ON F-LEAP INDICES AND F-LEAP POLYNOMIALS OF SOME GRAPHS ## V. R. KULLI Department of Mathematics, Gulbarga University, Gulbarga 585106, India. (Received On: 17-11-18; Revised & Accepted On: 10-12-18) #### **ABSTRACT** We introduce the F-leap and F_1 -leap indices of a graph. In this paper, the F-leap and F_1 -leap indices and their polynomials of wheel graphs, gear graphs, helm graphs, flower graphs and sunflower graphs are determined. **Keywords:** F-leap index, F_1 -leap index, wheel, helm graph, flower graph. Mathematics Subject Classification: 05C07, 05C12, 05C76. ### 1. INTRODUCTION We consider only finite, connected, undirected graphs without multiple edges and loops. Let G be a graph with a vertex set V(G) and an edge set E(G). Let d(v) be the number of vertices adjacent to v. The distance d(u, v) between any two vertices u and v of G is the number of edges in a shortest path connecting these two vertices u and v. For a positive integer k and a vertex v in G, the open neighborhood of v in G is defined as $N_k(v/G) = \{u \in V(G) : d(u, v) = k\}$. The k-distance degree of a vertex v in G is the number of k neighbors of v in G, and it is denoted by $d_k(v)$, see [1]. Any undefined term here may be found in [2]. In [1], the first leap Zagreb index was introduced based on the second vertex degrees. The first leap Zagreb index of a graph G is defined as $$LM_1(G) = \sum_{u \in V(G)} d_2^2(u).$$ Considering the first leap Zagreb index, we introduce the first leap Zagreb polynomial of a graph G and it is defined as $$LM_1(G,x) = \sum_{u \in V(G)} x^{d_2^2(u)}.$$ (1) Very recently, some other leap indices were proposed and studied such as leap hyper-Zagreb indices, [3], augmented leap index [4], sum connectivity leap index and geometric-arithmetic leap index [5], minus leap index and square leap index [6]. The F-index was studied by Furtula and Gutman in [7] and it is defined as $$F(G) = \sum_{u \in V(G)} d(u)^{3} = \sum_{uv \in E(G)} \left[d(u)^{2} + d(v)^{2} \right].$$ The *F*-index was also studied in [8, 9, 10, 11, 12, 13]. Motivated by the definition of the F-index and its applications, we introduce the F-leap index and F_1 -leap index of a graph as follows: The F-leap index of a graph G is defined as $$FL(G) = \sum_{u \in V(G)} d_2^3(u). \tag{2}$$ Corresponding Author: V. R. Kulli Department of Mathematics, Gulbarga University, Gulbarga 585106, India. Considering the F-leap index, we propose the F-leap polynomial of a graph G as $$FL(G,x) = \sum_{u \in V(G)} x^{d_2^3(u)}.