Volume 9, No. 3, March - 2018 (Special Issue)

International Journal of Mathematical Archive-9(3), 2018, 107-112 MAAvailable online through www.ijma.info ISSN 2229 - 5046

$(1, \alpha)$ – DERIVATIONS IN Γ – NEAR RING

L. MADHUCHELVI¹ AND B. DHIVYA²

¹Associate Professor, Department of Mathematics, Sri Sarada College for Women (Autonomous) Salem-16, India.

²Research Scholar, Department of Mathematics, Sri Sarada College for Women (Autonomous) Salem-16, India.

E-mail: chelvissc@yahoo.co.in1 and dhivyab675@gmail.com2.

ABSTRACT

In this paper, we introduce the notion of $(1, \alpha)$ - derivation of Γ – near ring and give some generalizations of [1]. The purpose of this paper is to prove the following two assertions: (i) Let Mbe a semiprime Γ – near ring, U be a subset of M such that $0 \in U$, $U\Gamma M \subseteq U$ and d be a $(1, \alpha)$ -derivation of M. If d acts as homomorphism on U or as antihomomorphism on U under certain conditions on α , then $d(U) = \{0\}$. (ii) Let M be a prime Γ – near ring, U be a nonzero semigroup ideal of M, and d be $a(1, \alpha)$ -derivation on M. If d(x + y - x - y) = 0 for all $x, y \in U$, then (M, +) is abelian.

Key words: prime Γ – near ring, semiprime Γ – near ring, semigroup ideal, $(1, \alpha)$ – derivation.

2000 Mathematics subject classification: 16Y30, 16Y99.

1. INTRODUCTION

The notion of a Γ –ring a concept more general than a ring was defined by Nobusawa [6]. As a generalization of near rings, Γ – near ring introduced by Satyanarayana [7]. The derivations in Γ – near rings has been introduced by Bell and Mason [3]. They obtained some basic properties of derivations in, Γ – near ring. In [2] Argac defined a two sided α – derivation of a Γ – near ring. In a similar way, we introduce the notion of a of $(1, \alpha)$ – derivation of Γ –nearring and give some Generalizations of [1, 2].

2. PRELIMINARIES

Throughout this paper, M stands for a zero symmetric right Γ – near ring. In this section, we collect all basic concepts and results in Γ – near rings mostly from Mustafa Kazaz and Akin Alkan [5] which are required for our study.

Definition 2.1[5]: A Γ – **near ring**M is a triple $(M, +, \Gamma)$, where

- (i) (M, +) is a group (not necessarily abelian),
- (ii) Γ is a non empty set of binary operations on M such that $(M, +, \gamma)$ is a near ring for each $\gamma \in \Gamma$.
- (iii) $(x\beta y)\gamma z = x\beta(y\gamma z)$ for all $x, y, z \in M$ and $\beta, \gamma \in \Gamma$

Definition 2.2[5]: A Γ – near ring M is said to be **zero-symmetric** Γ – near ring if $0\gamma x = 0$ for all $x \in M$ and $\gamma \in \Gamma$.

Definition 2.3[5]: A Γ – near ring M is said to be **prime** Γ – **near ring** if $x\Gamma M\Gamma y = \{0\}$ for $x, y \in M$ implies $x \in M$ implies $x \in M$ and **semiprime** Γ – **near ring** if $x\Gamma M\Gamma x = \{0\}$ for $x \in M$ implies $x \in M$ implies

Definition 2.4[4]: A **derivation** on M is defined to be an additive endomorphism d of M satisfying the product rule $d(x\gamma y) = d(x)\gamma y + x\gamma d(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$, or equivalently $d(x\gamma y) = x\gamma d(y) + d(x)\gamma y$ for all $x, y \in M$ and $\gamma \in \Gamma$

International Journal of Mathematical Archive- 9(3), March - 2018

107

CONFERENCE PAPER

Definition 2.5[5]: If M and M' are two Γ – near rings, then a mapping $f: M \to M'$ such that f(x + y) = f(x) + f(y) and $f(x\gamma y) = f(x)\gamma f(y)$ (resp. $f(x\gamma y) = f(y)\gamma f(x)$) for all $x, y \in M$ and $\gamma \in \Gamma$, is called a Γ – near rings **homomorphism** (resp. an **anti-homomorphism**) on M.

