Volume 9, No. 3, March - 2018 (Special Issue) International Journal of Mathematical Archive-9(3), 2018, 184-188 MAAvailable online through www.ijma.info ISSN 2229 - 5046

ON #pg-CONTINUOUS MAPS AND #pg-COMPACT SPACES

DR. M. SUDHA¹ AND K. RAVEENA²

¹Associate Professor, Department of Mathematics, Sri Sarada College for Women (Autonomous), Salem-16, India.

²Research Scholar, Department of Mathematics, Sri Sarada College for Women (Autonomous), Salem-16, India.

E-mail: sudhaslm05@yahoo.com1, raveenakumaresh@gmail.com2

ABSTRACT

In this paper the concept of #pg-closed set is introduced. Besides studying some properties, the interrelations of #pg-closed set with other related sets are studied. Characterizations and properties of #pg-continuous map is discussed. Equivalently #pg-compact spaces are introduced and some interesting properties are discussed.

Keywords: *pre semi-open set, pw-closed set, #pg-closed set, #pg-continuous map, $T_{\#pg}$ -space, #pg-irresolute map, #pg-compact space.

AMS Subject Classification: 54A05, 54C08.

1. INTRODUCTION

The notion of pre-open set was introduced by Mashhour *et al.* [12]. Cameron [5], Benchalli [3], and Syed Ali Fathima and Mariasingam [19, 20] introduced and investigated regular semi-open sets, rw-closed sets, #rg-closed sets, #rg-closed sets, #rg-closed sets, #rg-closed sets, #rg-continuous maps, T_{#rg}-space and #RG-compact spaces. We introduce and study the concept of #pg-closed sets, #pg-continuous maps and #pg-compact spaces.

2. PRELIMINARIES

Throughout this paper X, Y and Z denote the topological spaces (X, T), (Y, S) and (Z, R) respectively on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space X, the closure of A, interior of A, semi-closure of A, semi-closure of A, the complement of A and #rg-closure of A are denoted by cl(A), int(A), scl(A), scl(A),

Definition 2.1: A subset A of a space X is called

- (1) a pre-open set [11] if $A \subseteq intcl(A)$ and a pre-closed set if clint $(A) \subseteq A$.
- (2) a semi-open set [11] if $A \subseteq \text{clint } (A)$ and a semi-closed set if intcl $(A) \subseteq A$.
- (3) a regular open set [17] if A = intcl(A) and a regular closed set if A = clint(A).
- (4) a π -open set [21] if A is a finite union of regular open sets.
- (5) a regular semi-open set [5] if there is a regular open U such that $U \subseteq A \subseteq cl(U)$.
- (6) a semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set if $int(cl(int(A))) \subseteq A$.

Definition 2.2: A subset A of a space X is called

- (1) a generalized closed set (briefly, g-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (2) a weakly generalized closed set (briefly, wg-closed) [13] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (3) a π -generalized closed set (briefly, π g-closed) [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in X.
- (4) a weakly closed set (briefly, w-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- (5) a rw-closed set [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X.
- (6) a *g-closed set [20] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is w-open in X.

International Journal of Mathematical Archive- 9(3), March - 2018

184

Dr. M. Sudha¹ and K. Raveena²/ On #pq-Continuous maps and #pq-Compact Spaces / IJMA- 9(3), March-2018, (Special Issue)

- (7) a generalized semi-closed set (briefly, gs-closed) [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (8) a generalized semi pre-closed set (briefly, gsp-closed) [7] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (9) a #rg-closed set [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw-open in X.

Definition 2.3: [18] For a subset A of a space X, $\#rg\text{-cl}(A) = \bigcap \{F : A \subseteq F, F \text{ is } \#rg \text{ closed in } X\}$ is called the #rg-closure of A.

Definition 2.4: A map $f: (X, T) \rightarrow (Y, S)$ is called

- (1) continuous [4] if $f^{-1}(V)$ is closed set in X for every closed subset V of Y.
- (2) π -continuous [8] if $f^{-1}(V)$ is π -closed set in X for every closed subset V of Y.
- (3) π g-continuous [8] if $f^{-1}(V)$ is π g-closed set in X for every closed subset V of Y.
- (4) wg-continuous [13] if $f^{-1}(V)$ is wg-closed set in X for every closed subset V of Y.
- (5) gs-continuous [6] if $f^{-1}(V)$ is gs-closed set in X for every closed subset V of Y.
- (6) gsp-continuous [7] if $f^{-1}(V)$ is gsp-closed set in X for every closed subset V of Y.
- (7) #rg-continuous[19] if $f^{-1}(V)$ is #rg-closed set in X for every closed subset V of Y.