$$ (3) The F_1 -leap index of a graph G is defined as $$F_1L(G) = \sum_{uv \in E(G)} \left[d_2^2(u) + d_2^2(v) \right] \tag{4}$$ Considering the F_1 -leap index, we propose the F_1 -leap polynomial of a graph G as $$F_1L(G,x) = \sum_{uv \in E(G)} x^{\left[d_2^2(u) + d_2^2(v)\right]}$$ (5) Recently, some different type of polynomials were studied in [14, 15, 16, 17, 18, 19, 20, 21, 22]. In this paper, we consider wheel graphs and some related graphs, see [23]. We determine the F-leap and F_1 -leap indices and their polynomials of wheel graphs and some related graphs. ### 2. RESULTS FOR WHEELS The wheel W_n is the join of C_n and K_1 . Clearly W_n has n+1 vertices and 2n edges. The vertex K_1 is called apex and the vertices of C_n are called rim vertices. The graph W_n is presented in Figure 1. **Figure-1:** Wheel W_n **Lemma 1:** Let W_n be a wheel with n+1 vertices, $n \ge 3$. Then there are two types of the 2-distance degree of vertices as given below: $$V_1 = \{ u \in V(W_n) \mid d_2(u) = 0 \}, \qquad |V_1| = 1.$$ $$V_2 = \{ u \in V(W_n) \mid d_2(u) = n - 3 \}, \quad |V_2| = n.$$ **Lemma 2:** Let W_n be a wheel with n+1 vertices, $n \ge 3$. Then there are two types of the 2-distance degree of edges as follows: $$E_1 = \{uv \in E(W_n) \mid d_2(u) = 0, d_2(v) = n - 3\}, \mid E_1 \mid = n.$$ $E_2 = \{uv \in E(W_n) \mid d_2(u) = d_2(v) = n - 3\}, \mid E_2 \mid = n.$ **Theorem 3:** Let W_n be a wheel with n+1 vertices, $n \ge 3$. Then the F-leap index of W_n is $$FL(W_n) = n(n-3)^3$$. **Proof:** From equation (2) and by Lemma 1, we deduce $$FL(W_n) = \sum_{u \in V(W_n)} d_2^3(u) = \sum_{u \in V_1} d_2^3(u) + \sum_{u \in V_2} d_2^3(u)$$ $$= 1 \times 0 + n(n-3)^3 = n(n-3)^3.$$ **Theorem 4:** Let W_n be a wheel with n+1 vertices, $n \ge 3$. Then (a) $$LM_1(W_n, x) = x^0 + nx^{(n-3)^2}$$. (b) $$FL(W_n, x) = x^0 + nx^{(n-3)^3}$$. ### **Proof:** (a) From equation (1) and by Lemma 1, we have $$LM_1(W_n, x) = \sum_{u \in V(W_n)} x^{d_2^2(u)} = \sum_{u \in V_1} x^{d_2^2(u)} + \sum_{u \in V_2} x^{d_2^2(u)}$$ $$= x^0 + nx^{(n-3)^2}$$ (b) From equation (3) and by Lemma 1, we obtain $$FL(W_n, x) = \sum_{u \in V(W_n)} x^{d_2^3(u)} = \sum_{u \in V_1} x^{d_2^3(u)} + \sum_{u \in V_2} x^{d_2^3(u)}$$ $$= x^0 + nx^{(n-3)^3}.$$ **Theorem 3:** Let W_n be a wheel with n+1 vertices, $n \ge 3$. Then (a) $$F_1L(W_n) = 3n(n-3)^2$$ (b) $$F_1L(W_n,x) = nx^{(n-3)^2} + nx^{2(n-3)^2}$$. #### **Proof:** (a) From equation (4) and Lemma 2, we deduce $$F_1L(W_n) = \sum_{uv \in E(W_n)} \left[d_2^2(u) + d_2^2(v) \right]$$ = $n[0^2 + (n-3)^2] + n[(n-3)^2 + (n-3)^2] = 3n(n-3)^2$. (b) From equation (5) and by Lemma 2, we derive $$F_1L(W_n, x) = \sum_{uv \in E(W_n)} x^{\left[d_2^2(u) + d_2^2(v)\right]}$$ $$= nx^{0^2 + (n-3)^2} + nx^{(n-3)^2 + (n-3)^2} = nx^{(n-3)^2} + nx^{2(n-3)^2}$$ # 3. RESULTS FOR GEAR GRAPHS A bipartite wheel graph is a graph obtained from W_n with n+1 vertices adding a vertex between each pair of adjacent rim vertices and this graph is denoted by G_n and also called as a gear graph. Clearly, $|V(G_n)| = 2n+1$ and $|E(G_n)| = 3n$. A gear graph G_n is depicted in Figure 2. **Figure-2:** Gear graph G_n **Lemma 6:** Let G_n be a gear graph with 2n+1 vertices, $n \ge 3$. Then G_n has three types of the 2-distance degree of vertices as follows: $$V_1 = \{ u \in V(G_n) \mid d_2(u) = n \}, \qquad |V_1| = n.$$ $$V_2 = \{ u \in V(G_n) \mid d_2(u) = n - 1 \}, \qquad |V_2| = n.$$ $$V_3 = \{ u \in V(G_n) \mid d_2(u) = 3 \}, \qquad |V_3| = n.$$ **Lemma 7:** Let G_n be a gear graph with 3n edges, $n \ge 3$. Then G_n has two types of the 2-distance degree of edges as follows: $$E_1 = \{u \in E(G_n) \mid d_2(u) = n, d_2(v) = n - 1\}, \quad |E_1| = n.$$ $E_2 = \{u \in E(G_n) \mid d_2(u) = 3, d_2(v) = n - 1\}, \quad |E_2| = 2n.$ **Theorem 8:** Let G_n be a gear graph with 2n+1 vertices, $n \ge 3$. Then the F-leap index of G_n is $$FL(G_n) = n^4 - 2n^3 + 3n^2 + 26n.$$ **Proof:** By using equation (2) and by Lemma 6, we have $$FL(G_n) = \sum_{u \in V(W_n)} d_2^3(u) = \sum_{u \in V_1} d_2^3(u) + \sum_{u \in V_2} d_2^3(u) + \sum_{u \in V_3} d_2^3(u)$$ $$= n^3 + n(n-1)^3 + n \times 3^3 = n^4 - 2n^3 + 3n^2 + 26n.$$ **Theorem 9:** Let G_n be a gear graph with 2n+1 vertices, $n \ge 3$. Then (a) $$LM_1(G_n, x) = x^{n^2} + nx^{(n-1)^2} + nx^9$$. (b) $$FL(G_n, x) = x^{n^3} + nx^{(n-1)^3} + nx^{27}$$. ### **Proof:** (a) By using equation (1) and by Lemma 6, we obta $$LM_1(G_n, x) = \sum_{u \in V(G_n)} x^{d_2^2(u)} = \sum_{u \in V_1} x^{d_2^2(u)} + \sum_{u \in V_2} x^{d_2^2(u)} + \sum_{u \in V_3} x^{d_2^2(u)}$$ $$= x^{n^2} + nx^{(n-1)^2} + nx^9.$$ (b) By using equation (3) and by Lemma 6, we have $$FL(G_n, x) = \sum_{u \in V(G_n)} x^{d_2^3(u)} = \sum_{u \in V_1} x^{d_2^3(u)} + \sum_{u \in V_2} x^{d_2^3(u)} + \sum_{u \in V_3} x^{d_2^3(u)}$$ $$= x^{n^3} + nx^{(n-1)^3} + nx^{27}.$$ **Theorem 10:** Let G_n be a gear graph with 3n edges, $n \ge 3$. Then (a) $$F_1L(G_n) = 4n^3 - 6n^2 + 21n$$. (b) $$F_1L(G_n, x) = nx^{2n^2 - 2n + 1} + 2nx^{n^2 - 2n + 1}$$ ### **Proof:** (a) From equation (4) and Lemma 7, we deduce $$F_1L(G_n) = \sum_{uv \in E(G_n)} \left[d_2^2(u) + d_2^2(v) \right]$$ $$= n \left[n^2 + (n-1)^2 \right] + 2n \left[3^2 + (n-1)^2 \right] = 4n^3 - 6n^2 + 21n.