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ABSTRACT 
We introduce the F-leap and F1-leap indices of a graph. In this paper, the F-leap and F1-leap indices and their 
polynomials of wheel graphs, gear graphs, helm graphs, flower graphs and sunflower graphs are determined. 
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1. INTRODUCTION 
 
We consider only finite, connected, undirected graphs without multiple edges and loops. Let G be a graph with a vertex 
set V(G) and an edge set E(G). Let d(v) be the number of vertices adjacent to v. The distance d(u, v) between any two 
vertices u and v of G is the number of edges in a shortest path connecting these two vertices u and v. For a positive 
integer k and a vertex v in G, the open neighborhood of v in G is defined as Nk(v/G) = {u ∈ V(G) : d(u, v) = k}. The     
k-distance degree of a vertex v in G is the number of k neighbors of v in G, and it is denoted by dk(v), see [1]. Any 
undefined term here may be found in [2]. 
 
In [1], the first leap Zagreb index was introduced based on the second vertex degrees. The first leap Zagreb index of a 
graph G is defined as 
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Considering the first leap Zagreb index, we introduce the first leap Zagreb polynomial of a graph G and it is defined as 
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= ∑                                                                                                                                 (1) 

Very recently, some other leap indices were proposed and studied such as leap hyper-Zagreb indices, [3], augmented 
leap index [4], sum connectivity leap index and geometric-arithmetic leap index [5], minus leap index and square leap 
index [6]. 
 
The F-index was studied by Furtula and Gutman in [7] and it is defined as 
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The F-index was also studied in [8, 9, 10, 11, 12, 13]. 
 
Motivated by the definition of the F-index and its applications, we introduce the F-leap index and F1-leap index of a 
graph as follows: 
 
The F-leap index of a graph G is defined as 
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Considering the F-leap index, we propose the F-leap polynomial of a graph G as 

( ) ( )
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= ∑                                                                                                                                 (3) 

 
The F1-leap index of a graph G is defined as 

( ) ( ) ( )
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Considering the F1-leap index, we propose the F1-leap polynomial of a graph G as 
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Recently, some different type of polynomials were studied in [14, 15, 16, 17, 18, 19, 20, 21, 22]. 
 
In this paper, we consider wheel graphs and some related graphs, see [23]. We determine the F-leap and F1-leap indices 
and their polynomials of wheel graphs and some related graphs. 
 
2. RESULTS FOR WHEELS 
 
The wheel Wn is the join of Cn and K1. Clearly Wn has n+1 vertices and 2n edges. The vertex K1 is called apex and the 
vertices of Cn are called rim vertices.  The graph Wn is presented in Figure 1.  
 

 
Figure-1: Wheel Wn 

 
Lemma 1: Let Wn be a wheel with n+1 vertices, n≥3. Then there are two types of the 2-distance degree of vertices as 
given below: 
 V1 = {u ∈ V(Wn) | d2(u) = 0}, | V1 | = 1. 
 V2 = {u ∈ V(Wn) | d2(u) =  n – 3}, | V2 | = n. 
 
Lemma 2: Let Wn be a wheel with n+1 vertices, n≥3. Then there are two types of the 2-distance degree of edges as 
follows: 
 E1 = {uv ∈ E(Wn) | d2(u) = 0, d2(v) = n – 3}, | E1 | = n. 
 E2 = {uv ∈ E(Wn) | d2(u) =  d2(v) = n – 3}, | E2 | = n. 
 
