using (9), 

𝐹(𝑦𝑥 ∘ 𝑦) ± (𝑦𝑥)𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼 
                       ⟹𝑓(𝑦)(𝑥 ∘ 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝐼.                                                                                      (10) 
 
Replacing 𝑦 by 𝑦𝑓(𝑥), we have 

𝑓(𝑦)�𝑥 ∘ 𝑦𝑓(𝑥)� = 0 for all 𝑥, 𝑦 ∈ 𝐼 
 
Using equation (10),  

𝑓(𝑥)𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼.                                                                         (11) 
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On replacing 𝑦 by 𝑥𝑦, we obtain  

𝑓(𝑥)𝑥𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼.                         (12) 
 
Left multiply (11) by 𝑥 and subtract (12) we get 

[𝑥, 𝑓(𝑥)]𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Replacing 𝑦 by 𝑟𝑦, 

[𝑥, 𝑓(𝑥)]𝑟𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Left multiply by 𝑦, 

𝑦[𝑥, 𝑓(𝑥)]𝑁𝑦[𝑥,𝑓(𝑥)] = 0 for all 𝑥, 𝑦 ∈ 𝐼 
 
Since the semiprime of 𝑁 yields that, 

𝑦[𝑥, 𝑓(𝑥)] = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Therefore,           𝐼[𝑥, 𝑓(𝑥)] = 0 for all 𝑥 ∈ 𝐼. 
 
Theorem 3.10: Let 𝑁 be a semiprime distributive near-ring and 𝐼 a nonzero left ideal of 𝑁. If 𝐹:𝑁 → 𝑁 is a 
generalized derivation associated with a map 𝑓:𝑁 → 𝑁 such that 𝐹(𝑥 ∘ 𝑦) ± 𝑦𝑥 = 0 for all 𝑥, 𝑦 ∈ 𝐼.  Then  
𝐼[𝑥, 𝑓(𝑥)] = 0 for all 𝑦 ∈ 𝐼. 
 
Proof: Given that  

 𝐹(𝑥 ∘ 𝑦) ± 𝑦𝑥 = 0 for all 𝑥, 𝑦 ∈ 𝐼                                         (13) 
 
On replacing 𝑥 by 𝑦𝑥 and using equation (13), we obtain 𝐹(𝑦𝑥 ∘ 𝑦) ± 𝑦(𝑦𝑥) = 0 implies that 𝑓(𝑦)[𝑥,𝑦] = 0 for all 
𝑥, 𝑦 ∈ 𝐼 
 
Further, proceed as Theorem 3.9 after the equation (10). Hence 𝐼[𝑥, 𝑓(𝑥)] = 0 for all 𝑦 ∈ 𝐼. 
 
Notation: Denote �[𝑓(𝑦),𝑦],𝑓(𝑦)� by [𝑓(𝑦),𝑦]2. 
 
Theorem 3.11: Let 𝑁 be a semiprime distributive near-ring and 𝐼 a nonzero left ideal of 𝑁.  If 𝐹:𝑁 → 𝑁 is a 
generalized derivation associated with a map 𝑓:𝑁 → 𝑁 such that 𝐹(𝑥)𝑓(𝑦) ± 𝑥𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝐼. Then 
𝐼[𝑓(𝑦),𝑦]2 = 0 for all 𝑦 ∈ 𝐼. 
 
Proof: We assume that 

𝐹(𝑥)𝑓(𝑦) ± 𝑥𝑦 = 0 for all 𝑥,𝑦 ∈ 𝐼                                                           (14) 
 
Replace 𝑥 by 𝑦𝑥, 

𝐹(𝑦𝑥)𝑓(𝑦) ± (𝑦𝑥)𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝐼 
                       ⟹𝑓(𝑦)𝑥𝑓(𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝐼.                                                                         (15) 
 
Substituting 𝑥[𝑓(𝑦),𝑦] for 𝑥 in (14), we get 

𝑓(𝑦)𝑥[𝑓(𝑦),𝑦]𝑓(𝑦) = 0.                                                                (16) 
 
Right multiply (15) by [𝑓(𝑦),𝑦] and subtract from (16), we  

𝑓(𝑦)𝑥�[𝑓(𝑦),𝑦],𝑓(𝑦)� = 0 for all 𝑥,𝑦 ∈ 𝐼.                                    (17) 
Replace 𝑥 by 𝑦𝑥, 

             𝑓(𝑦)𝑦𝑥�[𝑓(𝑦), 𝑦],𝑓(𝑦)� = 0 for all 𝑥,𝑦 ∈ 𝐼 
 
Since 𝑁 is distributive near-ring.  Left multiply (17) by 𝑦 and subtract (16), 

[𝑓(𝑦),𝑦]𝑥�[𝑓(𝑦), 𝑦],𝑓(𝑦)� = 0. 
 
