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ABSTRACT 
Let 𝐺 be a connected simple graph. A weakly convex dominating set 𝑆 of 𝐺  is a weakly convex doubly connected 
dominating set if 𝑆 is a doubly connected dominating set of 𝐺 . The weakly convex doubly connected domination 
number of 𝐺, denoted by 𝛾𝑐𝑐𝑐𝑤 (𝐺), is the smallest cardinality of a convex doubly connected dominating set 𝑆 of 𝐺. In this 
paper, we characterized the weakly convex doubly connected dominating sets of the composition and Cartesian product 
of graphs. 
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1.  INTRODUCTION 
 
Let 𝐺 be a connected simple graph. A subset 𝑆 of 𝑉(𝐺) is a dominating set of 𝐺 if for every 𝑣 ∈  (𝑉(𝐺)\𝑆), there exists 
𝑥 ∈ 𝑆 such that 𝑥𝑣 ∈ 𝐸(𝐺). The domination number 𝛾(𝐺) of 𝐺 is the smallest cardinality of a dominating set of 𝐺.  A 
graph  𝐺  is connected if there is at least one path that connects every two vertices 𝑥, 𝑦 ∈ 𝑉(𝐺),  otherwise, 𝐺 is 
disconnected. A component of a graph is a maximal connected subgraph. Clearly, if a graph has only one component, 
then it is connected, otherwise it is disconnected. A dominating set 𝑆 ⊆ 𝑉(𝐺) is called a connected dominating set of 
𝐺 if the subgraph 〈𝑆〉 induced by 𝑆 is connected. The connected domination number of 𝐺, denoted by 𝛾𝑐(𝐺), is the 
smallest cardinality of a connected dominating set of 𝐺. A connected dominating set of cardinality 𝛾𝑐(𝐺) is called a     
𝛾𝑐-𝑠𝑒𝑡 of 𝐺. A set 𝑆 ⊆ 𝑉(𝐺) is a doubly connected dominating set if it is dominating and both 〈𝑆〉 and 〈 𝑉(𝐺) ∖ 𝑆〉 are 
connected. The doubly connected domination number of 𝐺, denoted by 𝛾𝑐𝑐(𝐺), is the smallest cardinality of a doubly 
connected dominating set  𝑆 of 𝐺.  A doubly connected dominating set of cardinality  𝛾𝑐𝑐(𝐺) is called a                          
𝛾𝑐𝑐-𝑠𝑒𝑡 of 𝐺. Studies on doubly connected domination in graphs are found in [1, 2, 3, 4, 5].  
 
For any two vertices 𝑢 and 𝑣 in a connected graph, the distance 𝑑𝐺(𝑢, 𝑣) between 𝑢 and 𝑣 is the length of a shortest 
path in 𝐺. A 𝑢-𝑣 path of length 𝑑𝐺(𝑢, 𝑣) is also referred to as 𝑢-𝑣 geodesic. A subset 𝐶 of 𝑉(𝐺) is called a convex set 
of 𝐺 if for every two vertices 𝑢, 𝑣 ∈ 𝐶, the vertex-set of every 𝑢-𝑣 geodesic is contained in 𝐶. A subset 𝐶 of 𝑉(𝐺) is 
called a weakly convex set of 𝐺 if for every two vertices 𝑢, 𝑣 ∈ 𝐶, there exists a 𝑢-𝑣 geodesic whose vertices bolong to 
𝐶. Convexity in graphs was studied in [6,7,8,9]. Some variants of convex domination in graphs are found in [10, 11, 12, 
13, 14, 15, 16, 17] 
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A dominating set of 𝐺  which is weakly convex is called a weakly convex dominating set. The weakly convex 
domination number of 𝐺, denoted by 𝛾𝑤𝑐𝑜𝑛(𝐺), is the smallest cardinality of a weakly convex dominating set of 𝐺. A 
dominating set 𝑆 which is also convex is called a convex dominating set of 𝐺. The convex domination number 𝛾𝑐𝑜𝑛(𝐺) 
of 𝐺 is the smallest cardinality of a convex dominating set of 𝐺.  A convex dominating set of cardinality 𝛾𝑐𝑜𝑛(𝐺) is 
called a 𝛾𝑐𝑜𝑛-𝑠𝑒𝑡 of 𝐺. A weakly convex dominating set 𝑆 of 𝐺 is a weakly convex doubly connected dominating set 
if 𝑆 is a doubly connected dominating set of 𝐺. The \emph{weakly convex doubly connected domination number of 
𝐺, denoted by 𝛾𝑐𝑐𝑐𝑤 (𝐺), is the smallest cardinality of a weakly convex doubly connected dominating set 𝑆 of 𝐺.  A 
weakly convex doubly connected dominating set of cardinality 𝛾𝑐𝑐𝑐𝑤 (𝐺) is called a 𝛾𝑐𝑐𝑐𝑤 -𝑠𝑒𝑡 of 𝐺.  For general concepts 
we refer the reader to [19].  
  
2. RESULTS 
 
The following remarks are immediate from the definitions. 
 
Remark 2.1: Let 𝐺 be a connected graph. If 𝐶 ⊆ 𝑉(𝐺) is convex dominating set, then 𝐶 is a weakly convex dominating 
set of 𝐺.  
 
Remark 2.2: Let 𝐺 be a nontrivial connected graph of order 𝑛. Then  
     (i)  𝛾(𝐺) ≤ 𝛾𝑤𝑐𝑜𝑛(𝐺) ≤ 𝛾𝑐𝑐𝑐𝑤 (𝐺) ≤ 𝛾𝑐𝑐𝑐(𝐺), and 
    (ii)  1 ≤ 𝛾𝑐𝑐𝑐𝑤 (𝐺) ≤ 𝑛. 
  
The composition of two graphs 𝐺  and 𝐻 is the graph  𝐺[𝐻] with vertex-set 𝑉(𝐺[𝐻]) = 𝑉(𝐺) ×  𝑉(𝐻)  and edge-set 
𝐸(𝐺[𝐻]) satisfying the following conditions:  (𝑥,𝑢)(𝑦,𝑣) ∈ 𝐸(𝐺[𝐻])  if and only if either  𝑥𝑦 ∈ 𝐸(𝐺) or                    
 𝑥 = 𝑦 and 𝑢𝑣 ∈ 𝐸(𝐻).  
 
A subset 𝐶 of 𝑉(𝐺[𝐻]) = 𝑉(𝐺) ×  𝑉(𝐻) can be written as 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥), where 𝑆 ⊆  𝑉(𝐺) and 𝑇𝑥 ⊆  𝑉(𝐻) for 
every 𝑥 ∈ 𝑆. We shall be using this form to denote any subset 𝐶 of 𝑉(𝐺[𝐻]). 
 
