Volume 9, No. 3, March - 2018 (Special Issue) International Journal of Mathematical Archive-9(3), 2018, 213-221 MAAvailable online through www.ijma.info ISSN 2229 - 5046 ## ON FUZZY UPPER AND LOWER CONTRA e^* (δs and δp)-CONTINUOUS MULTIFUNCTIONS M. Sujatha¹, M. Angayarkanni², B. Vijayalakshmi³ and A. Vadivel⁴ ¹Department of Mathematics, Padmavani Arts and Science College for Women, Salem-11, India. ²Department of Mathematics, Kandaswamy Kandar's College, P-Velur, Tamil Nadu-638 182, India. ³Department of Mathematics, Government Arts College, Chidambaram, Tamil Nadu-608 002, India. ⁴Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu-639 005, India. E-mail: sujatha1708@gmail.com¹, angayarkanni66@rediffmail.com², mathvijaya2006au@gmail.com³ and avmaths@gmail.com⁴. #### ABSTRACT In this paper, we introduce the concepts of fuzzy upper and fuzzy lower contra e^* (resp. δ -semi and δ -pre)-continuous multifunction on fuzzy topological spaces in \hat{S} ostak sense. Several characterizations and properties of these fuzzy upper (resp. fuzzy lower) contra e^* (resp. δ -semi and δ -pre)-continuous multifunctions are presented and their mutual relationships are established in L-fuzzy topological spaces. Later, composition and union between these multifunctions have been studied. **Keywords and phrases:** fuzzy upper contra $e^*(resp. \delta-semi \ and \delta-pre)$ -continuous multifunction, fuzzy lower contra $e^*(resp. \delta-semi \ and \delta-pre)$ -continuous multifunction. AMS (2000) subject classification: 54A40, 54C08, 54C60. #### 1. INTRODUCTION AND PRELIMINARIES Kubiak [9] and Ŝostak [12] introduced the notion of (L-) fuzzy topological space as a generalization of L-topological spaces (originally called (L-) fuzzy topological spaces by Chang [5] and Goguen [6]. It is the grade of openness of an L-fuzzy set. Berge [4] introduced the concept multimapping $F: X \to Y$ where X and Y are topological spaces. After Chang introduced the concept of fuzzy topology [5], continuity of multifunctions in fuzzy topological spaces have been defined and studied by many authors from different view points [3]. Tsiporkova et.al, [15, 16] introduced the continuity of fuzzy multivalued mappings in the Chang's fuzzy topology [5]. Later, Abbas et.al, [1], [2] introduced the concepts of fuzzy upper and lower semi-continuous multifunctions, fuzzy upper and lower β -continuous multifunctions in L-fuzzy topological spaces. Hebeshi., [7] introduced the concepts of fuzzy upper and lower α -continuous multifunctions in L-fuzzy topological spaces. Recently, Vadivel et.al, [17] and Prabhu et.al, [18] introduced r-fe*o sets and fuzzy e*-continuity in a smooth topological space. Sujatha et.al [14] introduced fuzzy upper and lower contra e-continuous multifunctions on fuzzy topological spaces in Ŝostak sense. In this paper, we introduce the concepts of fuzzy upper and fuzzy lower contra e^* (resp. δ -semi and δ -pre)-continuous multifunction on fuzzy topological spaces in \hat{S} ostak sense. Several characterizations and properties of these multifunctions are presented and their mutual relationships are established in L-fuzzy topological spaces. Later, composition and union between these multifunctions have been studied. Throughout this paper, nonempty sets will be denoted by X, Y etc., L = [0, 1] and $L_0 = (0, 1]$. The family of all fuzzy sets in X is denoted by L^X . The complement of an L-fuzzy set λ is denoted by λ^c . This symbol \multimap for a International Journal of Mathematical Archive- 9(3), March – 2018 multifunction. For $\alpha \in L$, $\overline{\alpha}(x) = \alpha$ for all $x \in X$. A fuzzy point x_t for $t \in L_0$ is an element of L^X such that $x_t(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$. The family of all fuzzy points in X is denoted by Pt(X). A fuzzy point $x_t \in \lambda$ iff $t \leq \lambda(x)$. All other notations are standard notations of L-fuzzy set theory. Let $F: X \multimap Y$, then F is called a fuzzy multifunction (FM, for short) [1] if and only if $F(x) \in L^Y$ for each $x \in X$. The degree of membership of y in F(x) is denoted by $F(x)(y) = G_F(x, y)$ for any $(x, y) \in X \times Y$. The domain of F, denoted by domain(F) and the range of F, denoted by rng(F), for any $x \in X$ and $y \in Y$, are defined by: $dom(F)(x) = \bigvee_{y \in Y} G_F(x, y)$ and $rng(F)(y) = \bigvee_{x \in X} G_F(x, y)$. Let $F: X \multimap Y$ be a FM. Then F is called: (i) Normalized iff for each $x \in X$, there exixts $y_0 \in Y$ such that $G_F(x, y_0) = \overline{1}$. (ii) A