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ABSTRACT 
In this paper we recall a representation of Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-
field from N to the general linear near-field space of some finite dimensional near-field space by defining a mapping ρ 
: N → NL(N) be such a representation. With the basic information available is being derived irreducibility 
representations of Tn, SU (2), SL(2, C) I and SL(2, C) , complexification of Nagendram Γ-semi sub near-field spaces of 
a Γ-near-field space over near-field. 
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over near-field. 
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SECTION 1: REPRESENTATION OF NAGENDRAM Γ-SEMI SUB NEAR-FIELD SPACES OF A Γ-NEAR-
FIELD SPACE OVER NEAR-FIELD. 
 
Definition 1.1: A sub-representation is a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-
field W ⊆ N such that for any g ∈ N, w ∈ W we have ρ(g)w ∈ W. In other words, W is a N-invariant Nagendram Γ-
semi sub near-field space of a Γ-near-field space over near-field. 
 
If ρ1 : N → NL(N1) and ρ2 : N → NL(N2) are two representations of N, then we have ρ1 ⊕  ρ2 : N → NL( N1 ⊕  N2 ) ; 
( ρ1 ⊕  ρ2 )(g(n1 + n2 )) = ρ1(g(n1)) + ρ2(g(n2)).  
 
A representation ( either real or complex) ρ : N → NL(N) is irreducible if it has no nontrivial invariant Nagendram Γ-
semi sub near-field spaces of a Γ-near-field space over near-field if W ⊆ N is such that ρ(g)W ⊆ W for all g ∈ N then 
either W = {0} or W = N. 
 
Example 1.2: ρ : S ′  → NL(1, C) given by ρ(λ) is lambda is irreducible since dim C = 1. 
 

Example 1.3: ρ : SU(2) → NL(2, C) is irreducible. SU(2) acts transitively on S3 and span C(S3) = C2. 
 

Example 1.4: ρ : R → N : (2, R) given by ρ(t) = 







10

1 t
 is not irreducible R x {0} is invariant. 
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Definition 1.5: A complex representation ρ : N → NL(N) is unitary if there is a Hermitian inner product < , > on N 
such that < ρ(g)v, ρ(g)w  > = <v>w, ∀ g ∈ N , ∀ v, w ∈ N i.e. the representation of N on N preserves < , >. 
 
Example 1.6: ρ : S ′  → NL(2, C) given by ρ(eiθ)z = eiθz  is unitary but not irreducible Cz is invariant Nagendram        
Γ-semi sub near-field space of a Γ-near-field space over near-field for any z. 
 
Lemma 1.7: Let ρ : N → NL(N) be a unitary representation then ρ is a direct sum of irreducible representations. 
 
Proof: This we can prove by induction on dimC (N). If dimC (N) = 1, then ρ is irreducible. Suppose dimC N > 1 and N 
is not irreducible. Then there exists an N-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over 
near-field W, dimC W ≠ dimC N. Let W⊥ denote the orthogonal complement Nagendram Γ-semi sub near-field space of 
a Γ-near-field space over near-field of W with respect to the Hermitian inner product on N. 
 
Claim: W⊥ is invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field of W. 
 
To prove that,  
 
Let us take v ∈ W⊥ the for any w ∈ W and ∀ g ∈ N < ρ-1(N)w, v > = < ρ(g)ρ(g-1)w, ρ(g)v > = < w, ρ(g)v >. Since, W 
is invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field of N, ρ(g-1)w ∈ W and so     
0 = < ρ(g-1)w, v > = < w, ρ(g)v >. Hence ρ(g)v ∈ W⊥ for all g ∈ N. Thus, N = W ⊕  W⊥ where by induction and 
assumption both W and W⊥ are invariant Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-
field of N. This completes the proof of the lemma. 
 
Definition 1.8: A representation ρ : N → NL(N) is completely reducible if it is a direct sum of irreducible 
representation. 
 
Example 1.9: The representation rho: N → NL(2, C) is neither irreducible nor completely reducible. C x {0} is 

invariant. If w ∉ C x {0} say w = ( w1, w2 ) then w2 ≠ 0. So 







10

1 t









2

1

w
w

 = 






 +

2

21

w
tww

. Set t = - w1/w2 so that 

ρ(t2)w = w2 







1
t

.  