The following results are needed for the characterization of the weakly convex doubly connected dominating sets of the 
composition to two of graphs. 
 
Theorem 2.3[7]: Let 𝐺 be connected graph of order 𝑚 ≥  2 and 𝐻  any graph. A subset 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) is a 
weakly convex dominating set of 𝐺[𝐻] if and only if 𝑆 is a weakly convex dominating set of 𝐺, where 𝑇𝑥  is a dominating 
set of 𝐻 with 𝑑𝑖𝑎𝑚𝐻(〈 𝑇𝑥〉) ≤  2 if |𝑆| = 1. 
  
Remark 2.4:  Let 𝐺  and 𝐻 be non-complete connected graphs. If 𝑆  is a weakly convex dominating set of 𝐺 with    
 |𝑆| ≥  2, then a subset 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) is a weakly convex dominating set of 𝐺[𝐻].   
  
The following result is the characterization of the weakly convex doubly connected dominating sets of the composition 
to two of graphs. 
 
Theorem 2.5: Let 𝐺  and 𝐻  be non-complete connected graphs. A subset 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) is a weakly convex 
doubly connected dominating set of 𝐺[𝐻] if and only if 𝑆 is a weakly convex dominating set of 𝐺 and 𝑇𝑥  is a weakly 
convex set of 𝐻 and one of the following holds: 
     i) 𝑆 = {𝑥} and 𝑇𝑥 is a dominating set of 𝐻 with 𝑑𝑖𝑎𝑚𝐻(〈 𝑇𝑥〉) ≤  2, where 𝑇𝑥 ≠ 𝑉(𝐻) whenever 〈 𝑉(𝐺) ∖ 𝑆〉  is  not  
          connected.  
    ii) 𝑆 = 𝑉(𝐺) ∖  {𝑧}. 
    iii) 𝑆 = 𝑆1 ∪  {𝑧} = 𝑉(𝐺) and 〈 𝑉(𝐻) ∖  𝑇𝑧〉 is connected. 
    iv) 𝑇𝑥 ≠ 𝑉(𝐻) for all 𝑥 ∈ 𝑆 whenever 𝑆 ≠ 𝑉(𝐺) ∖ {𝑧}.   
 
Proof: Suppose that a subset 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) is a weakly convex doubly connected dominating set of 𝐺[𝐻]. 
Then 𝐶 is a weakly convex dominating set of 𝐺[𝐻]. Thus 𝑆 is a weakly convex dominating set of 𝐺 by Theorem 2.3. 
Suppose that 𝑇𝑥  is not a weakly convex set of 𝐻. Let 𝑆 = {𝑥}  and 𝑇𝑥 = {𝑎, 𝑏}  such that  𝑎𝑏 ∉ 𝐸(𝐻)$. Then  𝐶 =
{(𝑥,𝑎), (𝑥, 𝑏)} and (𝑥, 𝑎)(𝑥,𝑏) ∉ 𝐸(𝐺[𝐻]) contrary to our assumption that 𝐶  is a weakly convex doubly connected 
dominating set of 𝐺[𝐻]. Thus, 𝑇𝑥 must be a weakly convex set of  𝐻. Further, 𝑆 = {𝑥} and 𝑇𝑥 is a dominating set of 𝐻 
with 𝑑𝑖𝑎𝑚𝐻(〈 𝑇𝑥〉) ≤  2 holds by Theorem 2.3. Suppose that 〈 𝑉(𝐺) ∖  𝑆〉 is not connected. If  𝑇𝑥 = 𝑉(𝐻), then   
  𝑉(𝐺[𝐻]) ∖ 𝐶 =  �𝑉(𝐺) ×  𝑉(𝐻)� ∖ �𝑆 × 𝑉(𝐻)� = (𝑉(𝐺) ∖ 𝑆) ×  𝑉(𝐻).     
Since 〈 𝑉(𝐺) ∖ 𝑆〉 is not connected, it follows that 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is not connected contrary to our assumption that 𝐶 is 
doubly connected dominating set of 𝐺[𝐻]. Thus, 𝑇𝑥 ≠ 𝑉(𝐻). This proves statement 𝑖). 
 
Next, suppose that |𝑆| ≠ 1.  If 𝑆 = 𝑉(𝐺) ∖ {𝑧} then we are done with statement 𝑖𝑖). Suppose that 𝑆 ≠ 𝑉(𝐺) ∖ {𝑧} . 
Consider the following cases: 
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Case-1: Suppose that 𝑆 = 𝑉(𝐺). Then consider 𝑆 = 𝑆1 ∪  {𝑧} = 𝑉(𝐺).  Let |𝑇𝑧| = 1.  Since  𝐻  is non-complete 
connected graph, let 𝑏 be a fixed element of 𝑉(𝐻) ∖ 𝑇𝑧 such that 𝑏𝑢 ∉  𝐸(𝐻) for all 𝑢 ∈ 𝑉(𝐻) ∖ 𝑇𝑧. Then (𝑧, 𝑏)(𝑧,𝑢) ∉
𝐸(𝐺[𝐻]) for all (𝑧, 𝑏), (𝑧,𝑢) ∈ 𝑉(𝐺[𝐻]) ∖ 𝐶. This implies that 𝐶  is not a doubly connected dominating set of 𝐺[𝐻] 
contrary to our assumption. Thus, 𝑏𝑢 ∈  𝐸(𝐻) for all 𝑢 ∈  𝑉(𝐻) ∖ 𝑇𝑧 and hence 〈 𝑉(𝐻) ∖ 𝑇𝑧〉 is connected. Similarly if 
|𝑇𝑧| ≥  2, then 〈 𝑉(𝐻) ∖ 𝑇𝑧〉 is connected. This prove statement 𝑖𝑖𝑖). 
 
Case-2: Suppose that 𝑆 ⊂  𝑉(𝐺) ∖ {𝑧}. Let 𝑆 = 𝑉(𝐺) ∖ {(𝑧,𝑤)} such that 𝑤𝑧 ∉ 𝐸(𝐺). If 𝑇𝑥 = 𝑉(𝐻) for all 𝑥 ∈ 𝑆, then 
𝑉(𝐺[𝐻]) ∖ 𝐶 = ⋃𝑣∈{𝑧,𝑤},𝑢∈𝑉(𝐻){(𝑣,𝑢)\} . Since  𝑤𝑧 ∉ 𝐸(𝐺) , it follows that  (𝑤,𝑢)(𝑧,𝑢) ∉ 𝐸(𝐺[𝐻])  for 
all (𝑤, 𝑢), (𝑧,𝑢) ∈ 𝑉(𝐺[𝐻]) ∖ 𝐶. Thus, 𝐶 is not a doubly connected dominating set of 𝐺[𝐻] contrary to our assumption. 
Hence 𝑇𝑥 ≠ 𝑉(𝐻). This proves statement 𝑖𝑣). 
 