Definition 2.5: A space X is called T_{#rg}-space [18] if every #rg-closed set in it is closed.

Definition 2.6: [19] Let (X, T) be a topological space and $T_{\text{#rg}} = \{V \subseteq X : \text{\#rg-cl}(X \setminus V) = X \setminus V\}.$

Definition 2.7: [19] A function $f: (X, T) \rightarrow (Y, S)$ is called #rg -irresolute if $f^{1}(V)$ is #rg-closed in (X, T) for every #rg-closed subset V of (Y, S).

Definition 2.8: [16]A family S_n of # rg-open subsets of a topological space (X, T) is said to be # rg-open cover of X, if $X \subseteq \{S_n : n \in I\}$.

Definition 2.9: [9] A topological space (X, T) is said to be compact space if every open cover of X has a finite subcover.

3. #pg-CLOSED SETS AND THEIR BASIC PROPERTIES

In this section, we introduce and study #pg-closed sets.

Definition 3.1: A subset A of a space X is called *pre semi-open (briefly, *ps-open) if there is a pre-open set U such that $U \subseteq A \subseteq cl(U)$.

Definition 3.2: A subset A of a space X is called pre weakly-closed (briefly, pw-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *ps-open in X.

Definition 3.3: A subset A of a space X is called #pre generalized-closed (briefly, #pg-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is pw-open in X.

The interrelations among the set introduced and other related sets are exhibited below:

Proposition 3.1: The union of two #pg-closed subsets of X is also a #pg-closed subset of X.

Proof: Assume that A and B are #pg-closed sets in X. Let $A \cup B \subseteq U$ and U be pw-open in X. Then $A \subseteq U$ and B $\subseteq U$ and U is pw-open in X. Since A and B are #pg-closed sets in X, $cl(A) \subseteq U$ and $cl(B) \subseteq U$. Hence, $cl(A \cup B) = cl(A) \cup cl(B) \subseteq U$. Therefore, $A \cup B$ is a #pg-closed set in X.

Proposition 3.2: The intersection of two #pg-closed subsets of X is also a #pg-closed subset of X.

Proposition 3.3: Let A be a #pg-closed set in X. Then cl(A)\A does not contain any non-empty pw-closed set in X.

Proof Let U be a non-empty pw-closed subset of $cl(A)\setminus A$. Now $A\subseteq X\setminus U$ and $X\setminus U$ is pw-open in X. Since A is #pg-closed, $cl(A)\subseteq X\setminus U$. Then $U\subseteq X\setminus cl(A)$. This is a contradiction, since by assumption, $U\subseteq cl(A)$.

Proposition 3.4: Let A be a #pg-closed set in X. Then A is closed iff cl(A)\A is pw-closed.

Dr. M. Sudha¹ and K. Raveena²/ On #pq-Continuous maps and #pq-Compact Spaces / IJMA- 9(3), March-2018, (Special Issue)

Proposition 3.5: For every point x of a space X, $X \setminus \{x\}$ is #pg-closed (or) pw-open.

Proposition 3.6: Let A be a #pg-closed subset of (X, T) such that $A \subseteq B \subseteq cl(A)$. Then B is also a #pg-closed subset of (X, T).

Proof: Let $B \subseteq U$ and U be pw-open in (X, T). Since $A \subseteq B$, $A \subseteq U$ and U is a pw-open set in (X, T). Since A is #pg-closed, $cl(A) \subseteq U$. Then $cl(B) \subseteq cl(cl(A)) = cl(A) \subseteq U$. Hence, B is #pg-closed.

The converse of the above Theorem need not be true as seen from the following Example.

Example 3.1: Let $X = \{a, b, c, d\}$ and $T = \{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{a, d\}$ and $B = \{a, b, d\}$. Then A and B are #pg-closed set in (X, T). But $A = \{a, d\} \subseteq B = \{a, b, d\} \nsubseteq cl(A) = \{c, d\}$.

Proposition 3.7: If a subset A of a topological space X is both pw-open and #pg-closed. Then A is a closed set.

Proposition 3.8: Let A be pw-open and #pg-closed in X. Suppose that F is closed in X. Then $A \cap F$ is a #pg-closed set in X.

Proof: Let A be a pw-open and #pg-closed set in X and let F be a closed set in X. By Proposition 3.5, A is closed and so $A \cap F$ is closed. Since every closed set is #pg-closed, $A \cap F$ is a #pg-closed set in X. Hence, $A \cap F$ is a #pg-closed set in X.