Hence span C 2

2

1)( CCtthatsuch
w
w

t =








∈







ρ .  

 
Proposition 1.10: Any complex representation of a finite invariant Nagendram Γ-semi sub near-field spaces of a Γ-
near-field space over near-field of N is unitary. 
 
Proof: Let ρ : N → NL(N) be a representation. Pick a Hermitian inner product <, > on N. It need not be invariant 
Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field of N. 
 

Now define << v, w >> = ∑
∈

><
Ng

wgvg
N

)(,)(
||

1 ρρ   where | N | is the cardinal number in N. then for any a ∈ N, 

v, w ∈ N. 
 

Consider, << ρ(a)v, ρ(a)w >> = ∑
∈

><
Ng

wagvag
N

)()(,)()(
||

1 ρρρρ  = ∑
∈

><
Ng

wgavga
N

)(,)(
||

1 ρρ  

But, Ra : N → N is a bijection. So let g′ = ga .  then the last equality becomes  

∑
∈

><
Ng

wgvg
N '

)'(,)'(
||

1 ρρ  = << v, w >>.  

 
It follows that << , >> is invariant Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field of N. 
It is clear that << , >> is sesquillinear and moreover for v ≠ 0, << v, v >> > 0. Hence << , >> is an invariant Hermitian 
inner product as well as Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field of N. This 
completes the proof of the proposition. 
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I being an author and in depth study makes me to do the same thing for Nagendram Γ-semi sub near-field spaces of a 
Γ-near-field space over near-field of N if < , > is a Hermitian inner product on a representation ρ : N → NL(N) of N the 
for fixed v, w ∈ N g  < ρ(g)v, ρ(g)w > is a function on N. 
 

Also for v ≠ 0 , f v (g) = < ρ(g)v, ρ(g)w >  > 0 for all g. Thus for an appropriate measure dµg we have, ∫
N

gv dgf µ)(  > 

0. If | N | = ∞<∫
N

gµ , then << v, w >> = g
N

dwgvg
N

µρρ∑ >< )(,)(
||

1
makes sense and is a Hermitian inner 

product. 
 
Note 1.11: Any representation of a compact Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-
field of N is completely reducible. 
 
SECTION 2: IRREDUCIBLE REPRESENTATIONS OF TN AND REPRESENTATIONS OF SU (2), 
REPRESENTATIONS OF SL(2, C) I AND SL(2, C) II. 
 
Lemma 2.1: Any complex irreducible representation ρ : Tn → NL(N) is of the form ρ (exp v) = ρ ( v mod Zn ) = 
e2πiδρ(v) where δρ : Nn → Nn satisfies δρ ( Zn ) ⊆ Zn i.e. δρ ∈ HomZ (Zn, Z). 
 
Proof:  
(⇒) If µ ∈ HomZ (Zn, Z) ⊆ HomN(Nn,N) then ξµ : Nn/Zn → N/Z and ξµ (v, mod Zn) = µ(v) mod Z is well defined. we 
identify N/Z with S| : a mod Z  e2πia. So ξµ is a representation ξµ : Tn → NL(C) and ξµ (v mod Zn) = e2πi(v). 
 
(⇐)Converse: Suppose that ρ : Tn → NL(C)  ≅ C \ {0} is a representation. Since ρ(Tm) ⊆ Cx is compact, ρ(Tn) ⊆ S|. we 
have a commuting diagram  
       δρ 
                                                                   Rn               R 

 
                                                              Exp                  exp 

 
                                                                  Tn                  S| 

                                                                                      ρ 
So δρ (ker exp) ⊆ ker exp = Z. Therefore, δρ ∈ HomZ (Zn, Z). This proves irreducible, unitary representations of N are 
in one-one correspondence with elements of the weight lattice. This completes the proof of the lemma. 
 
Definition 2.2: If N is any compact, connected abelian Nagendram Γ-semi sub near-field spaces of a Γ-near-field space 
over near-field of N i.e. a torus ZN= ker{exp : g → N } is called the integral lattice. The set Z*

N = HomZ (ZN, Z) is 
called the weight lattice. 
 
