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ABSTRACT 
In this article, we have discussed the oscillatory and asymptotic behavior of solutions of a class of neutral nonlinear 
impulsive partial differential equations.  Some new sufficient conditions are derived by using Riccati transform and 
impulsive differential inequalities.  Our results extend a number of results reported in the literature.  An example is 
given to demonstrate the validity of our results. 
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1. INTRODUCTION 
 
The  notion  of  neutral  delay  impulsive  differential  equations,  that  is  the  impulsive  equations  in  which  the 
highest order derivative of the unknown function appears both with and without delays, are more appropriate to model 
the dynamical systems with discontinuities trajectories. These types of models are emerging in nonlinear mechanics 
dealing with the process in nonlinear oscillating system. Neutral delay differential equations appear in  modeling  of  
networks  containing  lossless  transmission  lines,  in  the  study  of  vibrating  masses  attached  to  an elastic  bar,  
Euler  equation  in  some  variational  problems  in  the  theory  of  automatic  control  and  in  neuromechanical systems 
in which the inertia plays an important role, we can refer in [4, 9]. 
 
The  theory  of  impulsive  differential  equations  is  now  being  recognized  to  be  not  only  richer  than  the  
corresponding  theory  of  differential  equations  without  impulses,  but  also  represents  a  more  natural  framework  
for the mathematical modeling of many real world phenomena, see the monographs [1, 5, 10, 19, 20].  The problem of 
oscillatory and asymptotic behavior of neutral differential equations is of both theoretical and practical interest. In the 
last few decades, the oscillatory and asymptotic behavior of solutions of differential equations with impulses studied by 
many authors and the references [2, 3, 6–8, 11–17] cited therein. To the present time, it seems that only very little is 
known on the oscillatory and asymptotic behavior of neutral nonlinear impulsive partial differential equations. The 
above observation is motivated us to consider the following model whose governing equation is of the form 

𝜕
𝜕𝑡
�𝑟(𝑡)

𝜕
𝜕𝑡

 �𝑢(𝑥, 𝑡) + 𝑐(𝑡)𝑢�𝑥, 𝜏(𝑡)���+ 𝑞(𝑡)𝑓 �𝑢�𝑥,𝜌(𝑡)�� =  𝑎(𝑡)Δu(x, t) 

−� 𝑏𝑖
𝑛

𝑖=1
(𝑡)∆𝑢�𝑥,𝜇𝑖(𝑡)� + 𝐹(𝑥, 𝑡),      𝑡 ≠ 𝑡𝑘 ,     (𝑥, 𝑡) ∈ Ω × ℝ+ ≡ 𝐺 

𝑢(𝑥, 𝑡𝑘+) =  𝛼𝑘  �𝑥, 𝑡𝑘 ,𝑢(𝑥, 𝑡𝑘)� 
𝑢𝑡(𝑥, 𝑡𝑘+) =  𝛽𝑘�𝑥, 𝑡𝑘 ,𝑢𝑡(𝑥, 𝑡𝑘)�,     𝑘 = 1,2, …                                                                 (1.1) 

 
where Ω is a bounded domain in ℝ𝑁 with a piecewise smooth boundary 𝜕Ω  and Δ is the Laplacian in the Euclidean 
space ℝ𝑁 and ℝ+ = [0, +∞). 
 
Equation (1.1) is enhancement with Dirchlet boundary condition     

𝑢(𝑥, 𝑡) =  0,               (𝑥, 𝑡) ∈ 𝜕Ω× ℝ+                                                                                         (1.2) 

http://www.ijma.info/�
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This work is planned as follows: In Section 2, we present the definitions and some lemmas that will be needed in the 
sequel. In Section 3, we discussed the oscillatory and asymptotic behavior of the problem (1.1) and (1.2). In Section 4, 
we present an example is to illustrate our main results. 
 
2   PRELIMINARIES  
 
In this paper, we assume that the following assumptions (A) hold: 
(𝐴1)  𝑟(𝑡) ∈ 𝐶′�ℝ+, (0, +∞)�, 𝑞(𝑡) ∈ 𝐶(ℝ+,ℝ), 𝜏(𝑡), 𝜌(𝑡),  𝜇𝑖(𝑡) ∈ 𝐶′(ℝ+,ℝ), 𝑐(𝑡) ∈ 𝐶2(ℝ+,ℝ+),   
         ∫ 1

𝑟(𝑠)
∞
𝑡0

𝑑𝑠 =  ∞  and lim𝑡→+∞ 𝜏(𝑡) =  lim𝑡→+∞ 𝜌(𝑡) = lim𝑡→+∞ 𝜇𝑖 (𝑡) = +∞,    𝑖 = 1,2, … ,𝑛. 

