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ABSTRACT 
In this paper the concept of #pg-closed set is introduced. Besides studying some properties, the interrelations of        
#pg-closed set with other related sets are studied. Characterizations and properties of #pg-continuous map is 
discussed. Equivalently #pg-compact spaces are introduced and some interesting properties are discussed. 
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1. INTRODUCTION 
 
The notion of pre-open set was introduced by Mashhour et al. [12]. Cameron [5], Benchalli [3], and Syed Ali Fathima 
and Mariasingam [19, 20] introduced and investigated regular semi-open sets, rw-closed sets, #rg-closed sets, #rg-
closure, #rg-continuous maps, T#rg-space and #RG-compact spaces. We introduce and study the concept of #pg-closed 
sets, #pg-continuous maps and #pg-compact spaces. 
 
2. PRELIMINARIES    
 
Throughout this paper X, Y and Z denote the topological spaces (X, T), (Y, S) and (Z, R) respectively on which no 
separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space X, the closure of A, 
interior of A, semi-closure of A, semipre-closure of A, the complement of A and #rg-closure of A are denoted by cl(A), 
int(A), scl(A), spcl(A), X\A and #rg-cl(A) respectively. We recall the following definitions and results. 
 
Definition 2.1: A subset A of a space X is called 

(1) a pre-open set [11] if A ⊆ intcl (A) and a pre-closed set if clint (A) ⊆ A. 
(2) a semi-open set [11] if A ⊆ clint (A) and a semi-closed set if intcl (A) ⊆ A. 
(3) a regular open set [17] if A = intcl (A) and a regular closed set if A = clint (A). 
(4) a 𝜋-open set [21] if A is a finite union of regular open sets. 
(5) a regular semi-open set [5] if there is a regular open U such that U ⊆ A ⊆ cl(U). 
(6) a semi-preopen set [1]   if   A ⊆ cl(int(cl(A))) and a semi-preclosed set if int(cl(int(A))) ⊆ A. 

 
Definition 2.2: A subset A of a space X is called  

(1) a generalized closed set (briefly, g-closed) [10] if cl(A) ⊆ U whenever  A ⊆ U and U is open in X. 
(2) a weakly generalized closed set (briefly, wg-closed) [13] if cl(int(A)) ⊆ U whenever A ⊆ U and U is open in X. 
(3) a 𝜋-generalized closed set (briefly, 𝜋g-closed) [8] if cl(A) ⊆ U whenever A ⊆ U and U is 𝜋-open in X. 
(4) a weakly closed set (briefly, w-closed) [15] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in X. 
(5) a rw-closed set [3] if cl(A) ⊆ U whenever A ⊆ U and U is regular semi-open in X. 
(6) a *g-closed set [20] if cl(A) ⊆ U whenever A ⊆ U and U is w-open in X. 
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(7) a generalized semi-closed set (briefly, gs-closed) [2] if scl(A) ⊆ U whenever A ⊆ U and U is open in X. 
(8) a generalized semi pre-closed set (briefly, gsp-closed) [7] if spcl(A) ⊆ U whenever A ⊆ U and U is open in X. 
(9) a #rg-closed set [18] if cl(A) ⊆ U whenever A ⊆ U and U is rw-open in X. 

 
Definition 2.3: [18] For a subset A of a space X, #rg-cl(A) = ⋂ {F : A ⊆ F, F is #rg closed in X} is called the            
#rg-closure of A. 
 
Definition 2.4: A map f : (X, T) → (Y, S) is called 

(1) continuous [4] if f⁻¹(V) is closed set in X for every closed subset V of Y. 
(2) 𝜋-continuous [8] if f⁻¹(V) is 𝜋-closed set in X for every closed subset V of Y. 
(3) 𝜋g-continuous [8] if f⁻¹(V) is 𝜋g-closed set in X for every closed subset V of Y. 
(4) wg-continuous [13] if f⁻¹(V) is wg-closed set in X for every closed subset V of Y. 
(5) gs-continuous [6] if f⁻¹(V) is gs-closed set in X for every closed subset V of Y. 
(6) gsp-continuous [7] if f⁻¹(V) is gsp-closed set in X for every closed subset V of Y. 
(7) #rg-continuous[19] if f⁻¹(V) is #rg-closed set in X for every closed subset V of Y. 