Note 2.5: Representations of  SU (2): 
 
We start constructing complex irreducible representation of SU(n). let Vn be the set of all complex homogeneous 
polynomials of degree n in two variables. i.e. vn = spanC { z1

n, z1
n-1, ......,z2

n} note that V0 = C and V1 ≅ C2. We have an 
action of NL(2, C) on Vn. 
 
(A . f ) (z1, z2) = f ((z1,z2)A) where (z1, z2 )A is regarded as matrix multiplication. 
 
It is left as an exercise to the reader to prove this indeed defines an action. This also gives us a representation A.          
(λf  + µg ) = λ ( A.f ) + µ (A.g ) for all λ, µ ∈ C , f , g ∈ Vn and A ∈ NL(2, C). 
 
Note 2.4: Let Vn be as above defined. Then (i) Vn is an irreducible representation of SU(n) for all n ≥ 0 (ii) If V is an 
irreducible representation of SU(n) of dimension n + 1 then V ≅ Vn as representations. 
 
Representation of SL(2, C) I: 
 
Lemma 2.5: There is a bijection between complex representations of SU(2) and of SL(2, C). 
 
Proof: Since π1SU(2) is trivial, there is a bijection between representations of SU(2) and su(2). Any complex 
representation of su(2) extends to a unique complex representation of SL(2)C = SL(s, C). 
 
Conversely, a representation of SL(2, C) restricts to a representation of su(2) ⊆ sl(2, C). 
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This completes the proof of the lemma. 
 
Lemma 2.6: Any finite dimensional complex representations of SL(2, C) is completely reducible. 
 
Proof: Obvious that representations of SU(2) are completely reducible. 
 
Theorem 2.7: Irreducible representations of SL(2, C) are classified by non-negative integers for any n = 0, 1, 2, ..... 
there exists a unique representation of SL(2, C) of dimension n + 1 we observe [ H, E ] = 2E, [ H, F ] = - 2F , [ E, F ] = 
H. 
 
Lemma 2.8: Let τ  : SL(2, C) → NL(N) be a representation. Suppose τ (H)n = cn for some c ∈ C. Then τ (H)( 
τ (E)n) = ( c + 2) (τ  (E)n) and τ (H)( τ (F)n) = ( c - 2) (τ  (F)n). 
 
Proof : 2τ (E)n = τ ([ H, E ])n = τ (H) τ (H) τ (E)n - τ (E) τ (H)n = τ (H)( τ (E)n) - cτ (E)n 
and so τ (H)( τ (E)n) = ( c + 2 ) τ (E)n. 
 
∴ - 2 τ (F)n = τ ([ H, F ])n) = τ ([ H, F ]n) - cτ (F)n and soτ ([ H, F ]n) - ( c - 2) (τ  (F)n). 
 
This completes the proof of the lemma. 
 
Note 2.9: for k = 1,2,3,..... we see that by induction τ (H)( τ (E)kn) = ( c + 2k)( τ (E)kn). But, τ (H) has only finitely 
many eigenvalues and so there exists k ≥ 1 such that τ (E)kn =0, τ (E)k-1n ≠ 0. We conclude that there exists a n0 ∈ N 
such that n0 ≠ 0 , τ (E)n0 = 0 and τ (H)n0 = λn0 for some λ ∈ C. 
 
Representation of SL(2, C) II: 

Lemma 2.10: Let τ  : SL(2, C) → NL(N) be a representation , n0 ∈ N. let nk = 0)(
!

1 nF
k

kτ  and n-1 ≡ 0. Then  

(i) τ (H)nk = ( λ - 2k )nk,  
(ii) τ  (F)nk = ( k + 1) nk+1 
(iii) τ (E)nk = ( λ - k +1 )nk-1. 
 
Proof: To prove (i): 
 
Let τ  : SL(2, C) → NL(N) be a representation. Suppose τ (H)n = cn for some c ∈ C. Then τ (H)( τ (E)n) = ( c + 2) 
(τ  (E)n) and τ (H)( τ (F)n) = ( c - 2) (τ  (F)n). 
Proved (i). 
 
To prove (ii):  

τ (F)nk = τ (F)( 0)(
!

1 nF
k

kτ ) = ( k + 1 ) 







+

+
0

1)(
!)1(

1 nF
k

kτ  proved (ii). 