(𝐴2)  𝑓 ∈ 𝐶(ℝ,ℝ) 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑖𝑛 ℝ+ 𝑤𝑖𝑡ℎ 𝑢𝑓(𝑢) >  0 𝑎𝑛𝑑  𝑓(𝑢)
𝑢

 ≥  𝜖 > 0 𝑓𝑜𝑟  𝑢 ≠ 0, 𝐹 ∈ 𝐶(𝐺 ,�  ℝ)       

         𝑤𝑖𝑡ℎ ∫ 𝐹(𝑥 , 𝑡)𝑑𝑥 < 0.       Ω  
(𝐴3)  𝑎(𝑡),  𝑏𝑖(𝑡) ∈ 𝑃𝐶(ℝ+,ℝ+) where PC represents the class of functions which are  piecewise continuous in 𝑡 with   
         discontinuities of first kind only at 𝑡 =  𝑡𝑘, and left  continuous at  𝑡 =  𝑡𝑘 , 𝑘 = 1,2, … . 
(𝐴4)  𝑢(𝑥, 𝑡) and its derivative 𝑢𝑡(𝑥, 𝑡) are piecewise continuous in 𝑡 with discontinuities  of first kind only at 
          𝑡 =  𝑡𝑘 , 𝑘 = 1,2, …,  and left continuous at 𝑡 =  𝑡𝑘 , 𝑢(𝑥, 𝑡𝑘) = 𝑢(𝑥, 𝑡𝑘−),  𝑢𝑡(𝑥, 𝑡𝑘  ) =  𝑢𝑡(𝑥, 𝑡𝑘−),   𝑘 = 1,2, …. 
(𝐴5)  𝛼𝑘 ,  𝛽𝑘 ∈ 𝑃𝐶(Ω�  × ℝ+ × ℝ,ℝ), 𝑘 = 1,2, … and there exist positive constants 𝑎𝑘 ,  𝑎𝑘∗ ,  𝑏𝑘 ,𝑏𝑘∗  such that 
          𝑎𝑘∗ ≤ 𝑎𝑘 ≤  𝑏𝑘∗ ≤ 𝑏𝑘  𝑓𝑜𝑟 𝑘 = 1,2, …, 

𝑎𝑘∗ ≤
𝛼𝑘�𝑥, 𝑡𝑘 ,𝑢(𝑥, 𝑡𝑘)�

𝑢(𝑥, 𝑡𝑘) ≤ 𝑎𝑘 ,       𝑏𝑘∗ ≤
𝛽𝑘(𝑥, 𝑡𝑘 ,𝑢𝑡(𝑥, 𝑡𝑘))

𝑢𝑡(𝑥, 𝑡𝑘)  ≤ 𝑏𝑘. 

 
Definition 2.1:  A  solution  𝑢  of  the  problem  (1.1)  and  (1.2)  is  a  function 𝑢 ∈ 𝐶2(𝛺�  × [𝑡−1 , +∞),ℝ) ∩ 𝐶(𝛺� ×
[𝑡̂−1, +∞),ℝ) that satisfies (1.1), where 

𝑡−1 ∶= 𝑚𝑖𝑛{0,𝑚𝑖𝑛1≤𝑖≤𝑛 {𝑖𝑛𝑓𝑡≥0𝜇𝑖(𝑡)}, {𝑖𝑛𝑓𝑡≥0𝜏(𝑡)}} , 𝑡̂−1 ≔ 𝑚𝑖𝑛 {0, 𝑖𝑛𝑓𝑡≥0 𝜌(𝑡)}. 
 
Definition 2.2:  The solution 𝑢 of the problem (1.1) and (1.2) is said to be eventually positive (negative) if it is positive  
(negative)  for  all  sufficiently  large  𝑡.  It  is  said  to  be  oscillatory  if  it  is  neither  eventually  positive  nor 
eventually negative.  Otherwise it is non-oscillatory. 
 
It is identified that [18], the smallest eigenvalue λ0 > 0 of the eigenvalue problem 

Δω(x) + λω(x) = 0,     in    Ω 
                 ω(x) = 0,     on   𝜕Ω, 

and the consequent eigenfunction Φ(𝑥) > 0 in Ω. 
 
For convenience, we introduce the following notations: 

𝑣(𝑡) =  𝐾Φ� 𝑢(𝑥, 𝑡)Φ(𝑥)𝑑𝑥 , 𝐾Φ = �� Φ(𝑥)𝑑𝑥
Ω

�
−1

Ω
. 

 
The following lemmas are useful for the main results. 
 
Lemma 2.3:  If 𝑋 and 𝑌 are non negative, then 

𝑋𝜆 − 𝛼𝑋𝑌𝜆−1 + (𝜆 − 1)𝑌𝜆 ≥ 0,        𝜆 > 1 
𝑋𝜆 − 𝛼𝑋𝑌𝜆−1 − (1 − 𝜆)𝑌𝜆 ≤ 0,       0 <  𝜆 < 1 

where the equality holds if and only if 𝑋 =  𝑌. 
 