crisp iff $G_F(x, y) = \overline{1}$ for each $x \in X$ and $y \in Y$. Let $F: X \multimap Y$ be a FM. Then (i) The image of $\lambda \in L^X$ is an L-fuzzy set $F(\lambda) \in L^Y$ defined by $F(\lambda)(y) = \bigvee_{x \in X} [G_F(x, y) \land \lambda(x)]$. (ii) The lower inverse of $\mu \in L^Y$ is an L-fuzzy set $F^{\ell}(\mu) \in L^X$ defined by $F^{\ell}(\mu)(x) = \bigvee_{y \in Y} [G_F(x, y) \land \mu(y)]$. (iii) The upper inverse of $\mu \in L^Y$ is an L-fuzzy set $F^{\ell}(\mu) \in L^X$ defined by $F^{\ell}(\mu)(x) = \bigwedge_{y \in Y} [G_F(x, y) \land \mu(y)]$. (iii) The upper inverse of $\mu \in L^Y$ is an L-fuzzy set $F^{\ell}(\mu) \in L^X$ defined by $F^{\ell}(\mu)(x) = \bigwedge_{y \in Y} [G_F(x, y) \land \mu(y)]$. An L-fuzzy topological space (L-fts, in short) [9,12] is a pair (X, τ), where X is a nonempty set and $\tau: L^X \to L$ is a mapping satisfying the following properties. (i) $\tau(\overline{0}) = \tau(\overline{1}) = 1$, (ii) $\tau(\mu_1 \land \mu_2) \ge \tau(\mu_1) \land \tau(\mu_2)$, for any μ_1 , $\mu_2 \in I^X$. (iii) $\tau(V_{i \in \Gamma} \mu_i) \ge \Lambda_{i \in \Gamma} \tau(\mu_i)$, for any $\{\mu_i\}_{i \in \Gamma} \subset I^X$. Then τ is called an L-fuzzy topology on X. For every $\lambda \in L^X$, $\tau(\lambda)$ is called the degree of openness of the L-fuzzy set λ . A mapping $f:(X,\tau) \to (Y,\eta)$ is said to be continuous with respect to L-fuzzy topologies τ and η iff $\tau(f^{-1}(\mu)) \ge \eta(\mu)$ for each $\mu \in L^Y$. Let (X,τ) be a an L-fts. Then for each $\lambda \in L^X$, $\tau \in L_0$, we define L-fuzzy operators C_{τ} and $I_{\tau}: L^X \times L_0 \to L^X$ as follows: $C_{\tau}(\lambda,\tau) = \Lambda\{\mu \in L^X: \lambda \le \mu, \tau(\overline{1}-\mu) \ge \tau\}$. $I_{\tau}(\lambda,\tau) = V\{\mu \in L^X: \lambda \ge \mu, \tau(\mu) \ge \tau\}$. Let (X,τ) be a fts. For λ , $\mu \in I^X$ and $r \in I_0$, λ is called r-fuzzy regular open [8] (for short, r-fro) (resp. r-fuzzy regular closed (for short, r-frc)) if $\lambda = I_\tau(C_\tau(\lambda,r),r)$ (resp. $\lambda = C_\tau(I_\tau(\lambda,r),r)$). Let (X,τ) be a fts. Then for each $\mu \in I^X$, $x_t \in P_t(X)$ and $r \in I_0$, (i) μ is called r-open Q_τ -neighbourhood of x_t if $x_tq\mu$ with $\tau(\mu) \geq r$. (ii) μ is called τ -open R_τ -neighbourhood of τ if Let (X, τ) be a fuzzy topological space. For λ , $\mu \in I^X$ and $r \in I_0$, λ is called an (i) r-fuzzy δ -semiopen [13] (resp. r-fuzzy δ -semiclosed) set if $\lambda \leq C_\tau(\delta \cdot I_\tau(\lambda, r), r)$ (resp. $I_\tau(\delta \cdot C_\tau(\lambda, r), r) \leq \lambda$). (ii) r-fuzzy δ -preopen [13] (resp. r-fuzzy δ -preclosed) set if $\lambda \leq I_\tau$ ($\delta \cdot C_\tau(\lambda, r), r$) (resp. $C_\tau(\delta \cdot I_\tau(\lambda, r), r) \leq \lambda$). (iii) r-fuzzy α -open [11] (resp. r-fuzzy α -closed) set if $\lambda \leq I_\tau$ ($C_\tau(I_\tau(\lambda, r), r), r$) (resp. $C_\tau(I_\tau(C_\tau(\lambda, r), r), r) \leq \lambda$). (iv) r-fuzzy β -open [11] (resp. r-fuzzy β -closed) set if $\lambda \leq C_\tau$ (I_τ Let $F: X \multimap Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $r \in L_0$. Then F is called: (i) Fuzzy upper semi (or Fuzzy upper) (in short, FUS (or FU)) (resp. $FU\alpha$, FUe and $FU\beta$)-continuous at a L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exists λinL^X , $\tau(\lambda) \ge r$ (resp. r-f α 0, r-fe0 and r-f β 0 set) and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \le F^u(\mu)$. F is FU (resp. $FU\alpha$, FUe and $FU\beta$)-continuous iff it is FU(resp. $FU\alpha$, FUe and $FU\beta$)-continuous at every $x_t \in dom(F)$. (ii) Fuzzy lower semi (or Fuzzy lower) (in short, FLS (or FL)) (resp. $FL\alpha$, FLe and $FL\beta$)-continuous at a L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu) \ge r$, there exists $\lambda \in L^X$, $\tau(\lambda) \ge r$ (resp. r-f α 0, r-fe0 and r-f β 0 set) and $x_t \in \lambda$ such that $\lambda \le F^l(\mu)$. F is FL (resp. $FL\alpha$, FLe and $FL\beta$)-continuous iff it is FL (resp. $FL\alpha$, FLe and $FL\beta$)-continuous at every $x_t \in dom(F)$. (iii) Fuzzy [1] (resp. $FU\alpha$ [7], FUe [19] and $FU\beta$ [2])-continuous if it is FU (resp. $FU\alpha$, FUe and $FU\beta$)-continuous and FL (resp. $FL\alpha$, FLe and $FL\beta$)-continuous. Let (X, τ) and (Y, η) be a fts's. The fuzzy sets of the form $\lambda \times \mu$ with $\tau(\lambda) \geq r$ and $\eta(\mu) \geq r$ form a basis for the product fuzzy topology [3,20] $\tau \times \eta$ on $X \times Y$, where for any $(x, y) \in X \times