Definition 2.6[5]: Let S be a nonempty subset of M and let d be a derivation on M.

If $d(x\gamma y) = d(x)\gamma d(y)$ (resp. $d(x\gamma y) = d(y)\gamma d(x)$) for all $x, y \in S$ and $\gamma \in \Gamma$, then d is said to act as a **homomorphism** (resp. an **anti-homomorphism**) on S.

Definition 2.7[5]: An additive endomorphism $d: M \to M$ of a Γ – near ring M is called a (α, β) derivation on M if there exist two functions $\alpha, \beta: M \to M$ such that the following product rule holds: $d(x\gamma y) = d(x)\gamma\alpha(y) + \beta(x)\gamma d(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$. One can easily show that if d is (α, β) derivation on M Such that

 $\alpha(x+y) = \alpha(x) + \alpha(y)$ and $\beta(x+y) = \beta(x) + \beta(y)$, then $\alpha(xyy) = \beta(x)\gamma\alpha(y) + \alpha(x)\gamma\alpha(y)$.

Definition 2.8[5]: An additive mapping $d: M \to M$ is called a two-sided α – derivation if d is $(\alpha, 1)$ derivation as well as $(1, \alpha)$ -derivation. we should note that if $\alpha = 1$, then a two sided α – derivation is just a derivation

Definition 2.9 [4]: A nonempty subset U of M is called a **semigroup right ideal** (**resp. semigroup left ideal**) if $U\Gamma M \subset M(M\Gamma U)$ is called **semigroup** ideal if it is both right and left semigroup ideal.

3. $(1, \alpha)$ - derivation in prime and semiprime Γ – near rings

We need the following Lemmas to prove the main theorem of this section.

Lemma 3.1: Let M be a prime Γ – near ring and let U be a nonzero semigroup ideal of M. If a+b=b+a for all $a,b\in U$, then (M,+) is abelian.

Proof: By the hypothesis, we have $x\gamma a + y\gamma a - x\gamma a - y\gamma a = 0$ for all $a \in U$, $x, y \in M$ and $\gamma \in \Gamma$. Then we get $(x + y - x - y)\gamma a = 0$ for all $a \in U$, $x, y \in M$ and $\gamma \in \Gamma$. It means that $(x + y - x - y)\Gamma M \Gamma U \subseteq (x + y - x - y)\Gamma U = 0$.

Since *U* is a non zerosemigroup ideal then x + y - x - y = 0 for all $x, y \in M$ by the primeness of *M*. Thus (M, +) is Abelian.

Lemma 3.2: Let M be right Γ – near ring, d a(1, α)- derivation of M and U a multiplicative semigroup of M which contains 0. If d acts as an anti-homomorphism on U and $\alpha(x) = x$, then $x\gamma 0 = 0$ for all $x \in U$.

Proof: Since $0\gamma x = 0$ for all $x \in U$ and $\gamma \in \Gamma$, d acts as an anti-homomorphism on U, it is clear that $d(0\gamma x) = d(x)\gamma d(0) = d(x)\gamma 0$ for all $x \in U$. Taking $x\gamma 0$ instead of x one, can obtain $d(x)\gamma 0 + \alpha(x)\gamma d(0) = \alpha(x)\gamma d(0) = 0$ for all $x \in U$. Thus we have $x\gamma 0 = 0$ for all $x \in U$.