Lemma 2.4: If  𝑢  is  a  positive  solution  of  the  problem  (1.1) - (1.2)  in  𝐺,  then  the  function  𝑧(𝑡)  satisfies  the 
following impulsive differential inequality 

(𝑟(𝑡)𝑧′(𝑡))′ + 𝑐𝑞(𝑡)𝑧�𝜏(𝑡)� ≤ 0,    𝑡 ≠ 𝑡𝑘 

 ak
* ≤ 

z(tk+)
z(tk)  ≤ ak,       bk

* ≤ 
z'(tk+)
z'(tk)  ≤ bk ,   𝑘 = 1,2, …                                                                                      (2.1) 

               
Proof: Let  𝑢  be a positive solution of the problem (1.1) − (1.2) in 𝐺. We may assume that  u(x, t) > 0, (x, t)  ∈  Ω ×
[t0, +∞),   t0 ≥  0.  By assumption that there exists a 𝑡1 >  𝑡0   such that 
                           𝑢�𝑥, 𝜏(𝑡)� > 0, 𝑢�𝑥 , 𝜌(𝑡)� > 0  and  𝑢�𝑥 , 𝜇𝑖(𝑡)� > 0,  for (x, t) ∈  Ω ×  [t1, +∞),   𝑖 = 1,2, … , 𝑛.  
 
For 𝑡 ≥ 𝑡0 , 𝑡 ≠ 𝑡𝑘 , 𝑘 = 1,2, …,  multiplying both sides of Equation (1.1) by 𝐾ΦΦ(𝑥) > 0 and integrating with respect 
to 𝑥 over the domain Ω, we obtain 
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        �

𝑑
 𝑑𝑡  �𝑟(𝑡)

𝑑
𝑑𝑡
�𝐾Φ � u(x, 𝑡)

Ω
Φ(𝑥)𝑑𝑥 + 𝑐(𝑡)𝐾Φ � u�x, τ(t)�

Ω
Φ(𝑥)𝑑𝑥�� + 𝐾Φ � q(t)f(u(x, ρ(t)))

Ω
Φ(𝑥)𝑑𝑥

               = 𝑎(𝑡)𝐾Φ � Δu(x, t)
Ω

Φ(𝑥)𝑑𝑥 −�𝑏𝑖(𝑡)
𝑛

𝑖=1

𝐾Φ � Δu�x, μi(t)�
Ω

Φ(𝑥)𝑑𝑥 + 𝐾Φ � F(x, t)
Ω

Φ(𝑥)𝑑𝑥 .
⎭
⎪
⎬

⎪
⎫

     (2.2)   

                           
Using Green’s formula and boundary condition (1.2), we see that 

𝐾Φ � ∆u(𝑥 , 𝑡)
Ω

Φ(𝑥)𝑑𝑥 =  𝐾Φ � �Φ(𝑥)
𝜕𝑢
𝜕𝛾

− 𝑢(𝑥, 𝑡)
𝜕Φ(𝑥)
𝜕𝛾

�
∂Ω

𝑑𝑆 + 𝐾Φ � 𝑢(𝑥, 𝑡)
Ω

ΔΦ(𝑥)𝑑𝑥 

                                                              = −𝜆0𝑣(𝑡) ≤ 0                                                     (2.3) 
and for 𝑖 = 1,2, … ,𝑛, we have 

 𝐾Φ � ∆u(𝑥 , 𝜇𝑖(𝑡))
Ω

Φ(𝑥)𝑑𝑥 =  𝐾Φ � �Φ(𝑥)
𝜕𝑢(𝑥, 𝜇𝑖(𝑡))

𝜕𝛾 − 𝑢(𝑥, 𝜇𝑖(𝑡))
𝜕Φ(𝑥)
𝜕𝛾

�
∂Ω

𝑑𝑆 + 𝐾Φ � u(𝑥, 𝜇𝑖(𝑡))
Ω

ΔΦ(𝑥)𝑑𝑥 

                                                    = −𝜆0𝑣(𝜇𝑖(𝑡)) ≤ 0                    (2.4) 
where 𝑑𝑆 is surface element on  𝜕Ω. Applying Jensen’s inequality, from (𝐴2)  and assumptions, it follows that 

𝐾Φ � q(t)f(u(x, ρ(t)))
Ω

Φ(𝑥)𝑑𝑥 ≥ 𝜖𝑞(𝑡)𝐾Φ � u(x, ρ(t)))
Ω

Φ(𝑥)𝑑𝑥 .                                                   (2.5) 

                                   
In view of (2.2) - (2.5), we obtain 

𝑑
𝑑𝑡
�𝑟(𝑡)

𝑑
𝑑𝑡
�𝑣(𝑡) + 𝑐(𝑡)𝑣�𝜏(𝑡)��� + 𝜖𝑞(𝑡)𝑣�𝜏(𝑡)� ≤ 0. 