For the converse, suppose that 𝑆 is a weakly convex dominating set of 𝐺 and 𝑇𝑥 is a weakly convex set of 𝐻 and one of 
the following statements 𝑖), 𝑖𝑖), 𝑖𝑖𝑖),𝑜𝑟 𝑖𝑣) holds.  
 
First, suppose that statement 𝑖)  holds. Then 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥)  is a weakly convex dominating set of 𝐺[𝐻]  by 
Theorem 2.3. Clearly, if 〈 𝑉(𝐺) ∖ 𝑆〉is connected, then 𝐶 is a weakly convex doubly connected dominating set of 𝐺[𝐻]. 
Suppose that  〈 𝑉(𝐺) ∖ 𝑆〉  is not connected. Let 𝑇𝑥 ≠ 𝑉(𝐻). If  𝑇𝑥 = {𝑎}  then  𝐶 = {(𝑥,𝑎)}.  Since 𝐻  is non-complete 
connected graph, let 𝑏, 𝑐 ∈ 𝑉(𝐻) ∖ 𝑇𝑥 . If  𝑏𝑐 ∈ 𝐸(𝐻),  then (𝑥,𝑏)(𝑧, 𝑐) ∈ 𝐸(𝐺[𝐻])  for all  𝑧 ∈ 𝑁𝐺(𝑥) , that 
is,  〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉  is connected. Suppose that 𝑏𝑐 ∉ 𝐸(𝐻)$. Since 𝐻  is connected, there exists a 
path  [𝑏 = 𝑢1,𝑢2, … ,𝑢𝑠 = 𝑐]  such that [(𝑥,𝑏), (𝑧,𝑢2), … , (𝑧, 𝑐))]  is a path in 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 for all 𝑧 ∈ 𝑁𝐺(𝑥) , that 
is, 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is connected. Thus, 𝐶 is a doubly connected dominating set of 𝐺[𝐻]. Similarly, if |𝑇𝑥| ≥  2, then 𝐶 is 
a doubly connected dominating set of 𝐺[𝐻].   
 
Next, suppose that 𝑖𝑖) holds. If 𝑇𝑥 = 𝑉(𝐻) for each 𝑥 ∈ 𝑆, then 𝑇𝑥 is a dominating set of 𝐻. Since 𝑆 is a weakly convex 
dominating set of 𝐺, it follows that 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) is a weakly convex dominating set of 𝐺[𝐻] by Theorem 2.3. 
Since 𝐺 is a non-complete connected graphs, |𝑉(𝐺)| ≥  3 and |𝑆| ≠ 1. Since 𝐻 is non-complete connected graph, let 
𝑎, 𝑏 ∈ 𝑉(𝐻). If 𝑎𝑏 ∈ 𝐸(𝐻), then (𝑧,𝑎)(𝑧, 𝑏) ∈ 𝐸(𝐺[𝐻]) for all (𝑧,𝑎), (𝑧, 𝑏) ∈ 𝑉(𝐺[𝐻]) ∖ 𝐶 and for all 𝑧 ∈ 𝑉(𝐺) ∖ 𝑆. 
Thus, 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is connected, and hence 𝐶 is a doubly connected dominating set of 𝐺[𝐻]. Suppose that 𝑎𝑏 ∉
𝐸(𝐻) . Since 𝐻  is connected, there exists a path [𝑎 = 𝑢1,𝑢2, . . . , 𝑢𝑠 = 𝑏]  such that for all 
𝑧 ∈ 𝑉(𝐺) ∖ 𝑆, [(𝑧,𝑎), (𝑧, 𝑢2), . . . , (𝑧, 𝑏))] is a path in 〈 𝑉(𝐺[𝐻]) ∖  𝐶〉, that is, 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is connected. Thus, 𝐶 is a 
doubly connected dominating set of 𝐺[𝐻] . Thus,  〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is connected. Hence 𝐶 is a doubly connected 
dominating set of 𝐺[𝐻]. Now, suppose that 𝑇𝑥 ≠ 𝑉(𝐻) for some 𝑥 ∈ 𝑆. Consider 𝑇𝑥  is a dominating set of 𝐻 for each 
𝑥 ∈ 𝑆. Then 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) is a weakly convex dominating set of 𝐺[𝐻] by Theorem 2.3. This further implies that 
𝐶 is connected dominating set in 𝐺[𝐻]. Since 𝑆 is a dominating set in 𝐺, there exists 𝑥 ∈ 𝑆 such that 𝑥𝑧 ∈  𝐸(𝐺) for all 
𝑧 ∈ 𝑉(𝐺) ∖ 𝑆. Let 𝑎 ∈  𝑉(𝐻) ∖  𝑇𝑥  for each 𝑥 ∈  𝑆. Then (𝑥,𝑎)(𝑧,𝑢) ∈ 𝐸(𝐺[𝐻]) for all 𝑢 ∈ 𝑉(𝐻) and (𝑥,𝑎)(𝑦,𝑎) ∈
𝐸(𝐺[𝐻]) for all 𝑦 ∈  𝑁𝐺(𝑥) (𝑦 ≠ 𝑧). Thus, 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is connected. Hence 𝐶 is a doubly connected dominating set 
of 𝐺[𝐻]. Consider 𝑇𝑥  is not a dominating set of 𝐻 for each 𝑥 ∈ 𝑆. Since 𝑆 is a weakly convex dominating set of 𝐺 and 
|𝑆| ≥  2, then 𝐶 is a weakly convex dominating set of 𝐺[𝐻] by Remark 2.4. Let 𝑎 ∈ 𝑉(𝐻) ∖  𝑇𝑥. By following similar 
arguments used earlier, 𝐶 is a doubly connected dominating set of 𝐺[𝐻].    
 
Suppose that statement 𝑖𝑖𝑖) holds. Consider the following cases. 
 
