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ABSTRACT

In this paper, we prove a common fixed point theorem in complex valued b-metric space satisfying rational inequality
using compatible and weakly compatible mappings. Our result extend and generalize some well known results from the
existing literature.
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1. INTRODUCTION AND PRELIMINARIES

In 2011, Azam et al.[1] introduced the concept of complex valued metric space and proved some fixed point theorem
for mappings satisfying a rational inequality. After then, many authors have worked in this direction see in [8, 9, 12
and 13].

Recently, Rao et al. [11] introduced the concept of complex valued b-metric space which is more general than the
notion of well known complex valued metric space and proved some common fixed point results. Further, several
authors [2, 3, 4, 5, 6, 7, 10] continue the study of common fixed point in complex valued b-metric space.

In this paper, we establish common fixed point theorem for rational type inequality in the framework of complex
valued b-metric spaces.

Let C be the set of complex numbers and z;, z, € C. Define a partial order < on C as follows:
z; S z, ifand only if Re(z,) < Re(z,),Im(z;) < Im(z,). It follows that z; < z, if one of the following conditions is
satisfied:

(i) Re(z,) = Re(z,),Im(z,) < Im(z,);

(i) Re(z;) < Re(zy),Im(z;) = Im(z,);

(iii) Re(z,) < Re(z,),Im(z,) < Im(z,);

(iv) Re(z,) = Re(z,), Im(z,) = Im(z,).

In particular, we will write z, 5 z, if z; # z, and one of (i), (ii) or (iii) is satisfied and we will write z, < z, if only
(iii) is satisfied, Notice that

(CH 0= 27 2z, =2 74| < |z,

(C2) zy < 7y 2, < 23 = z; < Z3,

(C3) ifa,b e Randa < b then az < bz forall z € C.
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The following definition is recently introduced by Rao et al. [11].

Definition 1.1: [11] Let X be a non-empty set and let s > 1 be a given real number. A function d: X x X — Cis called
a complex valued b-metric if the following conditions are satisfied:

1) 0=3d(x,y)andd(x,y) =0 x=yforalx,y€X;

2)d(x,y)=d(y,x) forallx,y € X;

(3)d(x,y) S s[d(x,z) +d(z,y)]forall x,y,z € X.
The pair (X, d) is called a complex valued b-metric space.

Example 1.2: [11] Let X = [0,1]. Define the mapping d: X x X — C by d(x,y) = |x — y|* +ilx — y[*for all x,y € X.
Then (X, d) is a complex valued b-metric space with s = 2.

Definition 1.3: Let (X, d) be a complex valued b-metric space.
(1) A point x € X is called an interior point of a subset A € X whenever there exists 0 < r € C such that
B(x,7)={y e X:d(x,y) <r} S A.
(2) A pointx € X is called a limit of A whenever for every 0< r € C such that B(x,r) N (4 — {x}) # .
(3) The set A is called open whenever each element of A is an interior point of A. A subbset B is called closed
whenever each limit point of B belongs to B.
(4) A Sub-basis for a Hausdorff topology 7 on X is a family F := {B(x,r):x € X,0 < r}.

Definition 1.4: [11] Let (X, d) be a complex valued b-metric space. Let {x,} be a sequence in X and x € X. Then
(i) {x,} s a called convergent, if for every c € C, with 0 < c there exists n, € N such that for all
n > ny, d(x,,x) < c. Also,{x,,} converges to x (written as, x,, — x or lim,_,., x,, = x) and x is the limit of
{xn}-
(ii) {x,} is called a Cauchy sequence in X, if for every ¢ € C, with 0 < ¢ there exists n, € N such that for all
n > ng, d(x,, x,.m) < c. If for every Cauchy sequence converges in X, then X is called a complete complex
valued b-metric space.

Lemma 1.5: [11] Let (X, d) be a complex valued b-metric space and let {x,,} be a sequence in X. Then {x,, } converges
to x if and only if lim,,_, , |d(x,,x)| = 0.

Lemma 1.6: [11] Let (X,d) be a complex valued b- metric space and let {x, } be a sequence in X. Then {x,,} is a
Cauchy sequence if and only if lim,,_,., |d (X, Xp4m)| = 0.

Definition 1.7: If f and g are mappings from a metric space (X,d) into itself, are called commuting on X, if
d(fgx,gfx) =0forall x € X.

Definition 1.8: If f and g are mappings from a metric space (X, d) into itself, are called weakly commuting on X, if
d(fgx,gfx) < d(fx,gx) for all x € X.

Definition 1.9: If f and g are mappings from a metric space (X,d) into itself are called compatible on X, if
limd(fgx,,gfx,) =0, whenever {x, } is a sequence in X such that lim fx, = lim gx,, = x, for some point x € X.
n—oo n—oo n—-oo

Definition 1.10: Let f and g be two self-maps defined on a set X, then f and g are said to be weakly compatible if
they commute at coincidence point.