 
Let 𝑧(𝑡) = 𝑣(𝑡) + 𝑐(𝑡)𝑣�𝜏(𝑡)�.  Then  

(𝑟(𝑡)𝑧′(𝑡))′ + 𝜖𝑞(𝑡)𝑣�𝜏(𝑡)� ≤ 0.                                                                                                              (2.6) 
 
It is easy to obtain that 𝑧(𝑡) > 0 for 𝑡 ≥ 𝑡1 .  Next we prove that 𝑧′(𝑡) > 0 for 𝑡 ≥ 𝑡2 . Assume the contrary that there 
exists 𝑇 ≥ 𝑡2 such that 𝑧′(𝑇) ≤ 0.  

(𝑟(𝑡)𝑧′(𝑡))′ ≤ 0,        𝑡 ≥ 𝑡2 . 
 
From this we have 𝑟(𝑡)𝑧′(𝑡) ≤ 𝑟(𝑇)𝑧′(𝑇) ≤ 0, 𝑡 ≥ 𝑇. Thus 

𝑧(𝑡) ≤ 𝑧(𝑇) + 𝑟(𝑇)𝑧′(𝑇)�
𝑑𝑠
𝑟(𝑠)

𝑡

𝑇
,    𝑡 ≥ 𝑇. 

 
From the hypothesis (𝐴1),  we have lim𝑡→+∞ 𝑧(𝑡) =  −∞.  This contradicts that 𝑧(𝑡) > 0  for 𝑡 ≥ 0 . Thus 𝑧′(𝑡) > 0,
𝜏(𝑡) ≤ 𝑡  for 𝑡 ≥ 𝑡1 , we have 

𝑣(𝑡) =  𝑧(𝑡) − 𝑐(𝑡)𝑣(𝜏(𝑡)) 
𝑣(𝑡) ≥ 𝑧(𝑡)(1 − 𝑐(𝑡)) 

and 
𝑣�𝜏(𝑡)� ≥ 𝑐0𝑧�𝜏(𝑡)�. 

 
Therefore from (2.6), we have 

(𝑟(𝑡)𝑧′(𝑡))′ + 𝑐0𝜖𝑞(𝑡)𝑧�𝜏(𝑡)� ≤ 0,     𝑡 ≥ 𝑡1 . 
(𝑟(𝑡)𝑧′(𝑡))′ + 𝑐𝑞(𝑡)𝑧�𝜏(𝑡)� ≤ 0,   where   𝑐 =  𝜖𝑐0. 

 
For 𝑡 ≥ 𝑡0 , 𝑡 = 𝑡𝑘 , 𝑘 = 1,2,3, …,  multiplying both sides of the Equation (1.1) by 𝐾ΦΦ(𝑥) > 0, integrating with respect 
to 𝑥  over the domain Ω, and from (𝐴5), we obtain  

ak
* ≤ 

u�x , tk
+�

u(𝑥, tk)  ≤ ak,     bk
* ≤ 

𝑢𝑡(𝑥 , tk+)
𝑢𝑡(𝑥 , tk)  ≤ bk .     

 
From assumptions we have, 

𝑎𝑘∗  ≤  
𝑣(𝑡𝑘+)
𝑣(𝑡𝑘)  ≤  𝑎𝑘 ,    𝑏𝑘∗  ≤  

𝑣′(𝑡𝑘+)
𝑣′(𝑡𝑘)  ≤  𝑏𝑘                                     

and 

 ak
* ≤ 

z(tk+)
z(tk)  ≤ ak,       bk

* ≤ 
z'(tk+)
𝑧 '(tk)  ≤ bk .     

Hence we obtain that 𝑧(𝑡) is a solution of impulsive inequality (2.1). This completes the proof.          
 
 
 



V. Sadhasivam1, K. Logaarasi2 and C. Kavitha3/  
Oscillatory and Asymptotic Behavior of Neutral NonlinearImpulsive Partial… / IJMA- 9(3), March-2018, (Special Issue) 

© 2018, IJMA. All Rights Reserved                                                                                                                                                   202 

 
Lemma 2.5: Assume that conditions (𝐴1) − (𝐴5) holds and let 𝑢(𝑥, 𝑡) be a positive solution of (1.1) and (1.2). Then for 
sufficiently large 𝑡, either 
         (𝑖)   𝑧(𝑡) > 0,   𝑧′(𝑡) > 0,     (𝑟(𝑡)𝑧′(𝑡))′  < 0   or 
         (𝑖𝑖)  𝑧(𝑡) > 0,   𝑧′(𝑡) < 0,   (𝑟(𝑡)𝑧′(𝑡))′  < 0.               
 