Case-1: Suppose that 𝑇𝑥 = 𝑉(𝐻)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑆1.  
Since 𝑆 is a weakly convex dominating set of 𝐺 and 𝑇𝑥 is a dominating set of 𝐻, it follows that 𝐶 is a weakly convex 
dominating set of 𝐺[𝐻] by Theorem 2.3.  If 𝑇𝑧 = 𝑉(𝐻), then   

𝐶  =  ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) 
=  ⋃𝑥∈(𝑆1∪{𝑧})({𝑥} × 𝑇𝑥) 
=  ⋃𝑥∈𝑆1({𝑥} × 𝑇𝑥) ∪  ({𝑧} × 𝑇𝑧) 
=  ⋃𝑥∈𝑆1�{𝑥} × 𝑉(𝐻)� ∪  ({𝑧} × 𝑉(𝐻)) 
=  ⋃𝑥∈𝑆({𝑥} × 𝑉(𝐻) 
=  𝑆 × 𝑉(𝐻) =  𝑉(𝐺) × 𝑉(𝐻)  =  𝑉(𝐺[𝐻]). 

This implies that 𝑉(𝐺[𝐻]) ∖ 𝐶 = ∅ and hence 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is connected.  
  
If 𝑇𝑧 ≠ 𝑉(𝐻), then let {𝑎} ⊆ 𝑇𝑧 ⊂ 𝑉(𝐻). Consider 𝑇𝑧 = {𝑎}. Since 𝐻 is a non-complete connected graph, |𝑉(𝐻)| ≥  3. 
Let 𝑏, 𝑐 ∈ 𝑉(𝐻) ∖ 𝑇𝑧 . If  𝑏𝑐 ∈ 𝐸(𝐻) , then  (𝑧,𝑏)(𝑧, 𝑐) ∈ 𝐸(𝐺[𝐻]) for all (𝑧,𝑏), (𝑧, 𝑐) ∈  𝑉(𝐺[𝐻]) ∖ 𝐶  and hence 
〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉  is connected. Suppose that 𝑏𝑐 ∉ 𝐸(𝐻) . Since 〈 𝑉(𝐻) ∖ 𝑇𝑧〉  is connected, there exists a path                
[𝑏 = 𝑣1,𝑣2, . . . , 𝑣𝑟 = 𝑐] in  〈 𝑉(𝐻) ∖ 𝑇𝑧〉 such that  [(𝑧,𝑏), (𝑧,𝑣2), . . . , (𝑧, 𝑐)]  is also a path in 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 . Thus, 
〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉  is connected. Similarly, if {𝑎} ⊂  𝑇𝑧 , then  〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉  is connected. Consider  𝑇𝑧 = 𝑉(𝐻) ∖ {𝑎} . 
Then 𝑉(𝐺[𝐻]) ∖ 𝐶 = {(𝑧, 𝑎)} and hence 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is connected. Thus, 𝐶 is a doubly connected dominating set 
of 𝐺[𝐻].   
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Case-2: Suppose that 𝑇𝑥 ≠ 𝑉(𝐻) for all 𝑥 ∈ 𝑆.  
Since  𝐺  is a non-complete connected graph and 𝑆 = 𝑉(𝐺) , it follows that |𝑆| ≥  3.  Since  𝑆 is a weakly convex 
dominating set of 𝐺 with |𝑆| ≥  3, 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) is a weakly convex dominating set of 𝐺[𝐻] by Remark 2.4. 
This implies that 〈 𝐶〉 is connected. Let 𝑎 ∈ 𝑉(𝐻) ∖ 𝑇𝑥  and 𝑥,𝑦 ∈ 𝑆. If 𝑥𝑦 ∈ 𝐸(𝐺),  then (𝑥, 𝑎)(𝑦,𝑎) ∈  𝐸(𝐺[𝐻]) for 
all (𝑥,𝑎), (𝑦, 𝑎) ∈ 𝑉(𝐺[𝐻]) ∖ 𝐶. This implies that 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 is connected. Suppose that 𝑥𝑦 ∉ 𝐸(𝐺). Since 𝐺  is 
connected, there exist a path [𝑥 = 𝑥1,𝑥2, . . . , 𝑥𝑟 = 𝑦]  in  𝐺  such that [(𝑥,𝑎), (𝑥2,𝑎), . . . , (𝑦,𝑎)] is also a path 
in 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉. Thus, 〈 𝑉(𝐺[𝐻]) ∖  𝐶〉 is connected, that is, 𝐶 is a doubly connected dominating set of 𝐺[𝐻].   
 
Finally, suppose that statement 𝑖𝑣) holds. If |𝑆| = 1, then 𝐶 is a weakly convex doubly connected dominating set of 
𝐺[𝐻] by statement 𝑖). Suppose that |𝑆| ≥  2. If 𝑆 = 𝑉(𝐺), then 𝐶 is a weakly convex doubly connected dominating set 
of 𝐺[𝐻] by statement 𝑖𝑖𝑖). If 𝑆 = 𝑉(𝐺) ∖ {𝑧}, then 𝐶 is a weakly convex doubly connected dominating set of 𝐺[𝐻] by 
statement 𝑖𝑖). Since 𝑆 is a weakly convex dominating set of 𝐺 with |𝑆| ≥  2, 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥) is a weakly convex 
dominating set of 𝐺[𝐻] by Remark 2.4. Let 𝑤 ∈  (𝑉(𝐺) ∖ {𝑧}) ∖ 𝑆 and 𝑎 ∈ 𝑉(𝐻) ∖ 𝑇𝑥 .  
 
Case-1: If 𝑤𝑧 ∈ 𝐸(𝐺), then (𝑤, 𝑎)(𝑧, 𝑎) ∈ 𝐸(𝐺[𝐻])  for all (𝑤, 𝑎), (𝑧,𝑎) ∈ 𝑉(𝐺[𝐻]) ∖ 𝐶 , that is,  〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉  is 
connected.   
  
Case-2: Suppose that 𝑤𝑧 ∉ 𝐸(𝐺). Since 𝐺 is connected, there exists a path [𝑤 = 𝑥1,𝑥2, . . . ,𝑥𝑟 = 𝑧] in 𝐺  such that 
[(𝑤,𝑎), (𝑥2,𝑎), . . . , (𝑧,𝑎)]  is a path in 〈 𝑉(𝐺[𝐻]) ∖ 𝐶〉 . Thus,  〈 𝑉(𝐺[𝐻]) ∖  𝐶〉  is connected, that is,  𝐶  is a doubly 
connected dominating set of 𝐺[𝐻]. 
 
Accordingly, 𝐶 is a weakly convex doubly connected dominating set of 𝐺[𝐻]. ∎ 
 
As a consequence of Theorem 2.5, we obtain the following result.  
 