Remark 3.1: If a subset A of a topological space X is

- (i) open and g-closed, then A is #pg-closed.
- (ii) w-open and *g-closed, then A is #pg-closed.
- (iii) π -open and π g-closed, then A is #pg-closed.
- (iv) semi-open and w-closed, then A is #pg-closed.
- (v) *ps-open and pw-closed, then A is #pg-closed.
- (vi) open and wg-closed, then A is #pg-closed.

Definition 3.4: A space X is called a $T_{\#pg}$ -space if every #pg-closed set in it is closed.

Proposition 3.9: Every $T_{1/2}$ -space is $T_{\text{#pg}}$ -space.

4. #pg-CONTINUOUS MAPS

In this section, we introduce and study #pg-continuous maps.

Definition 4.1: For a subset A of a space X, $\#pg\text{-cl}(A) = \bigcap \{F : A \subseteq F, F \text{ is } \#pg\text{-closed in } X\}$ is called the #pg-closure of A.

Definition 4.2: Let (X, T) be a topological space and $T_{\#pg} = \{V \subseteq X: \#pg\text{-}cl(X \setminus V) = X \setminus V\}.$

Definition 4.3: A map $f:(X, T) \to (Y, S)$ is called #pg-continuous if $f^{-1}(V)$ is #pg-closed in X for every closed subset V in Y.

Definition 4.4: A map $f:(X,T) \to (Y,S)$ is called #pg-irresolute if $f^{-1}(V)$ is #pg-closed in (X,T) for every #pg-closed subset V of (Y,S).

Remark 4.1 Let A and B be subsets of (X, T). Then

- 1. $\#pg\text{-}cl(\phi) = \phi$ and #pg-cl(X) = X.
- 2. If $A \subseteq B$, then $\#pg\text{-cl}(A) \subseteq \#pg\text{-cl}(B)$.
- 3. $A \subseteq \#pg\text{-cl}(A)$.
- 4. If A is #pg-closed, then #pg-cl(A) = A.

Proposition 4.1: Suppose $T_{\#pg}$ is a topology. If A is #pg-closed in (X, T), then A is closed in $(X, T_{\#pg})$.

Proposition 4.2: A set $A \subseteq X$ is #pg-open iff $F \subseteq int(A)$ whenever $F \subseteq A$ and F is pw-closed.

Proposition 4.3: Let X be a space in which every singleton set is pw-closed. Then f: $(X, T) \rightarrow (Y, S)$ is #pg-continuous iff $x \in int(f^{-1}(V))$ for every open subset V of Y which contains f(x).

Dr. M. Sudha¹ and K. Raveena²/

On #pg-Continuous maps and #pg-Compact Spaces / IJMA- 9(3), March-2018, (Special Issue)

Proposition 4.4: Let $f:(X,T) \to (Y,S)$ be a map. Let (X,T) and (Y,S) be any two spaces such that $T_{\#pg}$ is a topology on X. Then the following statements are equivalent:

- (i) For every subset A of X, $f(\#pg\text{-cl}(A)) \subseteq cl(f(A))$.
- (ii) $f: (X, T_{\#pg}) \rightarrow (Y, S)$ is continuous.

Proof

(i) \Rightarrow (ii): Suppose (i) holds. Let A be a closed set in Y. By (i), $f(\#pg\text{-}cl(f^{-1}(A))) \subseteq cl(f(f^{-1}(A))) \subseteq cl(A) = A$. So $\#pg\text{-}cl(f^{-1}(A)) \subseteq f^{-1}(A)$. Also $f^{-1}(A) \subseteq \#pg\text{-}cl(f^{-1}(A))$. Hence, $\#pg\text{-}cl(f^{-1}(A)) = f^{-1}(A)$. This implies $(f^{-1}(A))^c \in T_{\#pg}$. Thus, $f^{-1}(A)$ is closed in $(X, T_{\#pg})$. Hence, f is continuous.

(ii) \Rightarrow (i): Suppose (ii) holds. Let A be a subset of X. Then cl(f(A)) is closed in Y. Since $f:(X, T_{\#pg}) \rightarrow (Y, S)$ is continuous, $f^{-1}(cl(f(A)))$ is closed in $(X, T_{\#pg})$. By Definition 4.2, $\#pg-cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$.

Now $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$, $A \subseteq f^{-1}(cl(f(A)))$, which implies $\#pg\text{-}cl(A) \subseteq \#pg\text{-}cl\ f^{-1}(cl(f(A))) = f^{-1}(cl(f(A)))$. Therefore, $f(\#pg\text{-}cl(A)) \subseteq cl(f(A))$.