Lemma 2.6: Assume that conditions (𝐴1) − (𝐴5) holds and let 𝑢(𝑥, 𝑡) be an eventually positive solution of (2.1) with 
𝑧(𝑡) satisfying case (ii) of Lemma 2.5.  If 

 �
1

𝑟(𝑦)

∞

𝑡1
� 𝑐𝑞(𝑠)𝑧�𝜏(𝑠)�𝑑𝑠𝑑𝑦 =  ∞ 
∞

𝑦
                                                                                                         (2.7) 

then 𝑙𝑖𝑚𝑡→∞ 𝑧(𝑡) = 0.  
 
Proof: Let 𝑢(𝑥 , 𝑡) be an eventually positive solution of (1.1) and (1.2).  Then 𝑧(𝑡) satisfies the inequality (2.1) and  

(𝑟(𝑡)𝑧′(𝑡))′ ≤ −𝑐𝑞(𝑡)𝑧�𝜏(𝑡)� ≤ 0. 
 
By Lemma 2.5, there exists a constant 𝑙 such that lim𝑡→∞ 𝑧(𝑡) = 𝑙 < ∞. 
 
Integrating the above inequality from 𝑡 to ∞, we get 

𝑟(𝑡)𝑧′(𝑡) ≥ � 𝑐𝑞(𝑠)𝑧�𝜏(𝑠)�𝑑𝑠 
∞

𝑡
, 

𝑧′(𝑡) ≥
1
𝑟(𝑡)

� 𝑐𝑞(𝑠)𝑧�𝜏(𝑠)�𝑑𝑠.
∞

𝑡
 

Again integrating from 𝑡1  to  ∞, we obtain 

𝑧(𝑡) ≤ −�
1

𝑟(𝑦)

∞

𝑡1
� 𝑐𝑞(𝑠)𝑧�𝜏(𝑠)�𝑑𝑠𝑑𝑦
∞

𝑦
, 

which contradicts (2.7) and so we have 𝑙 = 0.  Therefore lim𝑡→∞ 𝑧(𝑡) = 0. This complete the proof.            
 
3. MAIN RESULTS 
 
In this section, by using Riccati transformation and impulsive differential inequality, we investigate the oscillatory and 
asymptotic behavior of all solutions of neutral nonlinear partial differential equations with impulse effects and obtained 
the following two theorems. 
 
Theorem 3.1: Assume that (𝐴1) − (𝐴5) holds and there exists 𝜙(𝑡) ∈ 𝐶′([𝑡0 ,∞),ℝ) such that for all sufficiently large T 
and for 𝑡1 ≥ 𝑇, 

 𝑙𝑖𝑚𝑠𝑢𝑝
𝑡→∞

� � �
𝑏𝑘
𝑎𝑘∗
�
−1

�𝑐𝜙(𝑠)𝑞(𝑠) −
(𝜙′(𝑠))2

4𝜏′(𝑠)𝑟(𝑠)𝜙(𝑠)
 �

𝑡0 ≤𝑡𝑘≤𝑠

𝑡

𝑡1
𝑑𝑠 =  ∞                                                  (3.1)  

then every solution 𝑢 of (1.1) and (1.2) is either oscillatory or converges to zero as 𝑡 → ∞. 
 
Proof: Let 𝑢(𝑥 , 𝑡)  be a non oscillatory solution of (1.1) and (1.2). Without loss of generality, we may assume that there 
exists 𝑡1 ≥ 𝑡0 such that 𝑢(𝑥 , 𝑡) > 0, 𝑢�𝑥 , 𝜏(𝑡)� > 0 and 𝑢�𝑥 ,𝜌(𝑡)� > 0  for  𝑡 ≥ 𝑡1 . 
Let 

𝑤(𝑡) =  𝜙(𝑡)
𝑟(𝑡)𝑧′(𝑡)
𝑧(𝜏(𝑡))

 

𝑤′(𝑡) ≤ −𝑐𝜙(𝑡)𝑞(𝑡) −
𝑤2(𝑡)
𝑟(𝑡)𝜙(𝑡) 𝜏

′(𝑡) +
𝜙′(𝑡)
𝜙(𝑡) 𝑤

(𝑡).                                                                              (3.2)  

Also 

𝑤(𝑡𝑘+) ≤
𝑏𝑘
𝑎𝑘∗
𝑤(𝑡𝑘).                                                                                                                                             (3.3)  

Define 

𝑉(𝑡) =  � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑤(𝑡)
𝑡0≤𝑡𝑘<𝑡

. 