Corollary 2.6: Let 𝐺 and 𝐻 be non-complete connected graphs. Then 

𝛾𝑐𝑐𝑐𝑤 (𝐺[𝐻]) = �1 𝑖𝑓 𝛾(𝐺) = 1 𝑎𝑛𝑑 𝛾(𝐻) = 1
𝑘 𝑖𝑓 𝛾𝑤𝑐𝑜𝑛(𝐺) = 𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 2

� 

  
Proof: Suppose that 𝛾(𝐺) = 1 and 𝛾(𝐻) = 1. Let 𝑆 = {𝑥} be a 𝛾-𝑠𝑒𝑡 in 𝐺 and 𝑇𝑥 = {𝑎} be a 𝛾-𝑠𝑒𝑡 in 𝐻. Then 𝑆 is a 
weakly convex dominating set of 𝐺 and 𝑇𝑥 ≠ 𝑉(𝐻) is a weakly convex dominating set of 𝐻 with 𝑑𝑖𝑎𝑚𝐻(〈 𝑇𝑥〉) < 2. 
Thus 𝐶 = ⋃𝑥∈𝑆[{𝑥} × 𝑇𝑥] = {(𝑥,𝑎)} is a weakly convex doubly connected dominating set of 𝐺[𝐻] by Theorem 2.5. 
Hence, 𝛾𝑐𝑐𝑐𝑤 (𝐺[𝐻]) = |𝐶| = 1. 
 
Suppose that  𝛾𝑤𝑐𝑜𝑛(𝐺) = 𝑘 where 𝑘 ≥  2. Let 𝑆 = {𝑥1,𝑥2, . . . , 𝑥𝑘} be a 𝛾𝑤𝑐𝑜𝑛-𝑠𝑒𝑡 in 𝐺 . Since 𝑆 is a weakly convex 
dominating set of 𝐺 with |𝑆| ≥  2 , a subset 𝐶 = ⋃𝑥∈𝑆({𝑥} × 𝑇𝑥)  is a weakly convex dominating set of 𝐺[𝐻] by 
Remark 2.4. Let 𝑇𝑥 = {𝑎} for all 𝑥 ∈ 𝑆. Then 𝐶 = {(𝑥1,𝑎), (𝑥2,𝑎), . . . , (𝑥𝑘 ,𝑎)}, that is, |𝐶| = 𝑘 . Let 𝑥, 𝑦 ∈ 𝑆 and let 
𝑏 ∈ 𝑉(𝐻) ∖ 𝑇𝑣 for all 𝑣 ∈ 𝑆. If 𝑥𝑦 ∈ 𝐸(𝐺), then by similar arguments used to prove Theorem 2.5, 𝐶 is a weakly convex 
doubly connected dominating set of 𝐺[𝐻]. Similarly, if 𝑥𝑦 ∉ 𝐸(𝐺), then  𝐶  is a weakly convex doubly connected 
dominating set of 𝐺[𝐻]. Thus, 𝛾𝑐𝑐𝑐𝑤 (𝐺[𝐻]) ≤  |𝐶| = 𝑘. Since 𝑘 = 𝛾𝑤𝑐𝑜𝑛(𝐺[𝐻]) ≤ 𝛾𝑐𝑐𝑐𝑤 (𝐺[𝐻]) by Remark 2.2, it follows 
that 𝛾𝑐𝑐𝑐𝑤 (𝐺[𝐻]) = 𝑘. ∎ 
 
The Cartesian product of two graphs 𝐺 an𝑑 𝐻 is the graph 𝐺 ⊡  𝐻 with vertex-set 𝑉(𝐺 ⊡  𝐻) = 𝑉(𝐺) ×  𝑉(𝐻) and 
edge-set  𝐸(𝐺 ⊡  𝐻) satisfying the following conditions: (𝑥, 𝑎)(𝑦,𝑏) ∈  𝐸(𝐺 ⊡  𝐻) if and only if either 𝑥𝑦 ∈  𝐸(𝐺) 
and 𝑎 = 𝑏 or 𝑥 = 𝑦 and 𝑎𝑏 ∈  𝐸(𝐻). 
 
The next result is needed for the characterization of the weakly convex doubly connected dominating sets of the 
Cartesian product of two of graphs. 
 
Lemma 2.7: Let 𝐺 and 𝐻 be non-tivial connected graphs. Then 𝐶 = ⋃𝑥∈𝑆[{𝑥} × 𝑇𝑥] is a weakly convex dominating set 
of 𝐺 ⊡  𝐻 if 𝑆 is a weakly convex dominating set of 𝐺 and 𝑇𝑥 = 𝑉(𝐻) for all 𝑥 ∈ 𝑆, or 𝑆 = 𝑉(𝐺) and 𝑇𝑥 = 𝑉(𝐻) is a 
weakly convex dominating set of 𝐻 for all 𝑥 ∈ 𝑆. 
  
Proof:  Suppose that 𝐶 = ⋃𝑥∈𝑆[{𝑥} × 𝑇𝑥] is not a weakly convex dominating set of 𝐺 ⊡𝐻. Let (𝑥, 𝑎) ∈ 𝐶. If there 
exists (𝑦,𝑎) ∈ 𝐶 whose vertices in any (𝑥, 𝑎)-(𝑦,𝑎) geodesic are not all in 𝐶, then  for each 𝑥 ∈ 𝑆, there exists 𝑦 ∈ 𝑆 
whose vertices in any 𝑥-𝑦 geodesic are not all in 𝑆, that is, 𝑆 is not a weakly convex dominating set of 𝐺. If there exists 
(𝑥,𝑏) ∈ 𝐶 whose vertices in any (𝑥, 𝑎)-(𝑥,𝑏) geodesic are not all in 𝐶, then  for each 𝑎 ∈  𝑇𝑥, there exists 𝑏 ∈  𝑇𝑥  (for 
all 𝑥 ∈  𝑆) whose vertices in any 𝑎-𝑏 geodesic are not all in 𝑇𝑥 , that is, 𝑇𝑥  is not a weakly convex dominating set of 𝐻 
for all 𝑥 ∈ 𝑆. ∎ 
 
The following result is the characterization of the weakly convex doubly connected dominating sets of the Cartesian 
product of two of graphs. 
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Theorem 2.8: Let 𝐺 and 𝐻  be non-trivial connected graphs. Then 𝐶 = ⋃𝑥∈𝑆[{𝑥} × 𝑇𝑥] is a weakly convex doubly 
connected dominating set of 𝐺 ⊡𝐻 if and only if 𝑆 is a weakly convex dominating set of 𝐺 and 𝐻 is a weakly convex 
dominating set of 𝐻 and one of the following statements holds: 