Lemma 3.3: Let M be a Γ - near ring and U be a multiplicative subsemigroup of M. If d is a $(1,\alpha)$ - derivation of M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$ and $\alpha(U) = U$, then $n\mu(d(x)\gamma y + \alpha(x)\gamma d(y)) = n\mu d(x)\gamma y + n\mu\alpha(x)\gamma d(y)$ for all $n, x, y \in U$, $\gamma, \mu \in \Gamma$.

Proof: Since
$$d(x\gamma y) = d(x)\gamma y + \alpha(x)\gamma d(y)$$
. From the associative $\text{lawd}(n\mu(x\gamma y)) = d(n)\mu(x\gamma y) + \alpha(n)\mu d(x\gamma y)$
= $d(n)\mu(x\gamma y) + \alpha(n)\mu(d(x)\gamma y + \alpha(x)\gamma d(y))$ since (U) = U, we have
 $d(n\mu(x\gamma y)) = d(n)\mu(x\gamma y) + n\mu(d(x)\gamma y + \alpha(x)\gamma d(y))$ (1)

On other hand for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$.

$$d((n\mu x)\gamma y) = d(n\mu x)\gamma y + \alpha(n\mu x)\gamma d(y)$$

$$= d(n)\mu(x\gamma y) + \alpha(n)\mu(d(x)\gamma y + \alpha(x)\gamma d(y))$$

$$= d(n)\mu(x\gamma y) + n\mu(d(x)\gamma y + \alpha(x)\gamma d(y))\operatorname{since}\alpha(U) = U$$
(2)

Since Uis a semigroup ideal, comparing (1) and (2)

$$n\mu(d(x)\gamma y + \alpha(x)\gamma d(y) = n\mu d(x)\gamma y + n\mu\alpha(x)\gamma d(y)$$

Lemma 3.4: Let M be a prime Γ – near ring and U be a non zero semigroup ideal of M. Let d be a non-zero $(1,\alpha)$ derivation on M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U, y \in \Gamma$. If $x \in M$ and $d(U)\gamma x = \{0\}$ then x = 0.

Proof: Assume that $d(U)\gamma x = \{0\}$. Since U is a non-zero semigroupideal of M, $d(u\mu y)\gamma x = 0$ for all $x, y \in M, u \in U$ and $y, \mu \in \Gamma$. Hence $0 = [d(u)\mu y + \alpha(u)\mu d(y)]\gamma x = \alpha(u)\mu d(y)\gamma x$ for all $u \in U, y \in M$. $\Rightarrow \alpha(u)\Gamma d(y)\Gamma x = 0$ for all $\gamma, \mu \in \Gamma$. Since M is prime, $\alpha(u) = 0$ or $\alpha(u) = 0$ for all $\alpha(u) = 0$ for all $\alpha(u) = 0$ for all $\alpha(u) = 0$. This is not possible. There for $\alpha(u) = 0$.

Lemma 3.5: Let M be a prime Γ – near ring and U be a non zero semigroup ideal of M and a non-zero $(1,\alpha)$ – derivation on M. If d(x+y-x-y)=0 for all $x,y\in U$ then $\alpha(x+y-x-y)\gamma d(z)=0$ for all $x,y\in U$ and $z\in M$.

Proof: Assume that d(x + y - x - y) = 0 for all $x, y \in U$. Let us take $y\gamma z$ and $x\gamma z$ instead of y and x respectively (where $Z \in M$ and $\gamma \in \Gamma$) We obtain

$$d(x\gamma z + y\gamma z - x\gamma z - y\gamma z) = d((x + y - x - y)\gamma z) = 0$$

$$\Rightarrow d(x + y - x - y)\gamma z + \alpha(x + y - x - y)\gamma d(z) = \alpha(x + y - x - y)\gamma d(z) = 0 \text{ for all } x, y \in U, z \in M, \gamma \in \Gamma.$$

Therefore $\alpha(x + y - x - y)\Gamma d(z) = 0$ for all $\gamma \in \Gamma$.

Lemma 3.6: Let M be a Γ – near ring U be a multiplicative subsemigroup of M. Let d be $(1, \alpha)$ - derivation of M such That $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$ and $\alpha(U) = U$.