 
To prove (iii):  
 
Proceed by induction on k : τ (E)n0 = ( λ + 1) n-1 = 0. 
 
Now kτ (E)nk = τ (E)( τ (F)nk -1 ) = ((τ (E) τ (F) - τ (F) τ (E) + τ (F) τ (E)nk-1 

= τ (H)nk-1 + τ (F)( τ (E)nk-1) 
= (λ - 2(k-1))nk-1 + τ (F)((λ - (k -1) + 1)nk-2) 
= ((λ - 2k + 2) + (λ - k + 2)(k – 1) )nk-1 

= k(λ - k + 1)nk-1 

Hence τ (E)nk = ( λ - k + 1)nk-1.  
Proved (iii). 
 
This completes the proof of the lemma. 

Note 2.11: Let τ  : AL(2, C) → NL(N) be a representation and H = 







−10
01

 Then, τ (H) is diagonalizable i.e. 

Nagendram Γ-semi sub near-field spaces of a Γ-near-field space over near-field  N has a basis of eigenvectors. 
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SECTION 3: COMPLEXIFICATION OF NAGENDRAM Γ-SEMI SUB NEAR-FIELD SPACES OF A              
Γ-NEAR-FIELD SPACE OVER NEAR-FIELD. 
 
Definition 3.1: Let N be Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. The 
complexification NC of N is N ⊗ C. 
 
Let NC is a complex Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field for any a, b, c ∈ C, 
n ∈ N we have a ( n ⊗ b ) = n ⊗ ab. Also N is embedded in NC as a real Nagendram Γ-semi sub near-field space of a  
Γ-near-field space over near-field N   NC , n   n ⊗ I. 
 
We now identify N with N  ⊗ I ⊆ NC and we write an for n  ⊗ a, n ∈ N, a ∈ C. 
 
As a real Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field, NC = N ⊗ i N,  
where i N = {n ⊗ i / n ∈ N }. 
 
Note 3.2: If { n1, n2,....,nn } is a basis of Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field 
N, then it is also a complex basis of NC. considered as a real Nagendram Γ-semi sub near-field space of a Γ-near-field 
space over near-field, NC has a basis the set { n1, n2,....,nn, i n1, i n2,...., i nn }. 
 
Lemma 3.3: Let N be a real Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field, W a 
complex Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field and T : N → W on a R – linear 
map. Then, there exists a unique C-linear map TC : NC → W extending T. 
 
Proof: Uniqueness. for any s, t ∈ N we have TC ( s + i t ) = TC (s) + i TC(t)  = T(s) +i T(t). 
Existence. Let { n1,n2,....,nn } be a basis for N. we define TC (∑ ii na ) = ∑ )( ii nTa  for ai ∈ C. Then TC is 
complex linear and extends T. By uniqueness, TC does not depend on the choice of basis. 
 
Lemma 3.4: Let N be a real Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field, W a 
complex Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field and b : N x N → W and           
R – bilinear map. Then, there exists a unique C-bilinear map bC : NC x NC  → W extending b. 
 
Corollary 3.5:  If g is a real Nagendram algebras then the Nagendram bracket on g extends to a unique C-bilinear map 
[ , ]C : g C x g C → gC  such that ( gC, [,]C ) is a Nagendram algebras. 
 
Example 3.6: SU(2) ≅ SL(2, C) to see this first let T : SU(2) → SL(2, C) denote the inclusion. Then, there exists a 

unique TC : SU(2) → SL(2, C) extending T now SU(2) = spang  
























−








− 0

0
,

01
10

,
0

0
i

i
i

i
 so that SU(2)C is 

the complex span of the same matrices. 

Let H = 







−10
01

; E = 







00
10

; F = 







01
00

. Then, SL(2, C) = spanC [ H, E, F ]. But,  

H = (- i ) 







− i

i
0

0
  ∈ TC (SU(2)) ; E = 
















−








− 0

0
01
10

2
1

i
i

i  ∈ TC( SU(2)C ) 

And F = 















−

−







−

01
10

0
0

)(
2
1

i
i

i ∈ TC( SU(2)C ). Thus TC is onto and hence an isomorphism by dimension 

count.  
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