𝑖)    𝑆 ≠ 𝑉(𝐺) and 𝑇𝑥 = 𝑉(𝐻) for all 𝑥 ∈ 𝑆 where 〈 𝑉(𝐺) ∖ 𝑆〉 is connected. 
𝑖𝑖)   𝑆 = 𝑉(𝐺) and 𝑇𝑥 ≠ 𝑉(𝐻) for all 𝑥 ∈ 𝑆 where 〈 𝑉(𝐻) ∖ 𝑇𝑥〉 is connected. 
𝑖𝑖𝑖)  𝑆 = 𝑆1 ∪  𝑆2 where 𝑆1 = {𝑥 ∈ 𝑉(𝐺):𝑇𝑥 = 𝑉(𝐻)}, 𝑆2 = {𝑥 ∈ 𝑉(𝐺):𝑇𝑥 ≠ 𝑉(𝐻)}, 〈 𝑆1〉 is connected, 〈 𝑆2〉 is 

connected, and 〈 𝑉(𝐻) ∖ 𝑇𝑧〉is connected for all 𝑧 ∈ 𝑆2 
(𝑖𝑣) 𝑇𝑥 = 𝑇𝑥′ ∪  𝑇𝑥′′ where 𝑇𝑥′ = {𝑎 ∈  𝑉(𝐻): 𝑆 = 𝑉(𝐺)}, 𝑇𝑥′′ = {𝑎 ∈ 𝑉(𝐻): 𝑆 ≠ 𝑉(𝐺)}, 〈 𝑇𝑥′〉 is  

connected, 〈 𝑇𝑥′′〉 is connected, and 〈 𝑉(𝐺) ∖ 𝑆′〉 is connected where 𝑆′ = {𝑥 ∈ 𝑉(𝐺):𝑎 ∈ 𝑇𝑥′′}. 
  
Proof: Suppose that 𝐶 = ⋃𝑥∈𝑆[{𝑥} × 𝑇𝑥] is a weakly convex doubly connected dominating set of 𝐺 ⊡𝐻. Suppose that 
𝑆 is not a weakly convex dominating set of 𝐺. Let 𝑥 ∈ 𝑆. If 𝑆 is not a dominating set of 𝐺, then there exists 𝑦 ∈ 𝑉(𝐺) ∖
𝑆 such that 𝑥𝑦 ∉ 𝐸(𝐺). Let 𝑎 ∈ 𝑇𝑥  for all 𝑥 ∈ 𝑆.  Then there exists (𝑦, 𝑎) ∈  𝑉(𝐺 ⊡𝐻) ∖ 𝐶  such that (𝑥, 𝑎)(𝑦,𝑎) ∉
𝐸(𝐺 ⊡) for all (𝑥, 𝑎) ∈ 𝐶. Hence 𝐶 is not a dominating set of 𝐺 ⊡𝐻 contrary to our assumption. If 𝑆 is not a weakly 
convex set in 𝐺 , then  |𝑆| ≥  2 . Let  𝑥,𝑦 ∈ 𝑆  such that 𝑥𝑦 ∉ 𝐸(𝐺) . For each 𝑣 ∈ 𝑆 , let 𝑎 ∈  𝑇𝑣 .  If |𝑆| = 2, 
then  (𝑥,𝑎)(𝑦,𝑎) ∉ 𝐸(𝐺 ⊡𝐻) for all (𝑥, 𝑎), (𝑦,𝑎) ∈ 𝐶. If 𝑆 ≥  3, then there exists 𝑧 ∈ 𝑉(𝐺) ∖ 𝑆 such that for every     
𝑥 -𝑦 geodesic in  〈𝑆〉 ,  𝑧 ∈ 𝐼𝐺[𝑥, 𝑦].  Thus, for every  (𝑥,𝑎)-(𝑦,𝑎)  geodesic in  〈𝐶〉 ,  (𝑧,𝑎) ∈ 𝐼𝐺⊡𝐻[(𝑥,𝑎), (𝑦, 𝑎)]  where 
(𝑧, 𝑎) ∈ 𝑉(𝐺 ⊡  𝐻) ∖ 𝐶. This is contrary to our assumption that 𝐶  is a weakly convex dominating set of 𝐺 ⊡𝐻 . 
Thus, 𝑆 must be a weakly convex dominating set of 𝐺. Similarly, for each 𝑥 ∈ 𝑆, 𝑇𝑥  is a weakly convex dominating set 
of 𝐻. Now, consider first that 𝑆 ≠ 𝑉(𝐺). Let 𝑧 ∈  𝑉(𝐺) ∖ 𝑆. If 𝑇𝑥 ≠ 𝑉(𝐻) for all 𝑥 ∈  𝑆, then let 𝑎 ∈  𝑉(𝐻) ∖ 𝑇𝑥  for 
all  𝑥 ∈ 𝑆.  Then  (𝑥,𝑎)(𝑧,𝑎) ∈ 𝐸(𝐺 ⊡𝐻)  for all 𝑥 ∈ 𝑁𝐺(𝑧)  and  (𝑧,𝑎)(𝑧,𝑏) ∈  𝐸(𝐺 ⊡𝐻)  for all  𝑏 ∈ 𝑁𝐻(𝑎). Since 
(𝑥,𝑎), (𝑧, 𝑏) ∉ 𝐶, it follows that (𝑧, 𝑎) is not dominated by any element of 𝐶$. This is contrary to our assumption that 𝐶 
is a dominating set of 𝐺 ⊡𝐻. Thus, 𝑇𝑥 = 𝑉(𝐻) for all 𝑥 ∈ 𝑆. Suppose that 〈 𝑉(𝐺) ∖ 𝑆〉 is not connected. Then there 
exists 𝑤 ∈ 𝑉(𝐺) ∖ 𝑆 such that no path 𝑧-𝑤 exists in 〈 𝑉(𝐺) ∖ 𝑆〉. Let 𝑎 ∈ 𝑉(𝐻). Then no path (𝑧,𝑎)-(𝑤,𝑎) exists in 
〈 𝑉(𝐺 ⊡𝐻) ∖ 𝐶〉. This implies that 〈 𝑉(𝐺 ⊡𝐻) ∖ 𝐶〉 is not connected contrary to our assumption that 𝐶 is a doubly 
connected dominating set of  𝐺 ⊡𝐻.  Thus,  〈𝑉(𝐺) ∖ 𝑆〉 must be connected. This proves statement 𝑖) . Similarly, 
if  𝑉(𝐺) = 𝑆, then statement 𝑖𝑖) holds. 
 