 
Definition 2.5: A space X is called T#rg-space [18] if every #rg-closed set in it is closed. 
 
Definition 2.6: [19] Let (X, T) be a topological space and T#rg = {V ⊆ X : #rg-cl(X\V) = X\V}. 
 
Definition 2.7: [19] A function f : (X, T) → (Y, S) is called #rg -irresolute if f-1(V) is #rg-closed in (X, T) for every   
#rg-closed subset V of (Y, S). 
 
Definition 2.8: [16]A family 𝑆𝑛  of # rg-open subsets of a topological space (X, T) is said to be # rg-open cover of X, if  
X ⊆ { 𝑆𝑛 : n∈ I }.   
 
Definition 2.9: [9] A topological space (X, T) is said to be compact space if every open cover of X has a finite 
subcover. 
 
3. #pg-CLOSED SETS AND THEIR BASIC PROPERTIES 
 
In this section, we introduce and study #pg-closed sets. 
 
Definition 3.1: A subset A of a space X is called *pre semi-open (briefly, *ps-open) if there is a pre-open set U such 
that U ⊆ A ⊆ cl(U). 
 
Definition 3.2: A subset A of a space X is called pre weakly-closed (briefly, pw-closed) if cl(A) ⊆ U whenever A ⊆ U 
and U is *ps-open in X. 
 
Definition 3.3: A subset A of a space X is called #pre generalized-closed (briefly, #pg-closed) if cl(A) ⊆ U whenever 
A ⊆ U and U is pw-open in X. 
 
The interrelations among the set introduced and other related sets are exhibited below:  
 
     closed                              # pg-closed                              𝜋-closed 
                  
         𝜋g-closed          gsp-closed        gs-closed         wg-closed 
 
Proposition 3.1: The union of two #pg-closed subsets of X is also a #pg-closed subset of X. 
 
Proof: Assume that A and B are #pg-closed sets in X. Let A⋃B ⊆ U and U be pw-open in X. Then A ⊆ U and B ⊆ U 
and U is pw-open in X. Since A and B are #pg-closed sets in X, cl(A) ⊆ U and cl(B) ⊆ U.  
Hence, cl(A⋃B) = cl(A)⋃cl(B) ⊆ U. Therefore, A⋃B is a #pg-closed set in X. 
 
Proposition 3.2: The intersection of two #pg-closed subsets of X is also a #pg-closed subset of X. 
 
Proposition 3.3: Let A be a #pg-closed set in X. Then cl(A)\A does not contain any non-empty pw-closed set in X.  
 
Proof Let U be a non-empty pw-closed subset of cl(A)\A. Now A ⊆ X\U and X\U is pw-open in X. Since A is #pg-
closed, cl(A) ⊆ X\U. Then U ⊆ X\cl(A). This is a contradiction, since by assumption, U ⊆ cl(A). 
 
Proposition 3.4: Let A be a #pg-closed set in X. Then A is closed iff cl(A)\A is pw-closed. 
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Proposition 3.5: For every point x of a space X, X\{x} is #pg-closed (or) pw-open. 
 
Proposition 3.6: Let A be a #pg-closed subset of (X, T) such that A ⊆ B ⊆ cl(A). Then B is also a #pg-closed subset of 
(X, T). 
 
Proof: Let B ⊆ U and U be pw-open in (X, T). Since A ⊆ B, A ⊆ U and U is a pw-open set in (X, T). Since A is      
#pg-closed, cl(A) ⊆ U. Then cl(B) ⊆ cl(cl(A)) = cl(A) ⊆ U. Hence, B is #pg-closed. 
 
The converse of the above Theorem need not be true as seen from the following Example.  
 