Theorem 3: Let Wn be a wheel with n+1 vertices, n≥3. Then the F-leap index of Wn is  
    33 .nFL W n n   
 
Proof: From equation (2) and by Lemma 1, we deduce 
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Theorem 4: Let Wn be a wheel with n+1 vertices, n≥3. Then  

(a)    20 3
1 , .n

nLM W x x nx    

(b)    30 3, .n
nFL W x x nx    

 
Proof:  
(a) From equation (1) and by Lemma 1, we have 
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  20 3 .nx nx    
 (b) From equation (3) and by Lemma 1, we obtain 
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  30 3 .nx nx    
 

Theorem 3: Let Wn be a wheel with n+1 vertices, n≥3. Then  
(a)    2

1 3 3nF L W n n   

(b)      2 23 2 3
1 , .n n

nF L W x nx nx    
 
Proof:  
(a) From equation (4) and Lemma 2, we deduce 
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(b) From equation (5) and by Lemma 2, we derive 
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               2 2 220 3 3 3n n nnx nx         2 23 2 3n nnx nx    
  

3. RESULTS FOR GEAR GRAPHS 
 
A bipartite wheel graph is a graph obtained from Wn with n+1 vertices adding a vertex between each pair of adjacent 
rim vertices and this graph is denoted by Gn and also called as a gear graph. Clearly, |V(Gn)| = 2n+1 and |E(Gn)| = 3n. A 
gear graph Gn is depicted in Figure 2. 
 

 
Figure-2: Gear graph Gn 

 
Lemma 6: Let Gn be a gear graph with 2n+1 vertices, n≥3. Then Gn has three types of the 2-distance degree of vertices 
as follows: 
 V1 = {u ∈ V(Gn) | d2(u) = n}, | V1 | = n. 
 V2 = {u ∈ V(Gn) | d2(u) = n – 1}, | V2 | = n. 
 V3 = {u ∈ V(Gn) | d2(u) = 3}, | V3 | = n. 
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Lemma 7: Let Gn be a gear graph with 3n edges, n≥3. Then Gn has two types of the 2-distance degree of edges as 
follows: 
 E1 = {u ∈ E(Gn) | d2(u) = n, d2(v) = n – 1}, | E1 | = n. 
 E2 = {u ∈ E(Gn) | d2(u) = 3, , d2(v) = n – 1}, | E2 | = 2n. 
 
Theorem 8: Let Gn be a gear graph with 2n+1 vertices,  n≥3. Then the F-leap index of Gn is  
   4 3 22 3 26 .nFL G n n n n     
 
Proof: By using equation (2) and by Lemma 6, we have 
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                   33 31 3n n n n     4 3 22 3 26 .n n n n     
 
Theorem 9: Let Gn be a gear graph with 2n+1 vertices, n≥3. Then  

(a)    22 1 9
1 , .n n

nLM G x x nx nx    

(b)    33 1 27, .n n
nFL G x x nx nx    

 
Proof:  
(a) By using equation (1) and by Lemma 6, we obtain 
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         22 1 9.n nx nx nx    
(b) By using equation (3) and by Lemma 6, we have 
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      33 1 27 .n nx nx nx    
 

Theorem 10: Let Gn be a gear graph with 3n edges, n≥3. Then  
(a)   3 2

1 4 6 21 .nF L G n n n    

(b)  
2 22 2 1 2 1 0

1 , 2 .n n n n
nF L G x nx nx      

 
Proof:  
(a) From equation (4) and Lemma 7, we deduce 
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(b) From equation (5) and by Lemma 7, we derive 
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4. RESULTS FOR HELM GRAPHS 
 
The helm graph Hn is a graph obtained from Wn (with n+1 vertices) by attaching an end edge to each rim vertex of Wn. 
Clearly, |V(Hn)| = 2n+1 and |E(Hn)| = 3n. A graph Hn is shown in Figure 3. 
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Figure-3: Helm graph Hn 

 
Lemma 11: Let Hn be a helm graph with 2n+1 vertices, n≥3. Then Hn has three types of the 2-distance degree of 
vertices as given below: 
 V1 = {u ∈ V(Hn) | d2(u) = n}, | V1 | = 1. 
 V2 = {u ∈ V(Hn) | d2(u) = n – 1}, | V2 | = n. 
 V3 = {u ∈ V(Hn) | d2(u) = 3}, | V3 | = n. 
 