Lemma 1.11: Let f and g be compatible mappings from a metric space (X, d) into itself. Suppose that
lim fx, = lim gx,, = x, for some point x € X. Then lim gfx,, = fx, if f is continuous.
n—-oo n—-oo

Nn—00

2. MAIN RESULTS

Theorem 2.1: Let (X,d) be a complete complex valued b-metric space with the coefficient s > 1. Suppose that the
mappings f,g,S and T: X — X satisfying
(i) ScgTcf;
- d(fx,5x)d(gy,Ty)
(i) d(Sx,Ty) S« d(fx,gy)+ B [d(fx’Tde(gy'Sx)+d(fx’gy)] for all x, y € X such that
x #y,d(fx,Ty) + d(gy,Sx) + d(fx,gy) # 0 where , 8 are nonnegative reals with « +s8 < 1.
(iii) Suppose that one of S or f is continuous, pair (S, f) is compatible and (T, g) is weak compatible.
(iv) One of T or g is continuous, pair (S, f) is weak compatible and (T, g) is compatible. Then f, g,S and T have
a unique common fixed point in X.
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Proof: Suppose x, € X be an arbitrary point. We define a sequence {y,,,} in X such that
Yon = SXon = 9Xons1
Vons1 = TXone1 = fXons2, =012, ... ... ...
Then,
AdYanYzns1) = A(Sx2n, TX2p41)
20 d(fXom, GXomss) + B [ A(fXan, SX20)A(9X2n41, TX2n41)

A(f X0, TXpny1) + d(GXon41,SX2p) +d( fon'gx2n+1)]
AdWan-1,Y20)dV2nr Yan+1)

AWan-1,Y2n+1) + AW2n Yan) + AYV2n-1,Y2n)
AdVan-1,Y20)dV2ns Yan+1)

AWYan-1,Y2n+1) + AWan-1,Y2n)
—lﬂyZn)d(yZn'y2n+1)]

d(yZn'y2n+1)

=X d(Yan-1,Y2n) + B [

=X d(Yon-1,Y2n) + B [

dly
= d(Yyn_1,¥2n) + sﬁ[ 2

AY2n Yons1) 3 (X +B)d(V2n Yan-1)-

Similarly, we can show that
Ad(Yz2n+1:Yan+2) S (X +5B)dVan) Yan+1)-

If (x +sB) = 6§ < 1, then
|d(V2ns1, Yons2) | < 8ldYon, Yons IS ——< 62 d (v, y1)I.

Let m,n = 1 and m > n, we have

|d (V2 Yom)| < S1AY2n Yans1) + AVont1, Yam)|

SIAY2n Yans )| + S1AV2n41, Yom)|

SlAWan Yons | + 51dYani1, Yons2) + AWanizs Yom)|
SIAYan Yons | + 521V 2ni1, Yane )| + 521 dVanszs Yam) |

SlAWan Yons Ol + S21dYani1, Yone ) 14+5°1d(Vaniz, Vo)
+ —-———+ 52n+2m_1|d(x2n+2m—1’x2m)|
[562n + 5262n+1+5362n+2 + ——— 4+ (Sé‘)Zm—l]ld(yo’yl)l

552n
<
< [1 _55] |d(yo, ¥4I

IA I IA T

IA

and so
56217.

1-s8

1dY2n yam)| < [ ] |d(yo,y1)| = 0 as, m,n — co.

Hence {y,,} is a Cauchy sequence and since X is complete, sequence {y,,} converges to point u in X and its
subsequences Sx,,, TX5p41, f Xone2 and gx,,.4 Of Sequence {y,,} also converges to point u.

Let f is continuous and since S and f are compatible on X. Then by Lemma (1.11), we have f?x,, and Sfx,, = fu
asn — oo,
Consider

d(f%x.,.,Sfx,..)d(gx ,Tx
d(Sfon,Tx2n+1) 50( d(fzxZn’gx2n+1)+ﬁ[ (f 2n f Zn) (g 2n+1 2n+1)

A(f2xm, Txons1) + A(GXon41, SfXon) + d(f 200, GX2n41)|

Letting n — oo, we get

d(fu,fu)d(u,u) ]
<
d(fu'u) >« d(fu' u) + ﬁ [d(fu,u)+d(u,fu)+d(fu,u) ’

(1—)d(fu,u) S 0sothat fu = u.

Again consider

d(fu,Su)d(gx ,Tx
d(Su, Tx2n+1) <x d(fu,ngTH_l) + ﬁ [ (f ) (g 2n+1 2n+1)

d(fu, Txzp41) + d(gXaps1,SU) + d(fU, gXop41)|

Letting n — oo, we get
d(u, Su)d(u,u)

<
d(Su,u) Secdwu) + [d(u,u) +du,Su) +dw,u)|
d(Su,u) = 0 sothat Su = wu.

Now since S c g and there exists another point w in X, such that u = Su = gw.

© 2018, IIMA. All Rights Reserved 27



Manjula Tripathil , Anil Kumar Dubey”’2 and R. P. Dubey3 /
Common Fixed Point Theorem in Complex Valued B-Metric Spaces / IJMA- 9(11), Nov.-2018.