 
In fact, 𝑤(𝑡) is a continuous on each interval (𝑡𝑘 , 𝑡𝑘+1] and it follows that for 𝑡 ≥ 𝑡0 , 

𝑉(𝑡𝑘+) = � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑤(𝑡𝑘+)
𝑡0≤𝑡𝑗≤𝑡𝑘

≤ � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑤(𝑡𝑘)
𝑡0≤𝑡𝑗<𝑡

= 𝑉(𝑡𝑘) 
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and for all 𝑡 ≥ 𝑡0 

𝑉(𝑡𝑘−) = � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑤(𝑡𝑘−)
𝑡0≤𝑡𝑗≤𝑡𝑘−1

≤ � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑤(𝑡𝑘)
𝑡0≤𝑡𝑘<𝑡

= 𝑉(𝑡𝑘), 

 
Which implies that 𝑉(𝑡) is continuous on [𝑡0 , +∞), from (3.2), we get 

� �
𝑏𝑘
𝑎𝑘∗
�

𝑡0≤𝑡𝑘<𝑡

𝑉′(𝑡) ≤ −𝑐𝜙(𝑡)𝑞(𝑡) − � �
𝑏𝑘
𝑎𝑘∗
�
2

𝑡0≤𝑡𝑘<𝑡

𝜏′(𝑡)𝑉2(𝑡)
𝑟(𝑡)𝜙(𝑡) +

𝜙′(𝑡)
𝜙(𝑡)

� �
𝑏𝑘
𝑎𝑘∗
�

𝑡0≤𝑡𝑘<𝑡

𝑉(𝑡)  

 

 𝑉′(𝑡) ≤ − � �
𝑏𝑘
𝑎𝑘∗
�

𝑡0≤𝑡𝑘<𝑡

𝜏′(𝑡)𝑉2(𝑡)
𝑟(𝑡)𝜙(𝑡) +

𝜙′(𝑡)
𝜙(𝑡) 𝑉

(𝑡) − 𝑐 � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑡

𝜙(𝑡)𝑞(𝑡)                                                (3.4)   

                 
Applying Lemma 2.3, we have 

𝑋 = � � �
𝑏𝑘
𝑎𝑘∗
�

𝑡0≤𝑡𝑘<𝑡

𝜏′(𝑡)𝑉(𝑡)
𝑟(𝑡)𝜙(𝑡)          𝑎𝑛𝑑         𝑌 =  

𝜙′(𝑡)
2 � � �

𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑡

𝑟(𝑡)
𝜙(𝑡)𝜏′(𝑡)

 

We have 
𝜙′(𝑡)
𝜙(𝑡) 𝑉

(𝑡) − � �
𝑏𝑘
𝑎𝑘∗
�

𝑡0≤𝑡𝑘<𝑡

𝜏′(𝑡)𝑉2(𝑡)
𝑟(𝑡)𝜙(𝑡) ≤ � �

𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑡

(𝜙′(𝑡))2

4𝜏′(𝑡)𝑟(𝑡)𝜙(𝑡)
. 

Thus  

𝑉′(𝑡) ≤ − � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑡

�𝑐𝜙(𝑡)𝑞(𝑡) −
(𝜙′(𝑡))2

4𝜏′(𝑡)𝑟(𝑡)𝜙(𝑡)
 �. 

 
Integrating both sides from 𝑡1 to  𝑡, we have 

𝑉(𝑡) ≤ 𝑉(𝑡1) − � � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑠

�𝑐𝜙(𝑠)𝑞(𝑠) −
(𝜙′(𝑠))2

4𝜏′(𝑠)𝑟(𝑠)𝜙(𝑠)
 � 𝑑𝑠.

𝑡

𝑡1
 

 
Letting 𝑡 → ∞,  from (3.1), we have lim𝑡→∞ 𝑉(𝑡) =  −∞,  which is a contradiction. Then by Lemma 2.6, we 
have lim𝑡→∞ 𝑧(𝑡) =  0.  Since 0 < 𝑣(𝑡) < 𝑧(𝑡) on (𝑡1 ,∞), we get that  lim𝑡→∞ 𝑢(𝑥, 𝑡) =  0. The proof of the theorem is 
complete.    
 
Next we obtain some new oscillatory and asymptotic results for (1.1) and (1.2),  by using integral average condition of 
Philos type. Let 𝐷 = {(𝑡, 𝑠): 𝑡0 ≤ 𝑠 ≤ 𝑡},𝐻 ∈ 𝐶1(𝐷,ℝ).  If 𝐻 ∈ ℋ,  then 𝐻(𝑡, 𝑡) = 0  and 𝐻(𝑡, 𝑠) > 0  for 𝑡 > 𝑠  and 
ℎ ∈ 𝐿𝑙𝑜𝑐(𝐷,ℝ) such that 
 

𝜕𝐻(𝑡, 𝑠)
𝜕𝑡

= ℎ(𝑡, 𝑠)�𝐻(𝑡, 𝑠),
𝜕𝐻(𝑡, 𝑠)
𝜕𝑠 = −ℎ(𝑡, 𝑠)�𝐻(𝑡, 𝑠) . 