The interrelations among the map introduced and other related maps are exhibited below:

Proposition 4.5: Let $f:(X,T) \to (Y,S)$ be a function. Then the following are equivalent:

- (i) f is #pg-continuous.
- (ii) The inverse mage of each open set in (Y, S) is #pg-open in (X, T).
- (iii) The inverse mage of each closed set in (Y, S) is #pg-closed in (X, T).

Proof:

(i) \Rightarrow (ii): Suppose (i) holds. Let V be open in Y. Then Y\V is closed in Y. Since f is #pg-continuous, $f^{-1}(Y \setminus V)$ is #pg-closed in X. But $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ which is #pg-closed in X. Therefore, $f^{-1}(V)$ is #pg-open in X. Hence, the inverse mage of each open set in (Y, S) is #pg-open in (X, T).

(ii) \Rightarrow (iii): Suppose (ii) holds. Let V be a closed set in Y. Then Y\V is open in Y. Since the inverse mage of each open set in (Y, S) is #pg-open in (X, T), $f^{-1}(Y \setminus V)$ is #pg-open. But $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ which is #pg-open. Therefore, $f^{-1}(V)$ is #pg-closed in X. Hence, the inverse mage of each closed set in (Y, S) is #pg-closed in (X, T).

(iii) \Rightarrow (i): Suppose (iii) holds. Let V be a closed set in Y. Since, the inverse image of each closed set in (Y, S) is #pg-closed in (X, T), $f^{-1}(V)$ is #pg-closed in X. Hence, f is #pg-continuous.

Proposition 4.6: If a map $f:(X,T) \to (Y,S)$ is #pg-continuous, then $f(\#pg-cl(A)) \subseteq cl(f(A))$ for every subset A of X.

5. #pg-COMPACT SPACES

In this section we introduce and study the concept of #pg-compact spaces.

Definition 5.1: A family $\{S_n : n \in I\}$ of #pg-open subsets of a topological space (X, T) is said to be #pg-open cover of X, if $X \subseteq \bigcup \{S_n : n \in I\}$.

Definition 5.2: A topological space (X, T) is said to be #pg-compact space if every #pg-open cover of X has a finite subcover.

Proposition 5.1: Let (X, T) be a #pg-compact space. Then a #pg-closed subset of (X, T) is a #pg-compact set.

Proof: Let (X, T) be a #pg-compact space, $A \subseteq X$ be a #pg-closed set and $\{S_n : n \in I\}$ be #pg-open cover of A. Then $A \subseteq US_n$. Since A^c is a #pg-open set in $X, X \subseteq US_n \cup A^c$. Now $US_n \cup A^c$ is a #pg-open cover of X and X is a #pg-compact space. Hence, X has finite subcover, such that $X \subseteq S_1 \cup S_2, \ldots, \cup S_n \cup A^c$ and $A \cap A^c = \emptyset$. Thus, $A \subseteq S_1 \cup S_2, \ldots, \cup S_n$. Therefore, A is a #pg-compact set.

Proposition 5.2: If f: $(X, T) \rightarrow (Y, S)$ is a #pg -continuous map from a #pg-compact space (X, T) onto a topological space (Y, S), then (Y, S) is a compact space.

Proof: Let $\{A_k : k \in I\}$ be any open cover of (Y, S). Since f is a #pg-continuous map, $\{f^{-1}(A_k) : k \in I\}$ is a #pg-open cover of X. By hypothesis, X has a finite sub cover $\{f^{-1}(A_{k1}), f^{-1}(A_{k2}), \ldots, f^{-1}(A_{kn})\}$. That is, there exists $k1, k2, \ldots, kn$, such that $X \subseteq \bigcup \{f^{-1}(A_{ki}) : i=1,2,\ldots,n\}$. Since f is onto, $Y = f(X) \subseteq \bigcup \{f(f^{-1}(A_{ki}) : i=1,2,\ldots,n\}$, which equals $\bigcup \{A_{ki} : i=1,2,\ldots,n\}$. Therefore, Y is compact.

Dr. M. Sudha¹ and K. Raveena²/ On #pq-Continuous maps and #pq-Compact Spaces / IJMA- 9(3), March-2018, (Special Issue)

Proposition 5.3: If $f:(X, T) \rightarrow (Y, S)$ is a #pg-irresolute map from a #pg-compact space (X, T) onto a topological space (Y, S), then (Y, S) is a compact space.

Proposition 5.4: If $f: (X, T) \rightarrow (Y, S)$ is a #pg-irresolute map from a #pg-compact space (X, T) onto a topological space (Y, S), then (Y, S) is a #pg-compact space.