Y$, $(\lambda \times \mu)(x, y) = min\{\lambda(x), \mu(y)\}$. [3,10] Let $F: X \multimap Y$ be a FM between two fts's (X, τ) and (Y, η) . The graph fuzzy multifunction $G_f: X \to X \times Y$ of F is defined as $G_f(x) = x_1 \times F(x)$, for every $x \in X$. [14] Let $F: X \multimap Y$ be a FM between two L-fts's $(X, \tau), (Y, \eta)$ and $r \in L_0$. Then F is called: (i) Fuzzy upper contra e-continuous (FUCe-continuous, in short) at any L-fuzzy point $x_t \in dom(\Box)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu^c) \geq r$, there exists r-feo set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \leq F^u(\mu)$. (ii) Fuzzy lower contra e-continuous (FLCe-continuous, in short) at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu^c) \geq r$, there exists r-feo set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^l(\mu)$. (iii) Fuzzy upper contra e-continuous (resp. Fuzzy lower contra e-continuous) iff it is FUCe-continuous (resp. FLCe-continuous) at every $x_{\square} \in dom(F)$. ### **2. FUZZY UPPER AND LOWER CONTRA** e^* (resp. δ -semi and δ -pre)-CONTINUOUS MULTIFUNCTIONS **Definition 2.1:** Let $F: X \multimap Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $r \in L_0$. Then F is called: - 1. Fuzzy upper contra e^* (resp. δ -semi and δ -pre) (in short, FUCe* (resp. FUC δ S and FUC δ P))-continuous at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu^c)$ eqr there exists r-fe*o (resp. r-f δ so and r-f δ po) set, $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \leq F^u(\mu)$. - 2. Fuzzy lower contra e^* (resp. δ -semi and δ -pre) (in short, FLCe* (resp. FLC δ S and FLC δ P))-continuous at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu^c)$ gear there exists r-fe*o (resp. r-f δ so and r-f δ po) set, $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^l(\mu)$. - 3. $FUCe^*$ (resp. $FUC\delta S$, $FUC\delta P$, $FLCe^*$, $FLC\delta S$ and $FLC\delta P$)-continuous iff it is $FUCe^*$ (resp. $FUC\delta S$, $FUC\delta P$, $FLCe^*$, $FLC\delta S$ and $FLC\delta P$)-continuous at every $x_t \in dom(F)$. **Proposition 2.1:** If F is normalized, then F is $FUCe^*$ (resp. $FUC\delta S$ and $FUC\delta P$)-continuous at an L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and $\eta(\mu^c) \ge r$ there exists $\lambda \in L^X$, λ is r-fe*o (resp. r-f δ so and r-f δ po) set and $x_t \in \lambda$ such that $\lambda \le F^u(\mu)$. **Theorem 2.1:** Let $F: X \to Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $\mu \in L^Y$, then the following are equivalent: (i) F is FLe^* -continuous. (ii) $F^l(\mu)$ is r-fe*o set, for any $\eta(\mu) \ge r$. (iii) $F^u(\mu)$ is r-fe*c set, for any $\eta(\overline{1} - \mu) \ge r$. (iv) $e^*C_\tau(F^u(\mu), r) \le F^u(C_\eta(\mu, r))$, for any $\mu \in L^Y$. (v) $I_\tau(C_\tau(\delta I_\tau(F^u(\mu), r), r), r) \le F^u(C_\eta(\mu, r))$, for any $\mu \in L^Y$. #### **Proof:** - (i) \Rightarrow (ii): Let $x_t \in dom(F)$, $\mu \in L^Y$, $\eta(\mu) \geq r$ and $x_t \in F^l(\mu)$ then, there exist $\lambda \in L^X$, λ is r-fe*o set and $x_t \in \lambda$ such that $\lambda \leq F^l(\mu)$ and hence $x_t \in e^*I_\tau(F^l(\mu), r)$. Therefore, we obtain $F^l(\mu) \leq e^*I_\tau(F^l(\mu), r)$. Thus $F^l(\mu)$ is r-fe*o (resp. r-foso and r-foso) set. - (ii) \Rightarrow (iii): Let $\mu \in L^Y$ and $\eta(\overline{1} \mu) \ge r$ hence by (ii), $F^l(\overline{1} \mu) = \overline{1} F^u(\mu)$ is $r fe^*o$. Then $F^u(\mu)$ is $r fe^*c$. - (iii) \Rightarrow (iv): Let $\mu \in L^Y$ hence by (iii), $F^u(\mathcal{C}_\eta(\mu,r))$ is r-f e^* c. Then we obtain $e^*\mathcal{C}_\tau(F^u(\mu), r) \leq F^u(\mathcal{C}_\eta(\mu, r))$. - (iv) \Rightarrow (v): Let $\mu \in L^Y$ hence by (iv), we obtain $I_{\tau}(C_{\tau}(\delta I_{\tau}(F^u(\mu), r), r), r) \leq e^*C_{\tau}(F^u(\mu), r) \leq F^u(C_n(\mu, r))$. - (v) \Rightarrow (ii): Let $\mu \in L^Y$, $\eta(\mu) \ge r$, hence by (v), we have $$\begin{split} \overline{1} - F^l(\mu) &= F^u(\overline{1} - \mu) \\ &\geq I_\tau(C_\tau(\delta I_\tau(F^u(\overline{1} - \mu), r), r), r) \\ &= I_\tau(C_\tau(\delta I_\tau(\overline{1} - F^l(\mu), r), r), r) \\ &= \overline{1} - \left[C_\tau(I_\tau(\delta C_\tau(F^l(\mu), r), r), r)\right] \\ F^l(\mu) &\leq C_\tau(I_\tau(\delta C_\tau(F^l(\mu), r), r), r). \end{split}$$ Hence, $F^l(\mu)$ is r-f e^* o. (ii) \Rightarrow (i): Let $x_t \in dom(F)$, $\mu \in L^Y$, $\eta(\mu) \ge r$, with $x_t \in F^l(\mu)$ we have by (ii), $F^l(\mu)$ is $r - f e^*$ o set. Let $F^l(\mu) = \lambda(\text{say})$, then there exists $\lambda \in L^X$, λ is $r - f