(i) If d acts as a homomorphism on U then,

$$d(y)\mu x \gamma d(y) = \alpha(y)\mu x \gamma d(y) = d(y)\mu x \gamma y$$
 for all $x, y \in U$ and $\mu, \gamma \in \Gamma$.

(ii) If d acts as a anti-homomorphism on U then,

$$d(y)\gamma x\gamma d(y) = x\gamma \alpha(y)\gamma d(y) = d(y)\gamma y\gamma x$$
 for all $x, y \in U$ and $\mu, \gamma \in \Gamma$.

Proof:

(i) Let d acts as a homomorphism on U. Then

$$d(x\gamma y) = d(x)\gamma y + \alpha(x)\gamma d(y) = d(y\mu x\gamma y) \text{ for all } x, y \in U, \gamma \in \Gamma$$
(3)

Substituting $y\mu x$ for x in equation (3)

$$d(y\mu x\gamma y) = d(y\mu x)\gamma y + \alpha(y\mu x)\gamma d(y) = d(y)\mu d(x\gamma y) \text{ for all } x, y \in U \mu, \gamma \in \Gamma$$
 (4)

By the Lemma3.3

$$d(y)\mu d(x\gamma y) = d(y)\mu d(x)\gamma y + d(y)\mu \alpha(x)\gamma d(y)$$
 for all $x, y \in U, \mu, \gamma \in \Gamma$.

Using this relation in equation (4), we get

$$\alpha(y)\mu\alpha(x)\gamma d(y) = d(y)\mu\alpha(x)\gamma d(y)$$

Since $\alpha(U) = U$, we have

$$\alpha(y)\mu x\gamma d(y) = d(y)\mu x\gamma d(y)$$
 for all $x, y \in U, \mu, \gamma \in \Gamma$.

Similarly taking $y\mu x$ instead of yin equation (3) we obtain

$$d(x)\gamma d(y\mu x) = d(x)\gamma y\mu x + \alpha(x)\gamma d(y\mu x) = d(x\gamma y)\mu d(x) \text{ for all } x,y \in U,\mu,\gamma \in \Gamma.$$
 (5)

On the other hand $d(x\gamma y)\mu d(x) = (d(x)\gamma y + \alpha(x)\gamma d(y))\mu d(x) = d(x)\gamma y\mu x + \alpha(x)\gamma d(y)\mu d(x)$. using this relation in (5) we get $d(y)\mu x\gamma d(y) = \alpha(y)\mu x\gamma d(y) = d(y)\mu x\gamma d(y)$ for all $x, y \in U, \mu, \gamma \in \Gamma$

(ii) since d acts as a anti-homomorphism on U, we have

$$d(x\gamma y) = d(x)\gamma y + \alpha(x)\gamma d(y)$$

$$\Rightarrow d(y)\gamma d(x) = d(x)\gamma y + \alpha(x)\gamma d(y) \text{ for all } x, y \in U, \gamma \in \Gamma$$
(6)

Taking xyy for y in equation (6) and by the hypothesis we get

$$d(x\gamma y)\gamma d(x) = d(x)\gamma x\gamma y + \alpha(x)\gamma d(x\gamma y)$$

$$\Rightarrow d(x)\gamma y\gamma d(x) = d(x)\gamma x\gamma y$$
(7)

Similarly taking xyy instead of x in equation (6) and by hypothesis

$$d(y)\gamma d(x\gamma y) = d(x\gamma y)\gamma y + \alpha(x\gamma y)\gamma d(y)$$

$$\Rightarrow d(y)\gamma \alpha(x)\gamma d(y) = \alpha(x\gamma y)\gamma d(y)$$

Since $\alpha(U) = U$, we have

$$d(y)\gamma x\gamma d(y) = x\gamma\alpha(y)\gamma d(y)$$

Theorem 3.7: Let M be a semiprime Γ – near ring and U be a subset of M such that $0 \in U$ and $U\Gamma M \subseteq U$. Let d be a $(1, \alpha)$ – derivation on M such that $\alpha(U) = U$ and $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y) \ \forall x, y \in U$