Example 3.1: Let X = {a, b, c, d} and T = {ϕ, X, {b}, {c}, {b, c}, {a, b, c}}. Let A = {a, d} and B = {a, b, d} Then A 
and B are #pg-closed set in (X, T). But A = {a, d} ⊆ B = {a, b, d} ⊈ cl(A) = {c, d}. 
 
Proposition 3.7: If a subset A of a topological space X is both pw-open and #pg-closed. Then A is a closed set. 
 
Proposition 3.8: Let A be pw-open and #pg-closed in X. Suppose that F is closed in X. Then A ⋂ F is a #pg-closed set 
in X. 
 
Proof: Let A be a pw-open and #pg-closed set in X and let F be a closed set in X. By Proposition 3.5, A is closed and 
so A ⋂ F is closed. Since every closed set is #pg-closed, A ⋂ F is a #pg-closed set in X. Hence, A ⋂ F is a #pg-closed 
set in X.                           
 
Remark 3.1: If a subset A of a topological space X is 

(i) open and g-closed, then A is #pg-closed. 
(ii) w-open and *g-closed, then A is #pg-closed. 
(iii) 𝜋-open and 𝜋g-closed, then A is #pg-closed. 
(iv) semi-open and w-closed, then A is #pg-closed. 
(v) *ps-open and pw-closed, then A is #pg-closed. 
(vi) open and wg-closed, then A is #pg-closed. 

 
Definition 3.4: A space X is called a T#pg-space if every #pg-closed set in it is closed. 
 
Proposition 3.9: Every T1/2-space is T#pg-space. 
 
4. #pg-CONTINUOUS MAPS 
 
In this section, we introduce and study #pg-continuous maps. 
 
Definition 4.1: For a subset A of a space X, #pg-cl(A) = ⋂{F : A ⊆ F, F is #pg-closed in X} is called the #pg-closure 
of A. 
 
Definition 4.2: Let (X, T) be a topological space and T#pg = {V ⊆ X: #pg-cl(X\V) = X\V}. 
 
Definition 4.3: A map f : (X, T) → (Y, S) is called #pg-continuous if f⁻¹(V) is #pg-closed in X for every closed subset 
V in Y. 
 
Definition 4.4: A map f : (X, T) → (Y, S) is called #pg-irresolute if f⁻¹(V) is #pg-closed in (X, T) for every #pg-closed 
subset V of (Y, S). 
 
Remark 4.1 Let A and B be subsets of (X, T). Then 

1. #pg-cl(ϕ) = ϕ and #pg-cl(X) = X. 
2. If A ⊆ B, then #pg-cl(A) ⊆ #pg-cl(B). 
3. A ⊆ #pg-cl(A). 
4. If A is #pg-closed, then #pg-cl(A) = A. 

 
Proposition 4.1: Suppose T#pg is a topology. If A is #pg-closed in (X, T), then A is closed in (X, T#pg). 
 
Proposition 4.2: A set A ⊆ X is #pg-open iff F ⊆ int(A) whenever F ⊆ A and F is pw-closed. 
 
Proposition 4.3: Let X be a space in which every singleton set is pw-closed. Then f: (X, T) → (Y, S) is                    
#pg-continuous iff x ∈ int(f⁻¹(V)) for every open subset V of Y which contains f(x). 
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Proposition 4.4: Let f : (X, T) → (Y, S) be a map. Let (X, T) and (Y, S) be any two spaces such that T#pg is a topology 
on X. Then the following statements are equivalent: 

(i)  For every subset A of X, f(#pg-cl(A)) ⊆ cl(f(A)). 
(ii) f : (X, T#pg) → (Y, S) is continuous. 