Left multiply by 𝑓(𝑦), 

𝑓(𝑦)[𝑓(𝑦), 𝑦]𝑥�[𝑓(𝑦),𝑦],𝑓(𝑦)� = 0                       (18) 
 
Left multiply by [𝑓(𝑦),𝑦] in (16) and subtract (17), we get  

�[𝑓(𝑦),𝑦],𝑓(𝑦)�𝑥�[𝑓(𝑦),𝑦],𝑓(𝑦)� = 0 
 
Replacing 𝑥 by 𝑟𝑥, 

�[𝑓(𝑦),𝑦],𝑓(𝑦)�𝑟𝑥�[𝑓(𝑦),𝑦],𝑓(𝑦)� = 0 for all 𝑥, 𝑦 ∈ 𝐼  and 𝑟 ∈ 𝑁. 
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Left multiply by 𝑥, 

𝑥�[𝑓(𝑦),𝑦],𝑓(𝑦)�𝑁𝑥�[𝑓(𝑦),𝑦],𝑓(𝑦)� = 0 for all 𝑥, 𝑦 ∈ 𝐼  and 𝑟 ∈ 𝑁. 
 
Since 𝑁 is semiprime, 

𝑥�[𝑓(𝑦),𝑦],𝑓(𝑦)� = 0 for all 𝑥, 𝑦 ∈ 𝐼. 
Then   𝐼�[𝑓(𝑦),𝑦],𝑓(𝑦)� = 0 for all 𝑦 ∈ 𝐼. 
 
Therefore, 𝐼[𝑓(𝑦),𝑦]2 = 0 for all 𝑦 ∈ 𝐼. 
 
Theorem 3.12: Let 𝑁 be a semiprime distributive near-ring and 𝐼 a nonzero left ideal of 𝑁.  If 𝐹:𝑁 → 𝑁 is a 
generalized derivation associated with a map 𝑓:𝑁 → 𝑁 such that 𝐹(𝑥)𝑓(𝑦) ± 𝑦𝑥 = 0 for all 𝑥,𝑦 ∈ 𝐼.  Then 
𝐼[𝑓(𝑦),𝑦]2 = 0 for all 𝑦 ∈ 𝐼. 
 
Proof: Given that  

   𝐹(𝑥)𝑓(𝑦) ± 𝑦𝑥 = 0 for all 𝑥,𝑦 ∈ 𝐼                                             (19) 
 
On replacing 𝑥 by 𝑦𝑥 and using equation (18), we obtain 𝐹(𝑦𝑥)𝑓(𝑦) ± 𝑦(𝑦𝑥) = 0 implies that 

𝑓(𝑦)𝑥𝑓(𝑦) = 0 for all 𝑥,𝑦 ∈ 𝐼. 
 
Further, proceed as Theorem 3.11 after the equation (15).  Hence we get 𝐼[𝑓(𝑦),𝑦]2 = 0 for all 𝑦 ∈ 𝐼. 
  
Corollary 3.13: Let 𝑁 be a semiprime near-ring and 𝐼 a nonzero left ideal of 𝑁. If 𝐹:𝑁 → 𝑁 is a generalized derivation 
associated with a map 𝑓:𝑁 → 𝑁. If 𝐼 satisfies any one of the identities 𝐹(𝑥)𝑓(𝑦) ± 𝑥𝑦 = 0  and 𝐹(𝑥)𝑓(𝑦) ± 𝑦𝑥 = 0 
for all 𝑥,𝑦 ∈ 𝐼, then 𝑓 is commuting on 𝐼. 
 
Proof: Using equation (15) in Theorem 3.11, we have 

𝑓(𝑦)𝑥𝑓(𝑦) = 0 for all 𝑥,𝑦 ∈ 𝐼. 
 
Therefore,            [𝑓(𝑦),𝑦]𝑥[𝑓(𝑦),𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝐼.   
                       ⟹ [𝑓(𝑦),𝑦]𝐼[𝑓(𝑦),𝑦] = 0 for all 𝑦 ∈ 𝐼.   
 
Since 𝐼 is an ideal of a semiprime near-ring, [𝑓(𝑦), 𝑦] = 0 for all 𝑦 ∈ 𝐼. 
 
Thus, 𝑓 is commuting on 𝐼. 
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