Next, suppose that 𝑆 = 𝑆1 ∪  𝑆2 where 𝑆1 = {𝑥 ∈ 𝑉(𝐺):𝑇𝑥 = 𝑉(𝐻)},  𝑆2 = {𝑥 ∈ 𝑉(𝐺):𝑇𝑥 ≠ 𝑉(𝐻)}.  Suppose 
that |𝑉(𝐺)| = 2. If |𝑉(𝐻)| = 2, then |𝑆1| = 1 and |𝑆2| = 1, Hence 〈 𝑆1〉 is connected and 〈𝑆2〉 is connected. Clearly 
〈 𝑉(𝐻) ∖ 𝑇𝑧〉 is connected for all 𝑧 ∈ 𝑆2. Similarly, if |𝑉(𝐻)| ≥  3, then 〈𝑆1〉 is connected, 〈𝑆2〉 is connected. Suppose 
that 〈 𝑉(𝐻) ∖  𝑇𝑧〉 is not connected for some 𝑧 ∈ 𝑆2. Then there exists 𝑎, 𝑏 ∈  𝑇𝑧 such that an 𝑎-𝑏 geodesic is not a path 
in 〈 𝑇𝑧〉 for all for some 𝑧 ∈ 𝑆. Thus, there exists (𝑧,𝑎), (𝑧, 𝑏) ∈ 𝐶  such that a (𝑧,𝑎)-(𝑧,𝑏) geodesic is not a path 
in  〈 𝐶〉. This contradict to our assumption that  𝐶 is a weakly convex set of 𝐺 ⊡𝐻.  Thus, 〈 𝑉(𝐻) ∖  𝑇𝑧〉  must be 
connected for all 𝑧 ∈ 𝑆2. Similarly, if |𝑉(𝐻)| = 2 and  |𝑉(𝐺)| ≥ 3 , then  〈 𝑆1〉 is connected,  〈𝑆2〉 is connected, and 
〈 𝑉(𝐻) ∖  𝑇𝑧〉 is connected for all 𝑧 ∈ 𝑆2. Suppose that  |𝑉(𝐺)| ≥ 3  and |𝑉(𝐻)| ≥  3.  Let 𝑥,𝑦 ∈ 𝑆.  If 〈 𝑆1〉 is not 
connected, then every 𝑥-𝑦 geodesic is not a path in 〈 𝑆1〉. Thus, every (𝑥, 𝑎)-(𝑦, 𝑎) geodesic for all 𝑎 ∈  𝑇𝑥  for all 𝑥 ∈ 𝑆 
is not a path in 〈 𝐶〉. This contradict to our assumption that 𝐶 is a weakly convex set of 𝐺 ⊡𝐻. Thus, 〈 𝑆1〉 must be 
connected. Similarly, 〈 𝑆2〉 is connected. Further, suppose that 〈 𝑉(𝐻) ∖ 𝑇𝑧 〉 is not connected for some 𝑧 ∈ 𝑆2.  Let 
𝑎, 𝑏 ∈ 𝑉(𝐻) ∖ 𝑇𝑧 . Then every 𝑎-𝑏 geodesic is not a path in 〈 𝑉(𝐻) ∖  𝑇𝑧〉. Thus, every (𝑎, 𝑥)-(𝑏, 𝑥) geodesic is not a 
path in 𝑉(𝐺 ⊡𝐻) ∖ 𝐶. This contradict to our assumption that 𝐶 is a weakly convex set of 𝐺 ⊡𝐻. Thus, 〈 𝑉(𝐻) ∖  𝑇𝑧〉 
must be connected for all 𝑧 ∈  𝑆2. This proves statement 𝑖𝑖𝑖). Similarly, statement 𝑖𝑣) holds. 
 
For the converse, suppose that 𝑆 is a weakly convex dominating set of 𝐺 and 𝐻 is a weakly convex dominating set 
of 𝐻 and one of the statements 𝑖), 𝑖𝑖), 𝑖𝑖𝑖), or 𝑖𝑣) holds. Then 𝐶 = ⋃𝑥∈𝑆[{𝑥} × 𝑇𝑥] is a weakly convex dominating set 
of 𝐺 ⊡𝐻 by Lemma 2.7. Suppose first that statement 𝑖) holds. Let 𝑧 ∈ 𝑉(𝐺) ∖ 𝑆. Consider |𝑉(𝐺) ∖ 𝑆| = 1. Since 𝐻 is 
connected, there exists an 𝑎-𝑏 path in 𝐻 such that (𝑧,𝑎)-(𝑧,𝑏) is a path in 〈 𝑉(𝐺 ⊡𝐻) ∖ 𝐶〉. This implies that 𝐶 is a 
doubly connected dominating set of 𝐺 ⊡𝐻. Hence 𝐶 is a weakly convex doubly connected dominating set of 𝐺 ⊡𝐻. 
Consider that |𝑉(𝐺) ∖  𝑆| ≥  2. Since 〈 𝑉(𝐺) ∖  𝑆〉 is connected, there exists a 𝑧-𝑤 path in 〈 𝑉(𝐺) ∖  𝑆〉 such that (𝑧, 𝑎)-
(𝑤, 𝑎) is a path in 〈 𝑉(𝐺 ⊡𝐻) ∖  𝐶〉. This implies that 𝐶 is a doubly connected dominating set of 𝐺 ⊡𝐻. Hence 𝐶 is a 
weakly convex doubly connected dominating set of 𝐺 ⊡𝐻. Similarly, if 𝑖𝑖) holds, then 𝐶 is a weakly convex doubly 
connected dominating set of 𝐺 ⊡𝐻. 
 
Next, suppose that 𝑖𝑖𝑖) holds. Let 𝑎 ∈ 𝑉(𝐻) ∖ 𝑇𝑧  for all 𝑧 ∈ 𝑆2. Consider that |𝑆2| = 1. Then  (𝑧, 𝑎) ∈  𝑉(𝐺 ⊡𝐻)\𝐶. 
If  |𝑉(𝐻) ∖  𝑇𝑧| = 1 , then  𝑉(𝐺 ⊡𝐻) ∖ 𝐶 = {(𝑧, 𝑎)},  that is, 〈 𝑉(𝐺 ⊡𝐻) ∖  𝐶〉 is connected and hence 𝐶  is weakly 
convex doubly connected dominating set of 𝐺 ⊡𝐻. Suppose that |𝑉(𝐻) ∖  𝑇𝑧| ≥  2. Then there exists 𝑏 ∈  𝑉(𝐻) ∖  𝑇𝑧 
such that 𝑎 - 𝑏  is a path in  〈 𝑉(𝐻) ∖  𝑇𝑧〉 for all 𝑎 ∈  𝑉(𝐺) ∖  𝑇𝑧 .  Thus, for each (𝑧, 𝑎) ∈  𝑉(𝐺 ⊡  𝐻) ∖ 𝐶 , there 
exists (𝑧, 𝑏) ∈  𝑉(𝐺 ⊡𝐻) ∖ 𝐶 such that (𝑧,𝑎)-(𝑧,𝑏) is a path in 〈 𝑉(𝐺 ⊡𝐻) ∖  𝐶〉. This implies that 〈 𝑉(𝐺 ⊡𝐻) ∖ 𝐶〉 
is connected and hence 𝐶 is a weakly convex doubly connected dominating set of 𝐺 ⊡𝐻. Similarly, if statement 
𝑖𝑣) holds, then 𝐶 is a weakly convex doubly connected dominating set of 𝐺 ⊡𝐻. ∎  
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The next result is the consequence of Theorem 2.8. 
 