 
Proof: 
(i)⇒(ii): Suppose (i) holds. Let A be a closed set in Y. By (i), f(#pg-cl(f⁻¹(A))) ⊆ cl(f(f⁻¹(A))) ⊆ cl(A) = A. So #pg-
cl(f⁻¹(A)) ⊆ f⁻¹(A). Also f⁻¹(A) ⊆  #pg-cl(f⁻¹(A)). Hence, #pg-cl(f⁻¹(A)) = f⁻¹(A). This implies (f⁻¹(A))c ∈ T#pg. Thus, 
f⁻¹(A) is closed in (X, T#pg). Hence, f is continuous. 
(ii)⇒(i): Suppose (ii) holds. Let A be a subset of X. Then cl(f(A)) is closed in Y. Since f : (X, T#pg) →  (Y, S) is 
continuous, f⁻¹(cl(f(A))) is closed in (X, T#pg). By Definition 4.2, #pg-cl(f⁻¹(cl(f(A))) = f⁻¹(cl(f(A))).  
Now A ⊆ f⁻¹(f(A)) ⊆ f⁻¹(cl(f(A))), A ⊆ f⁻¹(cl(f(A))), which implies #pg-cl(A) ⊆ #pg-cl f⁻¹(cl(f(A))) = f⁻¹(cl(f(A))). 
Therefore, f(#pg-cl(A)) ⊆ cl(f(A)). 
 
The interrelations among the map introduced and other related maps are exhibited below: 
 
 continuous                             #pg-continuous                             𝜋-continuous 
                     
          𝜋g-continuous        gsp-continuous     gs-continuous    wg-continuous 
 
Proposition 4.5: Let f : (X, T) → (Y, S) be a function. Then the following are equivalent: 

(i) f is #pg-continuous. 
(ii) The inverse mage of each open set in (Y, S) is #pg-open in (X, T). 
(iii) The inverse mage of each closed set in (Y, S) is #pg-closed in (X, T). 

 
Proof: 
(i)⇒(ii): Suppose (i) holds. Let V be open in Y. Then Y\V is closed in Y. Since f is #pg-continuous, f⁻¹(Y\V) is #pg-
closed in X. But f⁻¹(Y\V) = X\ f⁻¹(V) which is #pg-closed in X. Therefore, f⁻¹(V) is #pg-open in X. Hence, the inverse 
mage of each open set in (Y, S) is #pg-open in (X, T). 
 
(ii)⇒(iii): Suppose (ii) holds. Let V be a closed set in Y. Then Y\V is open in Y. Since the inverse mage of each open 
set in (Y, S) is #pg-open in (X, T), f⁻¹(Y\V) is #pg-open. But f⁻¹(Y\V) = X\ f⁻¹(V) which is #pg-open. Therefore, f⁻¹(V) 
is #pg-closed in X. Hence, the inverse mage of each closed set in (Y, S) is #pg-closed in (X, T). 
 
(iii)⇒(i): Suppose (iii) holds. Let V be a closed set in Y. Since, the inverse image of each closed set in (Y, S) is       
#pg-closed in (X, T), f⁻¹(V) is #pg-closed in X. Hence, f is #pg-continuous. 
 
Proposition 4.6: If a map f : (X, T) → (Y, S) is #pg-continuous, then f(#pg-cl(A)) ⊆ cl(f(A)) for every subset A of X. 
 
5. #pg-COMPACT SPACES 
 
In this section we introduce and study the concept of #pg-compact spaces. 
Definition 5.1: A family {𝑆𝑛  : n∈ I} of #pg-open subsets of a topological space (X, T) is said to be #pg-open cover of 
X, if X ⊆ ⋃{𝑆𝑛 : n∈ I}.   
 
Definition 5.2: A topological space (X, T) is said to be #pg-compact space if every #pg-open cover of X has a finite 
subcover. 
 
Proposition 5.1: Let (X, T) be a #pg-compact space. Then a #pg-closed subset of (X, T) is a #pg-compact set. 
 