$$ (b) From equation (5) and by Lemma 7, we derive $$F_1L(G_n, x) = \sum_{uv \in E(G_n)} x^{\left[d_2^2(u) + d_2^2(v)\right]}$$ $$= nx^{\left[n^2 + (n-1)^2\right]} + 2nx^{\left[3^2 + (n-1)^2\right]} = nx^{2n^2 - 2n + 1} + 2nx^{n^2 - 2n + 1}$$ ### 4. RESULTS FOR HELM GRAPHS The helm graph H_n is a graph obtained from W_n (with n+1 vertices) by attaching an end edge to each rim vertex of W_n . Clearly, $|V(H_n)| = 2n+1$ and $|E(H_n)| = 3n$. A graph H_n is shown in Figure 3. **Figure-3:** Helm graph H_n **Lemma 11:** Let H_n be a helm graph with 2n+1 vertices, $n \ge 3$. Then H_n has three types of the 2-distance degree of vertices as given below: $$V_1 = \{ u \in V(H_n) \mid d_2(u) = n \}, \qquad |V_1| = 1.$$ $$V_2 = \{ u \in V(H_n) \mid d_2(u) = n - 1 \}, \qquad |V_2| = n.$$ $$V_3 = \{ u \in V(H_n) \mid d_2(u) = 3 \}, \qquad |V_3| = n.$$ **Lemma 12:** Let H_n be a helm graph with 3n edges, $n \ge 3$. Then H_n has three types of the 2-distance degree of edges as follows: $$E_1 = \{uv \in E(H_n) \mid d_2(u) = n, d_2(v) = n - 1\}, \mid E_1 \mid = n.$$ $E_2 = \{uv \in E(H_n) \mid d_2(u) = 3, d_2(v) = n - 1\}, \mid E_2 \mid = n.$ $E_3 = \{uv \in E(H_n) \mid d_2(u) = d_2(v) = n - 1\}, \mid E_3 \mid = n.$ **Theorem 13:** Let H_n be a helm graph with 2n+1 vertices, $n \ge 3$. Then the F-leap index of H_n is $FL(H_n) = n^4 - 2n^3 + 3n^2 + 26n$. **Proof:** By using equation (2) and by Lemma 11, we obtain $$FL(H_n) = \sum_{u \in V(H_n)} d_2^3(u) = \sum_{u \in V_1} d_2^3(u) + \sum_{u \in V_2} d_2^3(u) + \sum_{u \in V_3} d_2^3(u)$$ $$= n^3 + n(n-1)^3 + n \times 3^3 = n^4 - 2n^3 + 3n^2 + 26n.$$ **Theorem 14:** Let H_n be a helm graph with 2n+1 vertices, $n \ge 3$. Then (a) $$LM_1(H_n, x) = x^{n^2} + nx^{(n-1)^2} + nx^9$$. (b) $$FL(H_n, x) = x^{n^3} + nx^{(n-1)^3} + nx^{27}$$. ## **Proof:** (a) By using equation (1) and by Lemma 11, we have $$\begin{split} LM_1(H_n,x) &= \sum_{u \in V(H_n)} x^{d_2^2(u)} = \sum_{u \in V_1} x^{d_2^2(u)} + \sum_{u \in V_2} x^{d_2^2(u)} + \sum_{u \in V_3} x^{d_2^2(u)} \\ &= x^{n^2} + nx^{(n-1)^2} + nx^9. \end{split}$$ (b) From equation (3) and Lemma 11, we duce $$\begin{split} FL\big(H_n,x\big) &= \sum_{u \in V(H_n)} x^{d_2^3(u)} = \sum_{u \in V_1} x^{d_2^3(u)} + \sum_{u \in V_2} x^{d_2^3(u)} + \sum_{u \in V_3} x^{d_2^3(u)} \\ &= x^{n^3} + n x^{(n-1)^3} + n x^{27} \,. \end{split}$$ **Theorem 15:** Let H_n be a helm graph with 3n edges, $n \ge 3$. Then (a) $$F_1L(H_n) = 5n^3 - 8n^2 + 13n$$. (b) $$F_1L(H_n, x) = nx^{2n^2 - 2n + 1} + nx^{n^2 - 2n + 10} + nx^{2(n^2 - 2n + 1)}$$. ### **Proof:** (a) From equation (4) and Lemma 12, we obtain $$F_1L(H_n) = \sum_{uv \in E(H_n)} \left[d_2^2(u) + d_2^2(v) \right]$$ $$= n \left[n^2 + (n-1)^2 \right] + n \left[3^2 + (n-1)^2 \right] + n \left[(n-1)^2 + (n-1)^2 \right]$$ $$= 5n^3 - 8n^2 + 13n.