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ABSTRACT

Grossman and Katz [4] introduced the non-Newtonian calculus consisting of the branches of geometric, anageometric
and bigeometric calculus. Cengin Tiirkmen and Feyzi Basar [1] have some basic results on the sets of sequences with
geometric calculus. The main purpose of this paper is to introduce the geometric difference sequence space c¢(A;) and
prove that c®(A;) is a Banach space with respect to norm |I. ||§G. Finally we obtain the Geometric Newton-Gregory
interpolation formulae.
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INTRODUCTION

In 1967 Robert Katz and Michael Grossman created the first system of non-Newtonian calculus, which we call the
geometric calculus. In 1970 they had created an infinite family of non-Newtonian calculi, each of which differs
markedly from the classical calculus of Newton and Leibniz. Among other things, each non-Newtonian calculus
possesses four operators: a gradient (i.e. an average rate of change), a derivative, an average and an integral. For each
non-Newtonian calculus there is a characteristic class of functions having a constant derivative.

We should know that all concepts in classical arithmetic have natural counterparts in a — arithmetic. Consider any
generator a with range A € C. By a — arithmetic, we mean the arithmetic whose domain is A and operations are
defined as follows. For x, y € A and any generatore,

a — addition x+y=afa1(x)+a1(y)]
a — subtraction x=y=ala”t(x) —al(y)]
a — multiplication x y=afa t(x) x a ()]
a — division x/y=afla'(x)/a ()]
a — order x<yoallx) <al(y).

If we choose exp as an a — generator defined by a(z) = eZ for z € C then a~1(z) = In z and a — arithmetic turns
out to Geometric arithmetic.
a —addition x @y = ala"'(x) +a 1(y)] = e**1) = x y geometric addition
a — subtraction
xOy=ala(x)—a " (y)] = e!™ 1) = x +y,y # 0 geometric subtraction
a — multiplication xQy=alat(x) x a1 (y)] = eI¥*I) = ¥y geometric multiplication
1

a —division xQ@Qy = ala ' (x)/a"1(y)] = eIx+I¥) = xIny y = 1 geometric division.
In [11] defined the geometric complex numbers C(G) as follows:

C(G):={e?:z € C} =C {0}.
Then (C(G),®,©) is a field with geometric zero 1 and geometric identity e.
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Then for all x,y € C(G)
° x@y:xy
* xOy=x/y
° x@y — xlny :ylnx
1
. x@yor§6=xm,y¢1
° x26=x®x=xlnx
° xPG = x
° \/}G:e(lnx)
e x 16 = plogx

e xOe=xandx®1=x

o "Ox=x"=x@xD........ (upto n number of x)
X, ifx>1
e Ixlg= } ifx=1
= ifx<1
X
Thus 1x 1, = 1.
G
° X% = |xlg
° |ey|(;=e‘y‘
® lx@yl(}:lxl(;@lyl(;
® |x@y|GS|x|G@|yIG
® |x@y|(;:|x|(;@|y|(;
o xOQylg=IxlO lylg
e 0,01,0xOyY)=yOxieinshartO(xOy)=yOx.

Let [, c and c, be the linear spaces of complex bounded, convergent and null sequences, respectively, normed by
], = supy 12 1.

Turkmen and Bagar [11] have proved that
w(G) = {(x}):x;, € C(G) forall k € N}
is a vector space over C(G) with respect to the algebraic operations @ addition and ® multiplilcation
@:w(6) xw(G) » w(G)
xy)>x@y=(x)® (xy) = (i)
G:C(6) X w(G) » w(6)
(@,y)~»aQy=a0 )= (@),
where x = (x),y = (¥x) € w(G) and @ € C(G). Then
L (G) = {x = (%) € W(G): supyey | X¢ | ¢ < 0}
c(G)={x=(x) €Ew(G):Glimy o 1 x, Olls; =1}
¢ (G) = {x = (%) € w(G): G limy_,,x, = 1}, where g lim is the geometric limit
,(G) = {x = (%) € W(G): ¢ Xpo( 1 X | ¢)PC < o0}, where ¢ Y is the geometric sum,
are classical sequence spaces over the field C(G). Also it is shown that [, (G), c(G) and ¢, (G) are Banach spaces with
the norm
||x||G = supy | x| g, x = (X4, %5, %3 ... ) € A(G), A € {lo, €, Co}-