Proof: Let $\{A_k : k \in I\}$ be #pg-open cover of Y. Since f is #pg-irresolute, $\{f^{-1}(A_k) : k \in I\}$ is a #pg-open cover of X. By hypothesis, X has a finite sub cover $\{f^{-1}(A_{k1}), f^{-1}(A_{k2}), \ldots, f^{-1}(A_{kn})\}$. That is, there exist k1, k2, ..., kn, such that $X \subseteq \bigcup \{f^{-1}(A_{ki}) : i = 1, 2, ..., n\}$. Since f is onto, $Y = f(X) \subseteq \bigcup \{f(f^{-1}(A_{ki})) : i = 1, 2, ..., n\} = \bigcup \{(A_{ki}) : i = 1, 2, ..., n\}$. Therefore, Y is a #pg-compact space.

Proposition 5.5: Let $f: (X, T) \rightarrow (Y, S)$ be a #pg-irresolute map and G be a subset of X. If G is #pg-compact relative to X, then the image f(G) is #pg-compact relative to Y.

Proof: Let $\{A_k : k \in I\}$ be a collection of #pg-open sets in Y, such that $f(G) \subseteq \bigcup \{A_k : k \in I\}$. Then $G \subseteq \bigcup \{f^{-1}(A_k) : k \in I\}$, where $f^{-1}(A_k)$ is a #pg-open set in X for each $k \in I$. Since G is #pg-compact, there exists $\{A_1, A_2, ..., A_n\}$ such that $G \subseteq \bigcup \{f^{-1}(A_k) : k = 1, 2, ..., n\}$. Then $f(G) \subseteq \bigcup \{f(f^{-1}(A_k)) : k = 1, 2, ..., n\}$. Hence, $f(G) \subseteq \bigcup \{(A_k) : k = 1, 2, ..., n\}$. Therefore, f(G) is a #pg-compact space relative to Y.

6 REFERENCES

- 1. Andrijvic. D., Semi-pre open sets, Mat. Vesnik, 38(1986), 24-36.
- 2. Arya. S. P. and Nour. T., Characterizations of s-normal spaces, India J. Pure. Appl. Math., 21(8)(1990), 717-719.
- 3. Benchalli. S. S. and Wali. R. S., On RW-Closed sets in topological spaces, Bull, Malays. Math. Sci. Soc (2) 30(2) (2007), 99-110.
- 4. Caldas. M. and Ekici. E., Slightly γ continuous functions, Bol. Soc , Parana Mat (3) 22 (2004) No.2, 63-74.
- 5. Cameron. D. E., Properties of s-closed spaces, Proc. Amer. Math 29(1987), 376-382.
- 6. Devi. R, Balachandran. K and Maki. K., Semi generalized homeomorphisms and generalized semi homeomorphisms in topological spaces. Indian J. Pure. Appl. Math., 26(3):271:284, 1995.
- 7. Dontchev. J., On generalizing semi-pre-open sets. Mem. Fac. Sci. Kochi Univ. ser. A Math., 16:35:48, 1995.
- 8. Dontchev. J. and Noiri. T., Quasi-normal spaces and πg -closed sets, Acta Math. Hungar. 89(3) (2000), 211-219.
- 9. James R. Munkers, The topology, Prentice Hall of India private Limited, New Delhi
- 10. Levine. N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(1970), 89-96.
- 11. Levine. N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- 12. Mashhour. A. S., Abd El-Monsef. M. E. and El-Deeb. S. N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- 13. Nagaveni. N., Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- 14. Nijastad. O., Some classes of nearly open sets, Pecific J. Math. 15(1965), 961-970.
- 15. Pushpalatha. A., Studies on Generalizations of Mappings in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 2000.
- 16. Dr. Salim Dawood Mohisn and Muntaha Khudair Abbas., On #RG-Compact spaces.
- 17. Stone. M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374 481.
- 18. Syed Ali Fathima. S and Mariasingam. M., On #regular generalized closed sets in topological spaces. Int. J. Math. Archive, 2(11):2497:2502, 2011.
- 19. Syed Ali Fathima. S and Mariasingam. M., On #RG-Continuous and #RG-Irresolute functions (To be appear in Journal of Advanced Studies in Topology).
- 20. Tong. J., Weak almost continuous mapping and weak nearly compact spaces, Boll. Un. Mat. Ital. 6(1982), 385-391.
- 21. Zaitsav V., On certain classes of topological spaces and their bicompactifications. Dokl. Akad. Nauk SSSR 178 (1968), 778-779.

Source of support: National Conference on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.