e^*$ o set and $x_t \in \lambda$ such that $\lambda \le F^l(\mu)$. Thus F is FLe^* -continuous. **Theorem 2.2:** Let $F: X \multimap Y$ be a FM and normalized between two L-fts's (X, τ) , (Y, η) and $\mu \in L^Y$, then the following are equivalent: (i) F is FUe^* -continuous. (ii) $F^u(\mu)$ is r-fe*o set, for any $\eta(\mu) \ge r$. (iii) $F^l(\mu)$ is r-fe*c set, for any $\eta(\overline{1} - \mu) \ge r$. (iv) $e^*C_\tau(F^l(\mu), r) \le F^l(C_\eta(\mu, r))$, for any $\mu \in L^Y$. (v) $I_\tau(C_\tau(\delta I_\tau(F^l(\mu), r), r), r) \le F^l(C_\eta(\mu, r))$, for any $\mu \in L^Y$. **Proof:** This can be proved in a similar way as Theorem 2.1. **Corollary 2.1:** Let $F: X \multimap Y$ be a FM between two fts's (X, τ) , (Y, η) and $\mu \in L^Y$. Then we have the following: (i) If F is normalized, then F is FUe^* -continuous. at x_t iff $x_t \in r$ -fe*o set of $F^u(\mu)$, for each $\eta(\mu) \ge r$ and $x_t \in F^u(\mu)$. (ii) F is FLe^* -continuous at x_t iff $x_t \in r$ -fe*o set of $F^l(\mu)$, for each $\eta(\mu) \ge r$ and $x_t \in F^l(\mu)$. **Remark 2.1:** From the above definitions, it is clear that every (FUCδS, FUC α and FUCδP)(resp. FLCδS, FLC α and FLCδP)-continuous is FUCe-continuous. Also, it is clear that every FUCe(resp. FLCe)-continuous is FUC β (resp. FLC β)-continuous and FUCe* (resp. FLCe*)-continuous. Also, every FUC β (resp. FLC β)-continuous is FUCe* (resp. FLCe*)-continuous. The converses need not be true in general and it is clear that the following implications are true. where (FUC-conts, FUC β -conts, FLCe*-conts, FLCe*-conts, FLCe*-conts) are abbreviated by fuzzy upper (resp. fuzzy lower) contra β -continuous, fuzzy upper (resp. fuzzy lower) contra β -continuous, fuzzy upper (resp. fuzzy lower) contra β -continuous, fuzzy upper (resp. fuzzy lower) contra β -continuous and fuzzy upper (resp. fuzzy lower) contra β -continuous mappings respectively. From the following examples, we see that the converses of these implications are not true. **Example 1:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.8$, $G_F(x_1, y_2) = 0.9$, $G_F(x_1, y_3) = 0.8$, $G_F(x_2, y_1) = \overline{1}$, $G_F(x_2, y_2) = 0.7$, and $G_F(x_2, y_3) = 0.9$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.3$, $\lambda_1(x_2) = 0.1$; $\lambda_2(x_1) = 0.1$, $\lambda_2(x_2) = 0.2$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.7$, $\mu(y_2) = 0.9$, $\mu(y_3) = 0.8$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is $FUC\beta$ -continuous but not FUCe-continuous because for any closed set μ in (Y, η) , $F^u(\mu) = \lambda_2$ is not $\frac{1}{2}$ -feo set in (X, τ) . **Example 2:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.2$, $G_F(x_1, y_2) = 1$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = ne0$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.4$, $\lambda_1(x_2) = 0.3$; $\lambda_2(x_1) = 0.2$, $\lambda_2(x_2) = 0.4$ and μ be a fuzzy subset of Y defined as $mu(y_1) = 0.6$, $\mu(y_2) = 0.9$, $\mu(y_3) = 0$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then F is FLC β -continuous but not FLCe-continuous because for any closed set μ in (Y, η) , $F^{l}(\mu) = \lambda_{2}$ is not $\frac{1}{2}$ -feo set in X. **Example 3:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \to Y$ be a FM defined by $G_F(x_1, y_1) = 0.8$, $G_F(x_1, y_2) = 0.9$, $G_F(x_1, y_3) = 0.8$, $G_F(x_2, y_1) = \overline{1}$, $G_F(x_2, y_2) = 0.7$, and $G_F(x_2, y_3) = 0.9$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.5$, $\lambda_1(x_2) = 0.1$; $\lambda_2(x_1) = 0.1$, $\lambda_2(x_2) = 0.2$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.7$, $\mu(y_2) = 0.9$, $\mu(y_3) = 0.8$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is $FUCe^*$ -continuous but not FUCe-continuous because for any closed set μ in (Y, η) , $F^u(\mu) = \lambda_2$ is not $\frac{1}{2}$ -feo set in (X, τ) . **Example 4:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \to Y$ be a FM defined by $G_F(x_1, y_1) = 0.2$, $G_F(x_1, y_2) = \overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.5$, $\lambda_1(x_2) = 0.3$; $\lambda_2(x_1) = 0.2$, $\lambda_2(x_2) = 0.4$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.6$, $\mu(y_2) = 0.9$, $\mu(y_3) = \overline{0}$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1} \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then F is FLCe*-continuous but not FLCe-continuous because for any closed set μ in Y, $F^{l}(\mu) = \lambda_2$ is not $\frac{1}{2}$ -feo set in X. **Example 5:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.8$, $G_F(x_1, y_2) = 