Lemma 12: Let Hn be a helm graph with 3n edges, n≥3. Then Hn has three types of the 2-distance degree of edges as 
follows: 
 E1 = {uv ∈ E(Hn) | d2(u) = n, d2(v) = n – 1}, | E1 | = n. 
 E2 = {uv ∈ E(Hn) | d2(u) = 3, d2(v) = n – 1}, | E2 | = n. 
 E3 = {uv ∈ E(Hn) | d2(u) = d2(v) = n – 1}, | E3 | = n. 
 
Theorem 13: Let Hn be a helm graph with 2n+1 vertices, n≥3. Then the F-leap index of Hn is  
   4 3 22 3 26 .nFL H n n n n     
 
Proof: By using equation (2) and by Lemma 11, we obtain 
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Theorem 14: Let Hn be a helm graph with 2n+1 vertices,  n≥3. Then  

(a)    22 1 9
1 , .n n

nLM H x x nx nx    

(b)    33 1 27, .n n
nFL H x x nx nx    

 
Proof:  
(a) By using equation (1) and by Lemma 11, we have 
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(b) From equation (3) and Lemma 11, we duce 
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Theorem 15: Let Hn be a helm graph with 3n edges, n≥3. Then  

(a)   3 2
1 5 8 13 .nF L H n n n    

(b)  
22 2 1

1 , n n
nF L H x nx   

2 2 10n nnx    22 2 1 .n nnx    
 
Proof:  
(a) From equation (4) and Lemma 12, we obtain 
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(b) From equation (5) and by Lemma 12, we have 
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22 2 1n nnx   

2 2 10n nnx    22 2 12 .n nnx    
 
5. RESULTS FOR FLOWER GRAPHS 
 
The graph Fln, is a flower graph obtained from a helm graph Hn by joining an end vertex to the apex of the helm graph. 
Then |V(Fln)| = 2n+1 and |E(Fln)| = 4n. A graph Fln is shown in Figure 4. 

 
Figure-4: Flower graph Fln 

 
Lemma 16: Let Fln be a flower graph with 2n+1 vertices, n≥3. Then Fln has three types of the 2-distance degree of 
vertices as given below: 
 V1 = {u ∈ E(Fln) | d2(u) = 0}, | V1 | = 1. 
 V2 = {u ∈ E(Fln) | d2(u) = n – 5}, | V2 | = n. 
 V3 = {u ∈ E(Fln) | d2(u) = n – 2}, | V3 | = n. 
 
Lemma 17: Let Fln be a flower graph with 4n edges, n≥3. Then Fln has four types of the 2-distance degree of edges as 
follows: 
 E1 = {uv ∈ E(Fln) | d2(u) = 0, d2(v) = n – 5}, | E1 | = n. 
 E2 = {uv ∈ E(Fln) | d2(u) = 0, d2(v) = n – 2}, | E2 | = n. 
 E3 = {uv ∈ E(Fln) | d2(u) = n – 5, d2(v) = n – 2},| E3 | = n. 
 E4 = {uv ∈ E(Fln) | d2(u) = d2(v) = n – 5}, | E4 | = n. 
 
Theorem 18: Let Fln be a flower graph with 2n+1 vertices, n≥3. Then the F-leap index of Fln is  
   4 3 22 21 87 133 .nFL Fl n n n n     
 
Proof: From equation (2) and by Lemma 16, we have 
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Theorem 19: Let Fln be a flower graph with 2n+1 vertices, n ≥ 3. Then  

(a)      2 20 5 2
1 , .n n

nLM Fl x x nx nx     

(b)      3 30 5 2, .n n
nFL Fl x x nx nx     

 
Proof:  
(a) By using equation (1) and by Lemma 16, we obtain 
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        3 30 5 2 .n xx nx nx     
 

Theorem 20: Let Fln be a flower graph with 4n edges, n≥3. Then  
(a)   3 2

1 6 48 108 .nF L Fl n n n    

(b)  
2 2 2 210 25 4 4 2 14 29 2 20 50

1 , .n n n n n n n n
nF L Fl x nx nx nx nx            

 
Proof:  
(a) From equation (4) and Lemma 17, we deduce 
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          2 2 2 22 20 5 0 2 5 2n n n n n n n                     