$$ (b) From equation (5) and by Lemma 12, we have $$F_{1}L(H_{n},x) = \sum_{uv \in E(H_{n})} x^{\left[d_{2}^{2}(u) + d_{2}^{2}(v)\right]}$$ $$= nx^{\left[n^{2} + (n-1)^{2}\right]} + nx^{\left[3^{2} + (n-1)^{2}\right]} + nx^{\left[(n-1)^{2} + (n-1)^{2}\right]}$$ $$= nx^{2n^{2} - 2n + 1} + nx^{n^{2} - 2n + 10} + 2nx^{2(n^{2} - 2n + 1)}.$$ ### 5. RESULTS FOR FLOWER GRAPHS The graph Fl_n , is a flower graph obtained from a helm graph H_n by joining an end vertex to the apex of the helm graph. Then $|V(Fl_n)| = 2n+1$ and $|E(Fl_n)| = 4n$. A graph Fl_n is shown in Figure 4. **Figure-4:** Flower graph Fl_n **Lemma 16:** Let Fl_n be a flower graph with 2n+1 vertices, $n \ge 3$. Then Fl_n has three types of the 2-distance degree of vertices as given below: $$V_1 = \{ u \in E(Fl_n) \mid d_2(u) = 0 \}, \qquad |V_1| = 1.$$ $$V_2 = \{ u \in E(Fl_n) \mid d_2(u) = n - 5 \}, \qquad |V_2| = n.$$ $$V_3 = \{ u \in E(Fl_n) \mid d_2(u) = n - 2 \}, \qquad |V_3| = n.$$ **Lemma 17:** Let Fl_n be a flower graph with 4n edges, $n \ge 3$. Then Fl_n has four types of the 2-distance degree of edges as follows: $$E_1 = \{uv \in E(Fl_n) \mid d_2(u) = 0, d_2(v) = n - 5\}, \mid E_1 \mid = n.$$ $E_2 = \{uv \in E(Fl_n) \mid d_2(u) = 0, d_2(v) = n - 2\}, \mid E_2 \mid = n.$ $E_3 = \{uv \in E(Fl_n) \mid d_2(u) = n - 5, d_2(v) = n - 2\}, \mid E_3 \mid = n.$ $E_4 = \{uv \in E(Fl_n) \mid d_2(u) = d_2(v) = n - 5\}, \mid E_4 \mid = n.$ **Theorem 18:** Let Fl_n be a flower graph with 2n+1 vertices, $n \ge 3$. Then the *F*-leap index of Fl_n is $FL(Fl_n) = 2n^4 - 21n^3 + 87n^2 - 133n$. **Proof:** From equation (2) and by Lemma 16, we have $$FL(Fl_n) = \sum_{u \in V(Fl_n)} d_2^3(u) = \sum_{u \in V_1} d_2^3(u) + \sum_{u \in V_2} d_2^3(u) + \sum_{u \in V_3} d_2^3(u)$$ $$= 0 + n(n-5)^3 + n(n-2)^3 = 2n^4 - 21n^3 + 87n^2 - 133n.$$ **Theorem 19:** Let Fl_n be a flower graph with 2n+1 vertices, $n \ge 3$. Then (a) $$LM_1(Fl_n,x) = x^0 + nx^{(n-5)^2} + nx^{(n-2)^2}$$. (b) $$FL(Fl_n, x) = x^0 + nx^{(n-5)^3} + nx^{(n-2)^3}$$. ### **Proof:** (a) By using equation (1) and by Lemma 16, we obtain $$LM_1(Fl_n, x) = \sum_{u \in V(Fl_n)} x^{d_2^2(u)} = \sum_{u \in V_1} x^{d_2^2(u)} + \sum_{u \in V_2} x^{d_2^2(u)} + \sum_{u \in V_3} x^{d_2^2(u)}$$ $$= x^0 + nx^{(n-5)^2} + nx^{(n-2)^2}$$ (b) From equation (3) and Lemma 16, we deduce FL(Fl_n, x) = $$\sum_{u \in V(Fl_n)} x^{d_2^3(u)} = \sum_{u \in V_1} x^{d_2^3(u)} + \sum_{u \in V_2} x^{d_2^3(u)} + \sum_{u \in V_3} x^{d_2^3(u)}$$ $$= x^0 + nx^{(n-5)^3} + nx^{(x-2)^3}.