0.8$ 0.9, $G_F(x_1, y_3) = 0.8$, $G_F(x_2, y_1) = \overline{1}$, $G_F(x_2, y_2) = 0.7$, and $G_F(x_2, y_3) = 0.9$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.7$, $\lambda_1(x_2) = 0.7$; $\lambda_2(x_1) = 0.2$, $\lambda_2(x_2) = 0.1$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.6$, $\mu(y_2) = 0.7$, $\mu(y_3) = 0.9$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1} \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then F is FUCe*-continuous but not open in (X, τ) . **Example 6:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.2$, $G_F(x_1, y_2) = 0.2$ $\overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subset of Xbe defined as $\lambda_1(x_1) = 0.6$, $\lambda_1(x_2) = 0.6$; $\lambda_2(x_1) = 0.2$, $\lambda_2(x_2) = 0.4$ and μ be a fuzzy subset of Y defined as $\mu(y_1)=0.6, \ \mu(y_2)=0.9, \ \mu(y_3)=0.7.$ We assume that $\overline{1}=1$ and $\overline{0}=0$. Define L-fuzzy topologies $\tau:L^X\to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1} ,\\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1} ,\\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is FLCe*-continuous but not FLC\$\beta\$-continuous because for any closed set μ in (Y, η) , $F^{l}(\mu) = \lambda_{2}$ is not $\frac{1}{2}$ -fuzzy beta open set in X. **Example 7:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.8$, $G_F(x_1, y_2) = 0.8$ 0.9, $G_F(x_1, y_3) = 0.8$, $G_F(x_2, y_1) = \overline{1}$, $G_F(x_2, y_2) = 0.7$, and $G_F(x_2, y_3) = 0.9$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.3$, $\lambda_1(x_2) = 0.1$; $\lambda_2(x_1) = 0.7$, $\lambda_2(x_2) = 0.7$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.3$, $\mu(y_2) = 0.1$, $\mu(y_3) = 0.2$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \qquad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is FUCe-continuous but not FUC α -continuous because for any closed set μ in (Y, η) , $F^{u}(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy alpha open set in (X, τ) . **Example 8:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.2$, $G_F(x_1, y_2) = 0.2$ $\overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subset of Xbe defined as $\lambda_1(x_1) = 0.4$, $\lambda_1(x_2) = 0.3$; $\lambda_2(x_1) = 0.9$, $\lambda_2(x_2) = 0.5$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.4$, $\mu(y_2) = 0.1$, $\mu(y_3) = \overline{1}$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ $$\text{are fuzzy topologies on } X \text{ and } Y. \text{ For } r = \frac{1}{2}, \text{ then } F \text{ is } FLCe\text{-continuous but not } FLC\alpha\text{-continuous because for any}$$ closed set μ in (Y, η) , $F^l(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy alpha open set in X. **Example 9:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \multimap Y$ be a FM defined by $G_F(x_1, y_1) = 0.8$, $G_F(x_1, y_2) = 0.9$, $G_F(x_1, y_3) = 0.8$, $G_F(x_2, y_1) = \overline{1}$, $G_F(x_2, y_2) = 0.7$, and $G_F(x_2, y_3) = 0.9$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.3$, $\lambda_1(x_2) = 0.1$; $\lambda_2(x_1) = 0.7$, $\lambda_2(x_2) = 0.7$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.3$, $\mu(\square_2) = 0.1$, $\mu(y_3) = 0.2$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then - (i) F is FUCe-continuous but not FUC δ P-continuous because for any closed set μ in (Y, η) , $F^u(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy δ -pre open in (X, τ) . - (ii) F is $FUC\delta S$ -continuous but not FUC-continuous because for any closed set μ in (Y, η) , $F^u(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open in (X, τ) . **Example 10:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \to Y$ be a FM defined by $G_F(x_1, y_1) = 0.2$, $G_F(x_1, y_2) = \overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.1$, $\lambda_1(x_2) = 0.3$; $\lambda_2(x_1) = 0.9$, $\lambda_2(x_2) = 0.5$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.6$, $\mu(y_2) = 0.9$, $\mu(y_3) = 0$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\Box: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then - (i) F is FLCe-continuous but not FLC δ P-continuous because for any closed set μ in Y, $F^l(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy δ -pre open set in X. - (ii) F is FLC8S-continuous but not FLC-continuous because for any closed set μ in Y, $F^l(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open set in X. **Example 11:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \to Y$ be a FM defined by $G_F(x_1, y_1) = 0.8$, $G_F(x_1, y_2) = 