 
Theorem 3.2: Assume that conditions (𝐴1) − (𝐴5) holds and there exist 𝜙(𝑡),𝜓(𝑡) ∈ 𝐶′�[0,∞), (0, +∞)�, if  

𝑙𝑖𝑚𝑠𝑢𝑝
𝑡→+∞

𝑐
𝐻(𝑡, 𝑡0)

� � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑠

�𝜙(𝑠)𝑞(𝑠)𝐻(𝑡, 𝑠)𝜓(𝑠)
𝑡

𝑡0

−
𝑟(𝑠)𝜙(𝑠)

4

[ℎ(𝑡, 𝑠)𝜓(𝑠) − �𝐻(𝑡, 𝑠)𝜓′(𝑠) − 𝜙′(𝑠)
𝜙(𝑠) �𝐻(𝑡, 𝑠)𝜓(𝑠)]2

𝜓(𝑠)𝜏′(𝑠)      �𝑑𝑠 = +∞,                 (3.5) 

then every solution of the boundary value problem (1.1) and (1.2) is oscillatory or converges to zero as 𝑡 → ∞. 
 
Proof: Assume that the boundary value problem (1.1) and (1.2) has a non oscillatory solution 𝑢(𝑥, 𝑡). Without loss of 
generality, assume that 𝑢(𝑥, 𝑡) >  0, (𝑥 , 𝑡) ∈ Ω × [0, +∞). As in the proof of the Theorem 3.1, we obtain  

𝑉′(𝑡) ≤ − � �
𝑏𝑘
𝑎𝑘∗
�

𝑡0≤𝑡𝑘<𝑡

𝜏′(𝑡)𝑉2(𝑡)
𝑟(𝑡)𝜙(𝑡) +

𝜙′(𝑡)
𝜙(𝑡) 𝑉

(𝑡) − 𝑐 � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑡

𝜙(𝑡)𝑞(𝑡). 
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Multiplying the above inequality by 𝐻(𝑡, 𝑠)𝜓(𝑠) for 𝑡 ≥ 𝑠 ≥ 𝑇, and integrating from 𝑇 to 𝑡, we have 

� 𝑉′(𝑠)𝐻(𝑡, 𝑠)𝜓(𝑠)𝑑𝑠 ≤
𝑡

𝑇
− � � �

𝑏𝑘
𝑎𝑘∗
�

𝑡0≤𝑡𝑘<𝑠

𝜏′(𝑠)𝑉2(𝑠)
𝑟(𝑠)𝜙(𝑠) 𝐻(𝑡, 𝑠)𝜓(𝑠)

𝑡

𝑇
𝑑𝑠 + �

𝜙′(𝑠)
𝜙(𝑠) 𝑉(𝑠)𝐻(𝑡, 𝑠)𝜓(𝑠)𝑑𝑠 

𝑡

𝑇
         

 −𝑐� � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑠

𝜙(𝑠)𝑞(𝑠)𝐻(𝑡, 𝑠)𝜓(𝑠)𝑑𝑠.
𝑡

𝑇
 

𝑐 � � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑠

𝜙(𝑠)𝑞(𝑠)𝐻(𝑡, 𝑠)𝜓(𝑠)𝑑𝑠
𝑡

𝑇
≤  𝑉(𝑡)𝐻(𝑡, 𝑇)𝜓(𝑇) − �{ℎ(𝑡, 𝑠)�𝐻(𝑡, 𝑠) 𝜓(𝑠)

𝑡

𝑇

 

− 𝐻(𝑡, 𝑠)𝜓′(𝑠) −   
𝜙′(𝑠)
𝜙(𝑠) 𝐻(𝑡, 𝑠)𝜓(𝑠)}𝑉(𝑠)𝑑𝑠 −  � � �

𝑏𝑘
𝑎𝑘∗
�

𝑡0≤𝑡𝑘<𝑠

𝜏′(𝑠)𝑉2(𝑠)
𝑟(𝑠)𝜙(𝑠) 𝐻(𝑡, 𝑠)𝜓(𝑠)

𝑡

𝑇
𝑑𝑠                                (3.6) 