- (i) If dacts as an homomorphism on U then $d(U) = \{0\}$
- (ii) If dacts as an anti-homomorphism on U and $\alpha(0) = 0$ then $d(U) = \{0\}$

Proof: Suppose d acts as an homomorphism on U. By the Lemma 3.6, we have

$$d(y)\mu x \gamma d(y) = d(y)\mu x \gamma y \text{ for all } x, y \in U \text{ and } \mu, \gamma \in \Gamma$$
 (8)

Multiply (8) by d(z) where $z \in U$ and using the hypothesis that d act as an homomorphism on U together with Lemma 3.6 we get

$$d(y)\mu x\gamma(d(y)\mu z + \alpha(y)\mu d(z)) = d(y)\mu x\gamma y\mu d(z)$$

 $\Rightarrow d(y)\mu x\gamma d(y)\mu z + d(y)\mu x\gamma \alpha(y)\mu d(z) = d(y)\mu x\gamma y\mu d(z)$ by the Lemma 3.3

Since $\alpha(U) = U$, we get

$$d(y)\mu x \gamma d(y)\mu z + d(y)\mu x \gamma y \mu d(z) = d(y)\mu x \gamma y \mu d(z)$$

$$\Rightarrow d(y)\mu x \gamma d(y)\mu z = 0 \quad \text{for all } x, y \in U \text{ and } \mu, \gamma \in \Gamma$$
(9)

Taking $z\eta m$ instead of x where $m \in M$

We get $d(y)\mu z\eta m\gamma d(y)\mu z = 0$ for all $x, y, z \in U, m \in M$ and $\mu, \eta, \gamma \in \Gamma$.

In particular

$$\Rightarrow d(y)\mu z \Gamma M \Gamma d(y)\mu z = 0$$

By the semiprimeness of M we conclude that

$$d(y)\mu z = \{0\} \tag{10}$$

Substitute $y\eta n$ for y in equation (10)

$$d(y\eta n)\mu z = 0 \tag{11}$$

Left multiply (11) by d(z) where $z \in U$, we get

$$d(z)\beta d(y\eta n)\mu z = 0$$

$$\Rightarrow d(z)\beta d(y)\eta n\mu z + d(z)\beta \alpha(y)\eta d(n)\mu z = 0$$
 by the Lemma 3.3

Since the second summand is zero by (11) we get

$$d(z)\beta d(y)\eta n\mu z = 0$$

By the hypothesis and by using (10)

$$\alpha(z)\beta d(y)\eta n\mu z = 0$$

Since $\alpha(U) = U$, we have

$$z\beta d(y)\eta n\mu z = 0$$
 for all $x, y \in U, n \in M$

Substitute $z = z\beta d(y)$ in above equation and since M is semiprime

$$z\beta d(y) = 0$$
 for all $y, z \in U$

Since

$$\alpha(U) = U,$$

$$\alpha(z) \beta d(y) = 0$$
(12)

Combining (10) and (12) we get

$$d(y\beta z) = 0$$
 for all $y, z \in U$

Replace y by zym

$$d(z\gamma m\beta z) = 0$$
 for all $m \in M$ and $\gamma, \beta \in \Gamma, z \in U$

By the hypothesis and by (12)

$$d(z)\gamma m\beta d(z)=0$$

$$\Rightarrow d(z)\Gamma M\Gamma d(z) = 0$$

Hence

$$d(z) = \{0\} \text{ for all } z \in U \tag{13)(ii)}$$

Now assume that d acts as an anti-homomorphism on U. By the Lemma 3.6, we have

$$x \gamma \alpha(y) \gamma d(y) = d(y) \gamma x \gamma d(y) \tag{14}$$

$$d(y)\gamma y \gamma x = d(y)\gamma x \gamma d(y) \tag{15}$$

Replace x by $x\gamma d(y)$ in (14), we get

$$x\gamma d(y)\gamma \alpha(y)\gamma d(y) = d(y)\gamma x\gamma d(y)\gamma y + d(y)\gamma x\gamma \alpha(y)\gamma d(y)$$
 by the Lemma 3.3