$$ **Theorem 20:** Let Fl_n be a flower graph with 4n edges, $n \ge 3$. Then (a) $$F_1L(Fl_n) = 6n^3 - 48n^2 + 108n$$. (b) $$F_1L(Fl_n,x) = nx^{n^2-10n+25} + nx^{n^2-4n+4} + nx^{2n^2-14n+29} + nx^{2n^2-20n+50}$$. ### **Proof:** (a) From equation (4) and Lemma 17, we deduce $$\begin{split} F_1L\big(Fl_n\big) &= \sum_{uv \in E(Fl_n)} \left[d_2^2(u) + d_2^2(v)\right] \\ &= n \left[0^2 + (n-5)^2\right] + n \left[0^2 + (n-2)^2\right] + n \left[(n-5)^2 + (n-2)^2\right] \\ &+ n \left[(n-5)^2 + (n-5)^2\right] = 6n^3 - 48n^2 + 108n. \end{split}$$ (b) From equation (5) and by Lemma 17, we derive $$\begin{split} F_1L(Fl_n,x) &= \sum_{uv \in E(Fl_n)} x^{\left[d_2^2(u) + d_2^2(v)\right]} \\ &= nx^{\left[o^2 - (n-5)^2\right]} + nx^{\left[o^2 + (n-2)^2\right]} + nx^{\left[(n-5)^2 + (n-1)^2\right]} + nx^{\left[(n-5)^2 + (n-5)^2\right]} \\ &= nx^{n^2 - 10n + 25} + nx^{n^2 - 4n + 4} + nx^{2n^2 - 14n + 29} + nx^{2n^2 - 20n + 50}. \end{split}$$ ## 6. RESULTS FOR SUNFLOWER GRAPHS The graph Sf_n , is a sunflower graph which is obtained from the flower graph Fl_n by attaching n end edges to the apex vertex. Then we have $|V(Sf_n)| = 3n+1$ and $|E(Sf_n)| = 5n$. A graph Sf_n is presented in Figure 5. **Figure-5:** Sunflower graph Sf_n **Lemma 21:** Let Sf_n be a sunflower graph with 3n+1 vertices, $n \ge 3$. Then Sf_n has four types of the 2-distance degree of vertices as follows: $$V_1 = \{ u \in E(Sf_n) \mid d_2(u) = 0 \}, \qquad |V_1| = 1.$$ $$V_2 = \{ u \in E(Sf_n) \mid d_2(u) = 3n - 4 \}, \quad |V_2| = n.$$ $$V_3 = \{ u \in E(Sf_n) \mid d_2(u) = 3n - 2 \}, \quad |V_3| = n.$$ $$V_4 = \{ u \in E(Sf_n) \mid d_2(u) = 3n - 1 \}, \quad |V_4| = n.$$ **Lemma 22:** Let Sf_n be a sunflower graph with 5n edges, $n \ge 3$. Then Sf_n has five types of the 2-distance degree of edges as given below: $$\begin{split} E_1 &= \{uv \in E(Sf_n) \mid d_2(u) = 0, \, d_2(v) = 3n - 4\}, & |E_1| = n. \\ E_2 &= \{uv \in E(Sf_n) \mid d_2(u) = 0, \, d_2(v) = 3n - 2\}, & |E_2| = n. \\ E_3 &= \{uv \in E(Sf_n) \mid d_2(u) = 0, \, d_2(v) = 3n - 1\}, & |E_3| = n. \\ E_4 &= \{uv \in E(Sf_n) \mid d_2(u) = d_2(v) = 3n - 4\}, & |E_4| = n. \\ E_5 &= \{uv \in E(Sf_n) \mid d_2(u) = 3n - 4, \, d_2(v) = 3n - 2\}, & |E_5| = n. \end{split}$$ **Theorem 23:** Let Sf_n be a sunflower graph with 3n+1 vertices, $n \ge 3$. Then the *F*-leap index of Sf_n is $FL(Sf_n) = 81n^4 - 189n^3 + 189n^2 - 73n$. **Proof:** From equation (2) and by Lemma 21, we have $$FL(Sf_n) = \sum_{u \in V(Sf_n)} d_2^3(u) = \sum_{u \in V_1} d_2^3(u) + \sum_{u \in V_2} d_2^3(u) + \sum_{u \in V_3} d_2^3(u) + \sum_{u \in V_4} d_2^3(u)$$ $$= 0 + n(3n - 4)^3 + n(3n - 2)^3 + n(3n - 1)^3$$ $$= 81n^4 - 189n^3 + 189n^2 - 73n.