0.9$, $G_F(x_1, y_3) = 0.8$, $G_F(x_2, y_1) = \overline{1}$, $G_F(x_2, y_2) = 0.7$, and $G_F(x_2, y_3) = 0.9$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.6$, $\lambda_1(x_2) = 0.8$; $\lambda_2(x_1) = 0.7$, $\lambda_2(x_2) = 0.7$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.3$, $\mu(y_2) = 0.1$, $\mu(y_3) = 0.2$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \square_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then - (i) F is FUCe-continuous but not FUC δS -continuous because for any closed set μ in Y, $F^u(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy δ -semi open in X. - (ii) F is $FUC\delta P$ -continuous but not FUC-continuous because for any closed set μ in Y, $F^u(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open in X. - (iii) F is FUC α -continuous but not FUC-continuous because for any closed set μ in Y, $F^u(\mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open in X. **Example 12:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \to Y$ be a FM defined by $G_F(x_1, y_1) = 0.2$, $G_F(x_1, y_2) = \overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.4$, $\lambda_1(x_2) = 0.3$; $\lambda_2(x_1) = 0.9$, $\lambda_2(x_2) = 0.5$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.4$, $\mu(y_2) = 0.1$, $\mu(y_3) = 1$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then (i) F is FLCe-continuous but not FLC δS -continuous because for any closed set μ in Y, $F^l(\mu)=\lambda_2$ is not $\frac{1}{2}$ -fuzzy δ -semi open set in X. (ii) F is FLC δP -continuous but not FLC-continuous because for any closed set μ in Y, $F^l(\mu)=\lambda_2$ is not $\frac{1}{2}$ -fuzzy open set in X. **Example 13:** Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X \to Y$ be a FM defined by $G_F(x_1, y_1) = 0.2$, $G_F(x_1, y_2) = \overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.7$, $\lambda_1(x_2) = 0.5$; $\lambda_2(x_1) = 0.9$, $\lambda_2(x_2) = 0.5$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.4$, $\mu(y_2) = 0.1$, $\mu(y_3) = 1$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows: $$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \lambda_1, \\ 0, & \text{otherwise,} \end{cases} \quad \eta(\mu) = \begin{cases} 1, & \text{if } \mu = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2}, & \text{if } \mu = \mu, \\ 0, & \text{otherwise.} \end{cases}$$ are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then F is $FLC\alpha$ -continuous but not FLC-continuous because for any closed set μ in Y, $F^l(\mu)=\lambda_2$ is not $\frac{1}{2}$ -fuzzy open set in X. **Theorem 2.3:** Let $\{F_i\}_{i\in\Gamma}$ be a family of FLe*(resp. FL δ S and FL δ P)-continuous between two fts's (X, τ) and (Y, η) . Then $\bigcup_{i\in\Gamma}F_i$ is FLe*(resp. FL δ S and FL δ P)-continuous. **Proof:** Let $\mu \in L^Y$, then $(\bigcup_{i \in \Gamma} F_i)^l(\mu) = \bigvee_{i \in \Gamma} (F_i^l(\mu))$ by, Theorem 2.3 (ii) in [14]. Since $\{F_i\}_{i \in \Gamma}$ is a family of FLe*(resp. FL δ S and FL δ P)-continuous between two fts's (X, τ) and (Y, η) , then $F_i^l(\mu)$ is r-fe*o (resp. r-f δ so and r-f δ po), for any $\eta(\mu) \geq r$. Then we have $(\bigcup_{i \in \Gamma} F_i)^l(\mu) = \bigvee_{i \in \Gamma} (F_i^l(\mu))$ is r-fe*o (resp. r-f δ so and r-f δ po) set for any $\eta(\mu) \geq r$. Hence $\bigcup_{i \in \Gamma} F_i$ is FLe*(resp. FL δ S and FL δ P)-continuous. **Theorem 2.4:** Let $\{F_i\}_{i\in\Gamma}$ be a family of normalized $FUe^*(resp.\ FU\delta S\ and\ FU\delta P)$ -continuous between two fts's (X,τ) and (Y,η) . Then $F_1\cup F_2$ is $FUe^*(resp.\ FU\delta S\ and\ FU\delta P)$ -continuous. **Proof:** Let $\mu \in L^Y$, then $(F_1 \cup F_2)^u(\mu) = F_1^u(\mu) \wedge F_2^u(\mu)$ by, Theorem 2.3(iii) in [14]. Since $\{F_i\}_{i \in \Gamma}$ is a family of normalized FUe^* (resp. $FU\delta S$ and $FU\delta P$)-continuous between two fts's (X, τ) and (Y, \Box) , then $(F_i^u(\mu))$ if r-fe*o (resp. r-f δ so and r-f δ po), for any $\eta(\mu) \geq r$ for each $i \in \{1,2\}$. Then for each $\mu \in L^Y$, we have $(F_1 \cup F_2)^u(\mu) = F_1^u(\mu) \wedge F_2^u(\mu)$ is r-fe*o (resp. r-f δ so and r-f δ po) set for any $\eta(\mu) \geq r$. Hence $F_1 \cup F_2$ is $FU\Box^*$ (resp. $FU\delta S$ and $FU\delta P$)-continuous. **Definition 2.2:** A fuzzy set λ in a fts (X, τ) is called r-fuzzy $e^*(resp. \delta semi and \delta pre)$ -compact iff every family in $\{\mu : \mu \text{ is } r\text{-}fe^*o \text{ (resp. } r\text{-}f\delta so \text{ and } r\text{-}f\delta po), \ \mu \in L^X \text{ and } r \in L\}$ covering λ has a