Since $\alpha(U) = U$, we have

$$x\gamma d(y)\gamma y\gamma d(y) = d(y)\gamma x\gamma d(y)\gamma a(y) + d(y)\gamma x\gamma y\gamma d(y)$$
(16)

Substitute xyy for x equation (14)

$$x\gamma y\gamma \alpha(y)\gamma d(y) = d(y)\gamma x\gamma y\gamma d(y) \tag{17}$$

multiply equation (14) by $\alpha(y)$

$$x\gamma\alpha(y)\gamma d(y)\gamma\alpha(y) = d(y)\gamma x\gamma d(y)\gamma\alpha(y) \tag{18}$$

Replace x by y in equation (14)

$$y\gamma\alpha(y)\gamma d(y) = d(y)\gamma y\gamma d(y)$$

Multiply by x above relation by

$$x\gamma y\gamma \alpha(y)\gamma d(y) = x\gamma d(y)\gamma y\gamma d(y) \tag{19}$$

Using (17) (18) and (19) in (16)

$$x\gamma y\gamma \alpha(y)\gamma d(y) = x\gamma \alpha(y)\gamma d(y)\gamma \alpha(y) + x\gamma y\gamma \alpha(y)\gamma d(y)$$
$$x\gamma \alpha(y)\gamma d(y)\gamma \alpha(y) = 0$$

In particular,

$$xn\gamma\alpha(y)\gamma d(y)\gamma\alpha(y) = 0$$
 where $n \in M$

Hence
$$\alpha(y)\gamma d(y)\gamma \alpha(y)\gamma M\gamma \alpha(y)\gamma d(y)\gamma \alpha(y) = \{0\}$$

By the semiprimeness of

$$\alpha(y)\gamma d(y)\gamma \alpha(y) = 0 \text{ for all } x, y \in U$$
 (20)

According to (18) we get

$$d(y)\gamma x \, \gamma d(y)\gamma \alpha(y) = 0 \text{ for all } x, y \in U \tag{21}$$

Replacing x by $\alpha(y)\gamma x\gamma n$

$$d(y)\gamma\alpha(y)\gamma x\gamma n\gamma d(y)\gamma\alpha(y)\gamma x = 0$$

$$\Rightarrow d(y)\gamma\alpha(y)\gamma x = 0 \text{ for all } x, y \in U, n \in M$$

Since
$$\alpha(U) = U$$
, we get

$$d(y)\gamma y\gamma x = 0 \text{ for all } x, y \in U$$
 (22)

Using (22) in (15) we obtain

$$d(y)\gamma x\gamma d(y) = 0$$
 for all $x, y \in U$

And so we have

$$d(y)\gamma x\gamma n\gamma d(y)\gamma x = 0$$
 for all $x, y \in U, n \in M$

Hence
$$d(y)\gamma x = 0$$
 for all $x, y \in U$

Therefore

$$x\gamma d(z)\gamma d(y\gamma n)\gamma x = 0$$
 for all $x, y, z \in Un \in M$

By the hypothesis and using Lemma 3.3

$$x\gamma d(z)\gamma d(y)\gamma n\gamma x + 0 = 0$$

Since $\alpha(U) = U$ the second summand is zero by (13)

Hence $x\gamma d(z)\gamma d(\gamma)\gamma M\gamma x = 0$

By the semiprimeness of M we get

$$0 = x\gamma d(z)\gamma d(y)$$

= $x\gamma d(z)\gamma y + x\gamma \alpha(z)\gamma d(y)$
= $x\gamma \alpha(z)\gamma d(y) = 0$