 
From this, 

𝑐 � � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑠 ⎩
⎨

⎧
𝜙(𝑠)𝑞(𝑠)𝐻(𝑡, 𝑠)𝜓(𝑠) −

𝑟(𝑠)𝜙(𝑠)
4

�ℎ(𝑡, 𝑠)𝜓(𝑠) − �𝐻(𝑡, 𝑠)𝜓′(𝑠) − 𝜙′(𝑠)
𝜙(𝑠) �𝐻(𝑡, 𝑠)𝜓(𝑠)�

2

𝜓(𝑠)𝜏′(𝑠)      

⎭
⎬

⎫𝑡

𝑇
𝑑𝑠  

                                  ≤ 𝑉(𝑇)𝐻(𝑡,𝑇)𝜓(𝑇).                                                                                     (3.7) 
 
Letting 𝑡 → ∞, we have 

limsup
𝑡→∞

𝑐
𝐻(𝑡, 𝑡0)

� � �
𝑏𝑘
𝑎𝑘∗
�
−1

𝑡0≤𝑡𝑘<𝑠

�𝜙(𝑠)𝑞(𝑠)𝐻(𝑡, 𝑠)𝜓(𝑠)   
𝑡

𝑡0

−
𝑟(𝑠)𝜙(𝑠)

4

[ℎ(𝑡, 𝑠)𝜓(𝑠) − �𝐻(𝑡, 𝑠)𝜓′(𝑠) − 𝜙′(𝑠)
𝜙(𝑠) �𝐻(𝑡, 𝑠)𝜓(𝑠)]2

𝜓(𝑠)𝜏′(𝑠)      � 𝑑𝑠 < +∞                          (3.8) 

 
which is a contradiction with (3.5). Then by Lemma 2.6, we have lim𝑡→∞ 𝑧(𝑡) = 0. Since 0 < 𝑣(𝑡) < 𝑧(𝑡) on (𝑡1 ,∞), 
we get  lim𝑡→∞ 𝑢(𝑥, 𝑡) = 0. The proof of the theorem is complete.      
 
4   EXAMPLE 
 
In this section, we present an example to illustrate our results established in Section 3 
 
Example 4.1:  Consider the following impulsive neutral nonlinear partial differential equation is of the form  

                  
𝜕
𝜕𝑡
�𝑡2

𝜕
𝜕𝑡
�𝑢(𝑥, 𝑡) +

1
9
𝑢 �𝑥, 𝑡 −

1
3
���+

2
(3𝑡 − 1)2 𝑢 �𝑥, 𝑡 −

1
3
�  = 3Δ𝑢(𝑥, 𝑡) 

                                           −
2𝑡2 + 2

(3𝑡 − 1)2  Δ𝑢 �𝑥, 𝑡 −
1
3
�+

3 sin𝑥
𝑡

−
2𝑡 sin𝑥

(3𝑡 − 1)2 ,   𝑡 ≠ 2𝑘 , (𝑥, 𝑡) ∈ Ω× ℝ+ ≡ 𝐺 

                  𝑢(𝑥, 𝑡𝑘+)  =  
𝑘

𝑘 + 1
 𝑢 (𝑥, 2𝑘) 

                  𝑢𝑡(𝑥, 𝑡𝑘+) =  𝑢𝑡(𝑥, 2𝑘),      𝑘 = 1,2, … ,                  (4.1) 
for  (𝑥, 𝑡) ∈ (0,π) × ℝ+, with the boundary condition  

𝑢(0, 𝑡) =  𝑢(𝜋, 𝑡) =  0,   (𝑥, 𝑡) ∈ 𝜕Ω × ℝ+.                                                                                                    (4.2) 
 
Here  𝑟(𝑡) =  𝑡2, 𝑞(𝑡) =  1

(3𝑡−1)2 , 𝑎(𝑡) =  3,  𝑏1(𝑡) = 2𝑡2+2
(3𝑡−1)2 , 𝑐(𝑡) =  1

9
, 𝑓(𝑢) =  2𝑢, 𝜏(𝑡) = 𝜌(𝑡) = 𝜇1(𝑡) = 𝑡 − 1

3
,  

𝐹(𝑥, 𝑡) = 3 sin 𝑥
𝑡

− 2𝑡 sin 𝑥
(3𝑡−1)2.  Let 𝛼𝑘 =  𝛼𝑘∗ =   𝑘

𝑘+1
, 𝛽𝑘  =  𝛽𝑘∗ = 1, 𝑡0 =   1, 𝑡𝑘 =  2𝑘 .  Here, it is easy to see that all 

conditions of Theorem 3.1 are satisfied. In fact  𝑢(𝑥, 𝑡) =  sin 𝑥
𝑡

  is one such solution. 
 
CONCLUSION 
 
In this paper, we have studied the oscillatory and asymptotic behavior of solutions to impulsive neutral nonlinear partial 
differential equations. Our obtained results are essentially new and which generalize the results already existing in the 
literature. Moreover an example is also given to illustrate the effectiveness of our main results. 
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