Consider
d(u, Tw) = d(Su, Tw)

d(fu, Su)d(gw, Tw)
S d(fu, gw) + B [d(fu, Tw) + d(gw, Su) + d(fu, gw)
d(u,w)d(u, Tw)

du, Tw) +d(u,u) + d(u,u)

Socd(u,u) + ﬁ[

d(u,Tw) 2 0sothat Tw = u.
Since T and g are weak compatible on X and Tw = gw and Tgw = gTw.

Consider
d(u, gu) = d(Su, Tu)
<oc d d(fu,Su)d(gu, Tu)
Secd(fu, gu) + B [d(fu, Tu) + d(gu, Su) + d(fu, gu)
<o d d(u,u)d(gu, Tu)
d(u, gu) S d(w, gu) + f [d(u, Tu) + d(gu, w) + d(u, gu)
(1—x)d(u, gu) < 0 sothat gu = u.

Hence fu=gu=Su=Tu =u.

Thus u is a common fixed point of f,g,S and T. similarly, we can show that u is a common fixed point of
f,9,S and T, when S is continuous. Next, we will prove the (iv) part of Theorem 2.1.

Let T is continuous and since T and g are compatible on X. Then by Lemma (1.11), we have T?x,, and gTx,,, = Tu
asn — oo,

Consider

2
2 < [ A(fx2n,Sx2n)d(gTx2n,T*X2n) ]
A(S%gn, T xzn) 3% d(f Xon, gTXzn) + d(fx2nT?x20)+d(gTX2n,SX2n)+d (fX2n,gTx2n)]

Letting n — oo, we get

d(u,w)d(Tu, Tu)
d(u, Tu) + d(Tu,u) + d(u, Tu)
(1—)d(u, Tu) = 0 so that Tu = u.

d(u,Tu) Scd(u, Tu) + B [

Now since T c f, there exists a point v in X, such that u = Tu = fv.

Consider

2 < d(fv,5v)d(gTx2nT*X2n) ]
d(S‘U,T xzn) ~x d(fv'ngzn) +ﬁ [d(fV,szZn)+d(ng2n,Sv)+d(fv,ngZn) ’

Letting n — oo, we get
d(u, Sv)d(Tu, Tu)

d(u,Tu) + d(Tu, Sv) + d(u, Tu)

d(Sv,Tu) S d(u,Tu) + [

d(Sv,u) S d(u,u)
d(Sv,u) = 0sothat Sv = u.

Since S and f are weakly compatible on X and Sv = fv and Sfv = fSv = Su = Sfv = fSv = fu.
Now consider

d(fu,Swd(gxan+1,Tx2n+1) ]
<
d(Su, Txzn41) 3 A(fUt, gXonsr) + B [d(fu,Tx2n+1)+d(gx2n+1,5u)+d(fu,gx2n+1) '

Letting n — oo, we get

d(Su, Su)d (u,u)
d(Su,u) + d(u, Su) + d(Su, u)
(1—o)d(Su,u) < 0 so that Su = u.

d(Su,u) S d(Su,u) + B [
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Now since S c g, there exists a point t in X, such that u = Su = gt. Now
d(u,Tt) = d(Su,Tt)
d(fu,Su)d(gt, Tt
S d(fu,gt)+ B 9 )d(g )
d(fu,Tt) + d(gt, Su) + d(fu, gt)
<o d(uw) + d(u,u)d(u,Tt)
S d(u,
W)+ B\ T0To + dww) + d(wa)
d(u,Tt) 2 0sothat u =Tt.

Since T and g are compatible on X and Tt = gt =u and d(gTt,Tgt) = 0 > gu = gTt = Tgt = Tu.
Hence Su =Tu = fu = gu = u.

Therefore, u is common fixed point of f, g, S and T. Similarly, we can show that u is also common fixed point of
f,g,S and T, when g is continuous.

To prove the uniqueness of fixed point u, assume that u* is another common fixed point of f, g, S and T. Then
d(u,u*) = d(Su, Tu")
d(fu,Su)d(gu*, Tu*)
< *
socd(fu.guw) + B [d(fu, o) + g, 5u) + d(fi gi)
du,w)du*, u*)

d(u,u*) + d(u*,u) + d(u,u*)

Sxd(u,u*) +p [

d(u,u*) S d(u,u*)
(1—oc)d (u, u*) 3 0, which is a contradiction.
Hence u = u™.

Therefore, u is unique common fixed point of f, g,S and T.
By setting f = g = I we get the following Corollary:

Corollary 2.2: Let (X, d) be a complete complex valued b-metric space with the coefficient s > 1. Suppose that the
mapping S, T: X — X satisfy:
i)y ScT

.. d(x,Sx)d(y,Ty)
<
(i) d(Sx,Ty) Secd(x,y) + B [d(x,Ty)+d(y,Sx)+d(x,y)]
forall x,y in X such that x # y,d(x, Ty) + d(y,Sx) + d(x,y) # 0, where «, 8 are nonnegative reals with

x +sf < 1. If pair (S, T) is weakly compatible. Then S and T have unique common fixed point in X.
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