By the semiprimeness of M,

$$\alpha(z)\gamma d(y) = 0 \text{ for all } z, y \in U \tag{24}$$

Combining (23) and (24) we have

$$0 = d(x\gamma y)$$
 for all $x, y \in U$

(23)

Replace y by $x\gamma n$. By hypothesis and Lemma 3.3

$$0 = d(x)\gamma n\gamma d(x) + \alpha(x)\gamma d(n)\gamma d(x)$$

Since the second summand is zero we get

$$d(x)\gamma n\gamma d(x) = 0$$

Therefore d(x) = 0 for all $x \in U$.

i.e.,
$$d(U) = 0$$

Corollary 3.8: Let M be a semi prime Γ – near ring and d a $(1,\alpha)$ – derivation of M Such that α is onto and $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in M$

- (i) If dacts as a homomorphism on M, then d = 0
- (ii) If dacts as a anti-homomorphism on M such that $\alpha(0) = 0$ then d = 0

Proof: Take U = M in above theorem we get

- (i) $d(M) = 0 \Rightarrow d = 0$
- (ii) $\alpha(0) = 0$ then $d(M) = 0 \Rightarrow d = 0$

Corollary 3.9: Let M be a prime Γ – near ringand U a non zero subset of M such that $0 \in U$ and $U\Gamma M \subseteq U$. Let d be a $(1, \alpha)$ – derivation of M Such that $\alpha(U) = U$ and $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$

- (i) If dacts as a homomorphism on U, then d = 0
- (ii) If dacts as an anti-homomorphism on U and $\alpha(0) = 0$ then d = 0

Proof: By the theorem 3.7, we have d(x) = 0 for all $x \in U$. Then $d(x\gamma n) = d(x)\gamma n + \alpha(x)\gamma d(n) = \alpha(x)\gamma d(n) = 0$ for all $x \in U$, $x \in U$. Replace $x \in U$, $x \in U$,

Theorem 3.10: Let M be a prime Γ – near ring U a non zero semigroup ideal of M and d a non zero(1, α)- derivation of M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$ and $\alpha(U) = U$. If d(x + y - x - y) = 0 for all $x, y \in U$ then (M, +) is abelian.

Proof: Suppose that d(x+y-x-y)=0 for all $x,y\in U$. By the Lemma 3.5, we have $\alpha(x+y-x-y)\gamma d(z)=0$ for all $x,y\in U$, $z\in M$ and $\gamma\in \Gamma$.. Since $d\neq 0$ it follows that $\alpha(x+y-x-y)=x+y-x-y=0$ for all $x,y\in U$. Hence (M,+) is abelian by Lsemma 3.1.

REFERENCE

- 1. N. Argac, on prime and semiprime near rings with derivations, Internat.J.Math.andMath.Sci.20 (1997), no. 4, 737-740
- 2. N. Argac., On near rings with two-sided α –derivations, Turkish J. Math. 28 (2004), 195-204.
- 3. H.EBelland G.Mason, On derivations in near-rings, Near-rings and Near-fields [Tiibingen, 1985] of North-Holland Mathematics Studies, North-Holland, Amsterdam, The Netherlands 137(1987), 31-35.
- 4. L. Madhuchelvi. On Generalized Derivation in Γ Near Rings, Int. Jr, of Mathematical sciences and Applications, vol. 6, No.1, ISSN NO: 2230-9888, Jan-Jun 2016.
- 5. MustafaKazaz and Akin Alkan, Two-sided $\Gamma \alpha$ derivations in prime and semiprime Γ near rings Commum. Korean Math. Soc. 23 (2008), No.4, pp. 466-477
- 6. N.Nobusawa, On a generalization of the ring theory, Osaka Journal Math.1 (1964), 81-89.
- 7. B.Satyanarayana, Contributions to Near ring theory, Doctoral Thesis, Nagarjuna University, India, 1984.

Source of support: National Conference on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.