         2 25 5n n n     
3 26 48 108 .n n n    

(b) From equation (5) and by Lemma 17, we derive 
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                  2 2 2 2 2 22 20 5 0 2 5 1 5 5n n n n n nnx nx nx nx
                                    

       
2 2 2 210 25 4 4 2 14 29 2 20 50.n n n n n n n nnx nx nx nx            

 
6. RESULTS FOR SUNFLOWER GRAPHS 
 
The graph Sfn, is a sunflower graph which is obtained from the flower graph Fln by attaching n end edges to the apex 
vertex. Then we have |V(Sfn)| = 3n+1 and |E(Sfn)| = 5n. A graph Sfn is presented in Figure 5. 

 
Figure-5: Sunflower graph Sfn 
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Lemma 21: Let Sfn be a sunflower graph with 3n+1 vertices, n≥3. Then Sfn has four types of the 2-distance degree of 
vertices as follows: 
 V1 = {u ∈ E(Sfn) | d2(u) = 0}, | V1 | = 1. 
 V2 = {u ∈ E(Sfn) | d2(u) = 3n – 4}, | V2 | = n. 
 V3 = {u ∈ E(Sfn) | d2(u) = 3n – 2}, | V3 | = n. 
 V4 = {u ∈ E(Sfn) | d2(u) = 3n – 1}, | V4 | = n. 
 
Lemma 22: Let Sfn be a sunflower graph with 5n edges, n≥3. Then Sfn has five types of the 2-distance degree of edges 
as given below: 
 E1 = {uv ∈ E(Sfn) | d2(u) = 0, d2(v) = 3n – 4}, | E1 | = n. 
 E2 = {uv ∈ E(Sfn) | d2(u) = 0, d2(v) = 3n – 2}, | E2 | = n. 
 E3 = {uv ∈ E(Sfn) | d2(u) = 0, d2(v) = 3n – 1}, | E3 | = n. 
 E4 = {uv ∈ E(Sfn) | d2(u) = d2(v) = 3n – 4}, | E4 | = n. 
 E5 = {uv ∈ E(Sfn) | d2(u) = 3n – 4, d2(v) = 3n – 2}, | E5 | = n. 
 
Theorem 23: Let Sfn be a sunflower graph with 3n+1 vertices, n≥3. Then the F-leap index of Sfn is  
   4 3 281 189 189 73 .nFL Sf n n n n     
 
Proof: From equation (2) and by Lemma 21, we have 
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                                 4 3 281 189 189 73 .n n n n     
 
Theorem 24: Let Sfn be a sunflower graph with 3n+1 vertices, n ≥ 3. Then  

(a)        2 2 20 3 4 3 2 3 1
1 , .n n n

nLM Sl x x nx nx nx       

(b)        3 3 30 3 4 3 2 3 1, .n n n
nFL Sf x x nx nx nx       

 
Proof:  
(a) By using equation (1) and by Lemma 21, we derive 
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(b) From equation (3) and Lemma 21, we duce 

( ),nFL Sf x ( )

( )

3
2

n

d u

u V Sf
x

∈
= ∑ ( )3

2

1

d u

u V
x

∈
= ∑ ( )3

2

2

d u

u V
x

∈
+ ∑ ( )3

2

3

d u

u V
x

∈
+ ∑ ( )3

2

2

d u

u V
x

∈
+ ∑  

               3 3 30 3 4 3 2 3 1 .n n nx nx nx nx       
 

Theorem 25: Let Sfn be a sunflower graph with 5n edges, n≥3. Then  
(a)   3 2

1 63 120 70 .nF L Sf n n n    

(b)          2 2 2 2 23 4 3 2 3 1 2 3 4 18 30 17
1 , .n n n n n n

nF L Sf x nx nx nx nx nx           
 
Proof:  
(a) From equation (4) and Lemma 22, we have 
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(b) From equation (5) and by Lemma 22, we obtain 
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