Corollary 2.9: Let 𝐺 and 𝐻 be non-trivial connected graphs. Then 

 𝛾𝑐𝑐𝑐𝑤  (𝐺 ⊡𝐻)  =  (𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|})(𝑚𝑖𝑛{|𝑉(𝐺)|, |𝑉(𝐻)|}− 1) 
 

if 𝑆 is a weakly convex dominating set of 𝐺 and 𝑇𝑥 is a weakly convex dominating set of 𝐻 for all 𝑥 ∈ 𝑆 and one of the 
following statements holds: 
     𝑖) 𝑆 = 𝑉(𝐺) ∖ {𝑧} and 𝑇𝑥 = 𝑉(𝐻) for all 𝑥 ∈ 𝑆 and |𝑉(𝐺)| ≤  |𝑉(𝐻)|. 
    𝑖𝑖) 𝑆 = 𝑉(𝐺) and 𝑇𝑥 = 𝑉(𝐻) ∖ {𝑎} for all 𝑥 ∈ 𝑆 and |𝑉(𝐺)| ≥  |𝑉(𝐻)|. 
  
Proof: Suppose that 𝑆 is a weakly convex dominating set of 𝐺 and 𝑇𝑥 is a weakly convex dominating set of 𝐻 for all 
𝑥 ∈  𝑆 and one of the statements 𝑖)  or  𝑖𝑖) holds. Then 𝐶 = ⋃𝑥∈𝑆[{𝑥} ×  𝑇𝑥]  is a weakly convex doubly connected 
dominating set of 𝐺 ⊡𝐻 by Theorem 2.8. Further, 𝐶 = 𝑆 ×  𝑉(𝐻) or 𝐶 = 𝑉(𝐺) × 𝑇𝑥  for all 𝑥 ∈  𝑆.  
Let |𝐶| = 𝑚𝑖𝑛{|𝑆 × 𝑉(𝐻)|, |𝑉(𝐺) × 𝑇𝑥|} for all 𝑥 ∈ 𝑆. 

𝛾𝑐𝑐𝑐𝑤 (𝐺⊡𝐻) ≤  |𝐶| =   𝑚𝑖𝑛{|𝑆 × 𝑉(𝐻)|, |𝑉(𝐺) × 𝑇𝑥|} =   𝑚𝑖𝑛{|𝑆||𝑉(𝐻)|, |𝑉(𝐺)||𝑇𝑥|}. 
 
If 𝑖) holds, then  |𝐶| =  |𝑆 × 𝑉(𝐻)| =  |𝑆||𝑉(𝐻)| 

=  (𝑚𝑖𝑛{|𝑆|, |𝑉(𝐻)|})(𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|}) 
=  (𝑚𝑖𝑛{|𝑉(𝐺)| − 1, |𝑉(𝐻)|})(𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|}) 
=  (𝑚𝑖𝑛{|𝑉(𝐺)|, |𝑉(𝐻)|}− 1)(𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|}). 

 
 If 𝑖𝑖) holds, then |𝐶| = |𝑉(𝐺) × 𝑇𝑥|  =  |𝑉(𝐺)||𝑇𝑥|  
                                       =  (𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|})(𝑚𝑖𝑛{|𝑉(𝐺)|, |𝑇𝑥|})      
                                       =  (𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|})(𝑚𝑖𝑛{|𝑉(𝐺)|, |𝑉(𝐻)|− 1})    
                                       =  (𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|})(𝑚𝑖𝑛{|𝑉(𝐺)|, |𝑉(𝐻)|}− 1).                             
            
Thus, 𝛾𝑐𝑐𝑐𝑤 (𝐺 ⊡𝐻) ≤  (𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|})(𝑚𝑖𝑛\{|𝑉(𝐺)|, |𝑉(𝐻)|}− 1). Type equation here. 

 
Since 𝐶  is also a weakly convex dominating set of 𝐺 ⊡𝐻,  it follows that  𝛾𝑤𝑐𝑜𝑛(𝐺⊡𝐻) ≤  |𝐶|.  Let  (𝑥,𝑎) ∈ 𝐶 
and  𝐶′ = 𝐶 ∖ {(𝑥, 𝑎)}.  Then (𝑥, 𝑎)(𝑧, 𝑎) ∈  𝐸(𝐺 ⊡𝐻)  for all 𝑧 ∈  𝑁𝐺(𝑥)  and  (𝑧, 𝑎)(𝑧, 𝑏) ∈  𝐸(𝐺 ⊡𝐻) for all 𝑏 ∈
 𝑁𝐻(𝑎). If 𝑧 ∈  𝑉(𝐺) ∖  𝑆, then (𝑧, 𝑎) ∈  𝑉(𝐺 ⊡𝐻) ∖ 𝐶′ is not dominated by any element of 𝐶′ since (𝑥,𝑎), (𝑧,𝑏) ∉  𝐶′. 
This implies that 𝐶′ is not a weakly convex dominating set of 𝐺 ⊡𝐻  and hence 𝐶  is a minimum weakly convex 
dominating set of 𝐺 ⊡𝐻. Thus, |𝐶| = 𝛾𝑤𝑐𝑜𝑛(𝐺 ⊡𝐻) ≤ 𝛾𝑐𝑐𝑐𝑤 (𝐺⊡𝐻) by Remark 2.2. 
Therefore 𝛾𝑐𝑐𝑐𝑤 (𝐺 ⊡𝐻) = |𝐶| = (𝑚𝑎𝑥{|𝑉(𝐺)|, |𝑉(𝐻)|})(𝑚𝑖𝑛{|𝑉(𝐺)|, |𝑉(𝐻)|}− 1). ∎ 
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