Proof: Let (X, T) be a #pg-compact space, A ⊆ X be a #pg-closed set and {𝑆𝑛  : n∈ I}be #pg-open cover of A. Then A 
⊆ ⋃𝑆𝑛. Since 𝐴𝑐 is a # pg-open set in X, X ⊆ ⋃𝑆𝑛  ⋃𝐴𝑐. Now ⋃𝑆𝑛  ⋃𝐴𝑐 is a #pg-open cover of X and X is a             
#pg-compact space. Hence, X has finite subcover, such that X ⊆ 𝑆1    ⋃ 𝑆2 , . . . , ⋃𝑆𝑛  ⋃𝐴𝑐  and A ⋂ 𝐴𝑐  = φ. Thus,        
A ⊆𝑆1    ⋃ 𝑆2 , . . . , ⋃𝑆𝑛. Therefore, A is a #pg-compact set. 
 
Proposition 5.2: If f: (X, T) →(Y, S) is a #pg -continuous map from a #pg-compact space (X, T) onto a topological 
space (Y, S), then (Y, S) is a compact space. 
 
Proof: Let {𝐴𝑘 : k∈ I} be any open cover of (Y, S). Since f is a #pg-continuous map, {f⁻¹ (𝐴𝑘): k∈ I} is a #pg-open 
cover of X. By hypothesis, X has a finite sub cover {f⁻¹ (𝐴𝑘1), f⁻¹ (𝐴𝑘2), . . . , f⁻¹(𝐴𝑘𝑛)}. That is, there exists                  
k1, k2, . . . , kn, such that X ⊆ ⋃{f⁻¹(𝐴𝑘𝑖): i=1,2,….n}. Since f is onto, Y = f(X) ⊆ ⋃{f(f⁻¹(𝐴𝑘𝑖) : i = 1, 2,…, n}, which 
equals  ⋃{𝐴𝑘𝑖: i = 1, 2, …, n}. Therefore, Y is compact. 
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Proposition 5.3: If f : (X, T) →  (Y, S) is a #pg-irresolute map from a #pg-compact space (X, T) onto a topological 
space (Y, S), then (Y, S) is a compact space. 
 
Proposition 5.4: If f : (X, T) →  (Y, S) is a #pg-irresolute map from a #pg-compact space (X, T) onto a topological 
space (Y, S), then (Y, S) is a #pg-compact space.    
 
Proof: Let {𝐴𝑘  : k∈ I} be #pg-open cover of Y. Since f is #pg-irresolute, {f⁻¹ (𝐴𝑘) : k∈I} is a #pg-open cover of X. By 
hypothesis, X has a finite sub cover { f⁻¹(𝐴𝑘1), f⁻¹ (𝐴𝑘2), . . . , f⁻¹ (𝐴𝑘𝑛)}. That is, there exist k1, k2, . . . , kn, such that  
X ⊆ ⋃{f⁻¹(𝐴𝑘𝑖) : i = 1, 2, …, n}. Since f is onto, Y = f(X) ⊆ ⋃{f(f⁻¹(𝐴𝑘𝑖)) : i = 1, 2,…, n} = ⋃{(𝐴𝑘𝑖) : i = 1, 2,…, n}. 
Therefore, Y is a #pg-compact space. 
 
Proposition 5.5: Let f : (X, T) →(Y, S) be a #pg-irresolute map and G be a subset of X. If G is #pg-compact relative to 
X, then the image f(G) is #pg-compact relative to Y. 
 
Proof: Let {𝐴𝑘  : k∈I} be a collection of #pg-open sets in Y, such that f(G) ⊆ ⋃{𝐴𝑘  : k∈I}. Then G ⊆ ⋃{f⁻¹(𝐴𝑘)  :     
k∈ I}, where f⁻¹(𝐴𝑘) is a #pg-open set in X for each k∈ I. Since G is #pg-compact, there exists {𝐴1, 𝐴2,..., 𝐴𝑛} such 
that G  ⊆ ⋃{f⁻¹(𝐴𝑘) : k = 1, 2,…, n}. Then f(G) ⊆ ⋃{f(f⁻¹(𝐴𝑘)) : k = 1,2,…,n}. Hence, f(G) ⊆ ⋃{(𝐴𝑘) : k = 1, 2,..., n}. 
Therefore, f(G) is a #pg-compact space relative to Y. 
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