$$ **Theorem 24:** Let Sf_n be a sunflower graph with 3n+1 vertices, $n \ge 3$. Then (a) $$LM_1(Sl_n,x) = x^0 + nx^{(3n-4)^2} + nx^{(3n-2)^2} + nx^{(3n-1)^2}$$. (b) $$FL(Sf_n, x) = x^0 + nx^{(3n-4)^3} + nx^{(3n-2)^3} + nx^{(3n-1)^3}$$. ### **Proof:** (a) By using equation (1) and by Lemma 21, we derive $$LM_1(Sf_n, x) = \sum_{u \in V(Sf_n)} x^{d_2^2(u)} = \sum_{u \in V_1} x^{d_2^2(u)} + \sum_{u \in V_2} x^{d_2^2(u)} + \sum_{u \in V_3} x^{d_2^2(u)} + \sum_{u \in V_4} x^{d_2^2(u)}$$ $$= x^0 + nx^{(3n-4)^2} + nx^{(3n-2)^2} + nx^{(3n-1)^2}.$$ (b) From equation (3) and Lemma 21, we duce $$FL(Sf_n, x) = \sum_{u \in V(Sf_n)} x^{d_2^3(u)} = \sum_{u \in V_1} x^{d_2^3(u)} + \sum_{u \in V_2} x^{d_2^3(u)} + \sum_{u \in V_3} x^{d_2^3(u)} + \sum_{u \in V_2} x^{d_2^3(u)}$$ $$= x^0 + nx^{(3n-4)^3} + nx^{(3n-2)^3} + nx^{(3n-1)^3}.$$ **Theorem 25:** Let Sf_n be a sunflower graph with 5n edges, $n \ge 3$. Then (a) $$F_1L(Sf_n) = 63n^3 - 120n^2 + 70n$$. (b) $$F_1L(Sf_n,x) = nx^{(3n-4)^2} + nx^{(3n-2)^2} + nx^{(3n-1)^2} + nx^{2(3n-4)^2} + nx^{18n^2 - 30n + 17}$$ ### Proof: (a) From equation (4) and Lemma 22, we have $$F_{1}L(Sf_{n}) = \sum_{uv \in E(Sf_{n})} \left[d_{2}^{2}(u) + d_{2}^{2}(v) \right]$$ $$= n \left[0^{2} + (3n - 4)^{2} \right] + n \left[0^{2} + (3n - 2)^{2} \right] + n \left[0^{2} + (3n - 1)^{2} \right]$$ $$+ n \left[(3n - 4)^{2} + (3n - 4)^{2} \right] + n \left[(3n - 4)^{2} + (3n - 2)^{2} \right]$$ $$= 63n^{3} - 120n^{2} + 70n.$$ (b) From equation (5) and by Lemma 22, we obtain $$F_{1}L(Sf_{n},x) = \sum_{uv \in E(Sf_{n})} x^{\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right]}$$ $$= nx^{\left[0^{2}+(3n-4)^{2}\right]} + nx^{\left[0^{2}+(3n-2)^{2}\right]} + nx^{\left[0^{2}+(3n-1)^{2}\right]} + nx^{\left[(3n-4)^{2}+(3n-4)^{2}\right]} + nx^{\left[(3n-4)^{2}+(3n-1)^{2}\right]}$$ $$= nx^{(3n-4)^{2}} + nx^{(3n-2)^{2}} + nx^{(3n-1)^{2}} + nx^{2(3n-4)^{2}} + nx^{18n^{2}-30n+17}.$$ ### REFERENCES - A.M. Naji, N.D. Soner and I Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2 (2017) 99-117. - 2. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012). - 3. V.R.Kulli, Leap hyper-Zagreb indices and their polynomials of certain graphs, *International Journal of Current Research in Life Sciences*, 7(10) (2018) 2783-2791. - 4. V.R. Kulli, On augmented leap index and its polynomial of some wheel graphs, submitted. - 5. V.R. Kulli, Sum connectivity leap index and geometric-arithmetic leap indices of certain windmill graphs, submitted. - 6. V.R.Kulli, Minus leap and square leap indices and *their polynomials* of some special graphs, *International Research Journal of Pure Algebra*, 8(11) (2018) 54-60. - 7. B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184-1190. - 8. N. De and S.M.A. Nayeem, Computing the *F*-index of nanostar dendrimers, *Pacific Science Review A: Natural Science and Engineering* (2016) DOI: http://dx.doi.org/10.1016/j.psra.2016.06.001. - 