finite subcover. **Definition 2.3:** Let $F: X \multimap Y$ be a FM between two fts's (X, τ) , (Y, η) and $r \in L_0$. Then F is called fuzzy $e^*(resp. \delta semi \ and \ \delta \ pre)$ -compact valued iff $F(x_t)$ is r-fuzzy e^* -compact for each $x_t \in dom(F)$. **Theorem 2.5:** Let $F: X \multimap Y$ be a crisp FUe-continuous and fuzzy $e^*(resp. \delta semi and \delta pre)$ -compact valued between two fts's (X, τ) and (Y, η) . Then the direct image of a r-fuzzy e^* -compact in X under F is also r-fuzzy $e^*(resp. \delta semi and \delta pre)$ -compact. **Proof:** Let λ be r-fuzzy e^* -compact set in X and $\{\gamma_i: \gamma_i \text{ is } r\text{-}fe^* \text{o set in } Y, i \in \Gamma\}$ be a family of covering of $F(\lambda)$. i.e. $F(\lambda) \leq \bigvee_{i \in \Gamma} \gamma_i$. Since $\lambda = \bigvee_{x_t \in \lambda} x_t$, we have $F(\lambda) = F(\bigvee_{x_t \in \lambda} x_t) = \bigvee_{x_t \in \lambda} F(x_t) \leq \bigvee_{i \in \Gamma} \gamma_i$. It follows that for each $\Gamma_t \in \lambda$, $\Gamma(x_t) \log \bigvee_{i \in \Gamma} \gamma_i$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$ in $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$ in $\Gamma_t \in \lambda$. By Theorem 2.1 (viii) in [14], we have $\Gamma_t \in \lambda$ in $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since, $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since, $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_t \in \lambda$. Since $\Gamma_t \in \lambda$ is $\Gamma_$ **Theorem 2.6:** Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two FM's and let (X, τ) , (Y, η) and (Z, δ) be three fts's. Then we have the following: (i) If F and H are normalized, FUe^* (resp. δ semi and δ pre)-continuous, then $H \circ F$ is FUe^* (resp. δ semi and δ pre)-continuous, then $H \circ F$ is FLe^* (resp. δ semi and δ pre)-continuous. **Proof:** (i) Let F and H are normalized, FUe^* -continuous and $v \in L^Z$. Then from Theorem 2.2 in [14], we have $(H \circ F)^u(v) = F^u(H^u(v))$ is fe^* 0 with $v(H^u(v)) \ge \delta(v)$. Thus $H \circ F$ is FUe^* -continuous. (ii) Similar of (i). The proof of the others are similar. **Theorem 2.7:** Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two FM's and let (X, τ) , (Y, η) and (Z, δ) be three L-fts's. If F is FLe^* (resp. δ semi and δ pre)-continuous and H is FL-continuous, then $H \circ F$ is FLe^* (resp. δ semi and δ pre)-continuous. **Proof:** Let $v \in L^Z$, $\delta(v) \ge r$. Since H is FL-continuous, then by Theorem 2.5 in [14], $H^l(v)$ is r-fuzzy open set in Y. Also, F is FLe^* -irresolute implies $F^l(H^l(v))$ is fe^* 0 set in X. Hence, we have $(H \circ F)^l(v) = F^l(H^l(v))$ is r-fe * 0. Thus $H \circ F$ is FLe^* -continuous. The proof of the others are similar. **Theorem 2.8:** Let $F: X \multimap Y$ and $H: Y \multimap Z$ be two FM's and let (X, τ) , (Y, η) and (Z, δ) be three L-fts's. If F and F are normalized, F is FUe^* (resp. F semi and F pre)-continuous and F is F and F is F is F is F is F if F is F in F is F in F in F is F in i **Theorem 2.9:** Let $F: X \to Y$ be a FM between two fts's (X, τ) and (Y, η) . If G_f is FLe^* (resp. δ semi and δ pre)-continuous, then F is FLe^* (resp. δ semi and δ pre)-continuous. **Proof:** For the fuzzy sets $\rho \in L^X$, $\tau(\rho) \ge r$, $\nu \in L^Y$ and $\eta(\nu) \ge r$, we take, $(\rho \times \nu)(x, y) = \begin{cases} 0, & \text{if } x \notin \rho, \\ \nu(y), & \text{if } x \in \rho. \end{cases}$ Let $x_t \in dom(F)$, $\mu \in L^Y$ and $\eta(\mu) \ge r$ with $x_t \in F^l(\mu)$, then we have $x_t \in G^l_f(X \times \mu)$ and $\eta(X \times \mu) \ge r$. Since G_f is FLe^* -continuous, it follows that there exists $\lambda \in L^X$, λ is fe^* 0 and $x_t \in \lambda$ such that $\lambda \le G^l_f(X \times \mu)$. From here, we obtain that $\lambda \le F^l(\mu)$. Thus F is FLe^* -continuous. The proof of the others are similar. **Theorem 2.10:** Let $F: X \multimap Y$ be a FM between two fts's (X, τ) and (Y, η) . If G_f is FUe^* (resp. δ semi and δ pre)-continuous, then F is FUe^* (resp. δ semi and δ pre)-continuous. **Theorem 2.11:** Let (X, τ) and (X_i, τ_i) be L-fts's $(i \in I)$. If a FM $F: X \multimap \Pi_{i \in I} X_i$ is FLe-continuous (where $\Pi_{i \in I} X_i$ is the product space), then $P_i \circ F$ is FLe* (resp. δ semi and δ pre)-continuous for each $i \in I$, where $P_i: \Pi_{i \in I} X_i \multimap X_i$ is the projection multifunction which is defined by $P_i(x_i) = \{x_i\}$ for each $i \in I$. **Proof:** Let $\mu_{i_0} \in L^{X_{i_0}}$ and $\tau_i(\mu_{i_0}) \geq r$. Then $(P_{i_0} \circ F)^l(\mu_{i_0}) = F^l(P_{i_0}^l(\mu_{i_0})) = F^l(\mu_{i_0} \times \Pi_{i \neq i_0} X_i)$. Since F is FLe^* -continuous and $\tau_i(\mu_{i_0} \times \Pi_{i \neq i_0} X_i) \geq r$, it follows that $F^l(\mu_{i_0} \times \Pi_{i \neq i_0} X_i)$ is fe^* o set. Then $P_i \circ F$ is an FLe^* -continuous. The proof of the others are similar. **Theorem 2.12:** Let (X, τ) and (X_i, τ_i) be L-fts's $(i \in I)$. If a FM $F: X \multimap \Pi_{i \in I} X_i$ is FUe^* (resp. δ semi and δ pre)-continuous (where $\Pi_{i \in I} X_i$ is the product space), then $P_i \circ F$ is FUe^* (resp. δ semi and δ pre)-continuous for each $i \in I$, where $P_i: \Pi_{i \in I} X_i \multimap X_i$ is the projection multifunction which is defined by $P_i(x_i) = \{x_i\}$ for each $i \in I$. **Theorem 2.13:** Let (X_i, τ_i) and (Y_i, η_i) be L-fts's and $F_i: X_i \multimap Y_i$ be a FM for each $i \in I$. Suppose that $F: \Pi_{i \in I} X_i \multimap \Pi_{i \in I} Y_i$ is defined by $F(x_i) = \Pi_{i \in I} F_i(x_i)$. If F is FLe^* (resp. δ semi and δ pre)-continuous, then F_i is FLe^* (resp. δ semi and δ pre)-continuous for each $i \in I$. **Proof:** Let $\mu_i \in L^{Y_i}$ and $\eta_i(\mu_i) \ge r$. Then $\eta_i(\mu_i \times \Pi_{i \ne j} Y_j) \ge r$. Since F is FLe^* -continuous, it follows that $F^l(\mu_i \times \Pi_{i \ne j} Y_j) = F^l(\mu_i) \times \Pi_{i \ne j} X_j$ is fe^* 0. Consequently, we obtain that $F^l(\mu_i)$ is r-fe * 0 for each $i \in I$. Thus, F_i is FLe^* -continuous. The proof of the others are similar. **Theorem 2.14:** Let (X_i, τ_i) and (Y_i, η_i) be L-fts's and $F_i: X_i \multimap Y_i$ be a FM for each $i \in I$. Suppose that $F: \Pi_{i \in I} X_i \multimap \Pi_{i \in I} Y_i$ is defined by $F(x_i) = \Pi_{i \in I} F_i(x_i)$. If F is FUe^* (resp. δ semi and δ pre)-continuous, then F_i is FUe^* (resp. δ semi and δ pre)-continuous for each $i \in I$. #### REFERENCES - 1. S. E. Abbas, M. A. Hebeshi and I. M. Taha, *On fuzzy upper and lower semi-continuous multifunctions*, Journal of Fuzzy Mathematics, (4) (2014), 951–962. - 2. S. E. Abbas, M. A. Hebeshi and I. M. Taha, *On fuzzy upper and lower* β -irresolute multifunctions, The Journal of Fuzzy Mathematics, (1) (2015), 171–187. - 3. M. Alimohammady, E.Ekici, S.Jafari and M. Roohi, *On fuzzy upper and lower contra continuous multifunctions*, Iranian Journal of Fuzzy Systems, (3) (2011), 149-158. - 4. C. Berge, *Topological spaces including a treatment of multi-valued functions*, Vector Spaces and Convexity, Oliver, Boyd London, (1963). - 5. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., (1968), 182–189. - 6. J. A. Goguen, The fuzzy Tychonoff Theorem, J. Math. Anal. Appl., (3) (1973), 734–742. - 7. M. A. Hebeshi and I. M. Taha, On upper and lower α -continuous fuzzy multifunctions, Journal of Intelligent and Fuzzy systems, (accepted). - 8. Y. C. Kim and J. W. Park, r-fuzzy δ -closure and r-fuzzy θ -closure sets, J. Korea Fuzzy Logic and Intelligent systems, (6) (2000), 557-563. - 9. T. Kubiak, On fuzzy topologies, Ph.D. Thesis, A. Mickiewicz, Poznan, (1985). - 10. M. N. Mukherjee and S. Malakar, *On almost continuous and weakly continuous fuzzy multifunctions*, Fuzzy Sets and Systems, (1991), 113–125. - 11. A. A. Ramadan, S. E. Abbas and Y.C. Kim, *Fuzzy irresolute mappings in smooth fuzzy topological spaces*, J. Fuzzy Math., (4)(2001), 865-877. - 12. A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo Ser II (1985), 89–103. - 13. D. Sobana, V. Chandrasekar and A. Vadivel, Fuzzy e-continuity in Šostak's fuzzy topological spaces, (Submitted). - 14. M. Sujatha, M. Angayarkanni, B. Vijayalakshmi and A. Vadivel, *On fuzzy upper and lower contra e-continuous multifunctions*, (submitted). - 15. E. Tsiporkova, B. De Baets and E. Kerre, *A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings*, Fuzzy sets and systems, (1997), 93–108. - 16. E. Tsiporkova, B. De Baets and E. Kerre, *Continuity of fuzzy multivalued mappings*, Fuzzy sets and systems, (1998), 335–348. - 17. A. Vadivel, B. Vijayalakshmi and A. Prabhu, Fuzzy e*-open Sets in Šostak's Topological Spaces, (Submitted). - 18. A. Prabhu, A. Vadivel and B. Vijayalakshmi, Fuzzy e*-continuity and e*-open mappings in Šostak's Topological Spaces, (Submitted). - 19. A. Prabhu, A. Vadivel and B. Vijayalakshmi, On fuzzy upper and lower e-continuous multifunctions, (submitted). - 20. C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl, (1974), 512-521. Source of support: National Conference on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.