For the convenience, in this paper we denote I, (G), c(G), ¢, (G), respectively as I;_, ¢, c§
In 1981, Kizmaz [6] introduced the notion of difference sequence spaces using forward difference operator A and
studied the classical difference sequence spaces L, (A), c(A),co(A). In this section we define the following new
geometric sequence space

lGQO(AG) = {x = (xk) € (,()(G): A(;x € lGoo}’ where A(;x = Xk @ X411+

Theorem: The space l;, (A;) is a normed linear space w.r.t.the norm
lxly, = 1116 @ o]l
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G
Theorem: The space c®(A;)is a Banach space w.r.t.the norm || || Ae

Proof: Let (x,,) be a Cauchy sequence in c®(Ag), where x,, = (x™) = (™, x{, x{™, ........)vn € N, x(™ is the k"
coordinate of x,,. Then

| % © xp |IZG len) ox™| @ | Agx, © Agxn, || > 1lasm,n— o
€010 | (4 ©x)© (" oI’ ~ 1
616 1 05086 Gl I

= 1" 9 2™ 1 ¢ @ supe | (x” ©x() © (x) © ,E’fi)ll - Lasmn— e,

G G
This implies that | x™ © x™| " - 1asn,m » w vk € N,since | x™ ©x™| " > 1.

Therefore for fixed Kk k" co-ordinates of all sequences form a Cauchy sequence in C(G) ..

2 = (x, %P, 2P 1, ) is a Cauchy sequence. Then by the completeness of C(G), (x™) converges to

xk (say) as follows:

_ (1 (6] (6] (v
xl—(xl,xz,x3, oy X,
_ () ) ) ()
xz—(xl,xz,x3, s X, )
_ 3 3 3 3)
—(xl,xz,x3, s X, )
(m) (m). (m) . (m)
= ( X, 0, Xy, X5, s Xp O, )
_ (D ‘o
(x , Xy, X, w, Xg, )
l l ! ! }
x =(x, x5 X3, vy Xpo )

Ghmx()—xkvkeN

n—oo

Further for each ¢ > 1,3N = N(s) s.t. vn,m = N we have
%P 0™ < el ©xm O (P 0x™) | <

and
G
Glimy,e | x™ © xim)| =[x ox| <=
This implies
Gllml(x(n) MO (xM O x™) 16 = 1, Ox) O (IxM O x) 1S <eVn=N
k+1 k+1 - k+1 k+1 k = .

Since € is independent of k,
supy, | (ka O x441) © (x(n) Ox)l<e¢
G
= supy | (x,(c’}r)1 (n)) O (k41 O %) 16 = || 86, © AGx"oo <e

¢ _ i ,m G G
Consequently we have [x, © x|, = 1" ©x; 1° ® [|Agx, © Agx|, <e*Vn = N.
Hence we obtain x,, - x asn — .

Now we must show that x € c¢%(A;). We have
1 © Xppr 1€ = 12 © X © g @ Xyq © Xyq 1€
< Ixy O, 19@ |« @x"ZG = 0(e).
This implies x = (x;,) € c%(Ap).
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Now we defines : I (Ag) = 1o (Ag), x = sx =y = (1,x,,x3,....). It is clear that s is a bounded linear operator on
l,(Ag) and ||s|| b =
Also
S[le(AG)] =5l (D) ={x =) x €l (A;),x; =1} c I (D)
is a subspace of IS (Ag) and as 1 x; | ¢ = 1 for x; = 1 we have
G G .
lxll 5, = 12exl,, in sle,, (A6).