9. V.R.Kulli, Computation of F-reverse and modified reverse indices of some nanostructures, *Annals of Pure and Applied Mathematics*, 18(1) (2018) 37-43. - 10. V.R.Kulli, Computing the F-ve-degree index and its polynomial of dominating oxide and regular triangulate oxide networks, *International Journal of Fuzzy Mathematical Archive*, 16(1) (2018) 1-6. - 11. V.R. Kulli, Computing F-reverse index and F-reverse polynomial of certain networks, *International Journal of Mathematical Archive*, 8(8) (2018). - 12. V.R. Kulli, Computing the F-Revan index and modified Revan indices of certain nanostructures, *Journal of Computer and Mathematical Sciences*, 9(10) (2018) 1326-1333. - 13. V.R Kulli, Edge version of *F*-index, general sum connectivity index of certain nanotubes, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 449-455. - 14. V.R. Kulli, General Zagreb polynomials and F-polynomial of certain nanostructures, *International Journal of Mathematical Archive*, 8(10) (2017) 103-109. - 15. V.R.Kulli, Certain topological indices and their polynomials of dendrimer nanostars, *Annals of Pure and Applied Mathematics* 14(2) (2017) 263-268. - 16. V.R.Kulli, General fifth *M*-Zagreb indices and fifth *M*-Zagreb polynomials of PAMAM dendrimers, *International Journal of Fuzzy Mathematical Archive*, 13(1) (2017) 99-103. - 17. V.R. Kulli, On augmented reverse index and its polynomial of certain nanostar dendrimers, *Journal of Engineering Sciences and Research Technology*, 7(8) (2018) 237-243. - 18. V.R. Kulli, Reduced second Zagreb index and its polynomial of certain silicate networks, *Journal of Mathematics and Informatics*, 14 (2018) 11-16. - 19. V.R. Kulli, On augmented Revan index and its polynomial of certain families of benzenoid systems, *International Journal of Mathematics and its Applications*, 6(4) (2018) 43-50. - 20. V.R. Kulli, On the square ve-degree index and its polynomial of certain oxide networks, *Journal of Global Research in Mathematical Archives*, 5(10) (2018) 1-4. - 21. V.R. Kulli, On KV indices and their polynomials of two families of dendrimers, *International Journal of Current Research in Life Sciences*, 7(9) (2018) 2739-2744. - 22. V.R. Kulli, Computing square Revan index and its polynomial of certain benzenoid systems, *International Journal of Mathematics and its applications*, (2018). - 23. P. Shiladhar, A.M. Naji and N.D. Soner, Leap Zagreb indices of some wheel related graphs, *Journal of Computer and Mathematical Sciences*, 9(3) (2018) 221-231. ## Source of support: Nil, Conflict of interest: None Declared. [Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]