On the other hand we can show that
Ag: slg,, (Dg) = lg,,
x= ) >y =) = (4 © xp41)
is a linear homomorphism. So si;_(A;) and I, are equivalent as topological space. A; and A;' are norm preserving

I Y

Let [sl; (Ag)]" and [Ig, ]* denote the continuous duals of sl; (Ag) and [, respectively. We can prove that

T:= [slg (D)1 = [l ) fag = f = fag0lG"
is a linear isometry. Thus [sl; (A;)]" is equivalent to [l 1*. In the same way we can show that scb(Ag) and
cf sc§(A;) and c§ are equivalent as topological spaces and [sc€(Ag)]" = [sc§ (M) 1" = lg, (Ig,, the space of
geometric absolutely convergent series).

2. GEOMETRIC FORM OF ABEL’S PARTIAL SUMMATION FORMULA

Abel’s partial summation formula states that if (a, )and (b,) are sequences then
k=1 @b = Li=1 Sk (b — bry1) + Spbnys,
where S, = Y¥ | a;. Then
et Qb = 21 Sk (b = byeyq) + limpy 0, Spbpyy
Yot @by = Xie1 Sk (b — by4q), if (by) monotonically decreases to zero.

Similarly as © is distributive over @ we have
GYria, Qb =GX, S O (by ©byyy), where S, = GYE a;.

In particular, if (b,) = (e7*), then (b,) monotonically decreases to zero. Then G Y5 a, Qe *=GX7 5. O
(e*O@e )y =GYr, S Oe=GXi; Sk

Let (p,) be a sequence of geometric positive numbers monotonically increasing to infinity. Then (pi G) is a sequence
n
monotonically decreasing to zero (i.e. to 1).

Lemma 2.1:If sup, | G X", c, | ¢ < o then sup, (pn Ol GZ,}";lC:*ﬁG | G) < oo,
n+k

Lemma 2.2: If the series .5, ¢, is convergent then
. o  Cnt+k-1 —
lim, (pn ©) GZk:l—anc G) =1

Corollary 2.3: Let (p,,) be monotonically increasing. If
sup, |G- p, ©a, ¢ <ocothensup, 1P, © GYp i@, 1€ < oo,

Proof: We put p,; © ay,, instead of ¢, in Lemma 2.1 we get

o  Cnik— o Pn+kQa
pn @ G Zk:1 n+k-1 G = pn @ G Zk:1 n+k n+k G
Pn+k Pn+k

=Pp O G Xg=1 Qi
=Pp O G Xgeps1 @ = 0(e).

Corollary 2.4: If G Y-, pr © a is convergent then
limn Pn @ G Zl?:n+1 ag = 1

Corollary 2.5: G Y., e* © ay, is convergent iff G X3, R, is convergent with e™ O R,, = 0(e),
where R, = G Yo, 11 Q-

© 2018, IIMA. All Rights Reserved 53



Shadab Ahmad Khan /
Geometric Difference Sequence Spaces in Numerical Analysis / IMA- 9(12), Dec.-2018.

3. SOME APPLICATIONS OF GEOMETRIC DIFFERENCE
In this section we find the Geometric Newton-Gregory interpolation formulae.

Geometric Factorial: Let us define geometric factorial notation !;as
n,=e"Qe"10e"20...0e2De=em.

For example,
0, =e=e=1
11, =e' =e =2.71828
2!, =e? =e? =7.38906
3!, =e% =e® =4.03429 x 10?
41, = e* = e?* = 2.64891 x 10°
5!, = e% = e'20 = 1.30418 x 1052 etc.

Generalized Geometric Forward Difference Operator: Let

Asf(@) = fla@h) © f(a).

Agf(@) =Asf(a@® h) © Asf (@)
={f@@e’ONOfla®@M}O{f(a®h) O f(a)}
=fl@a@e?OhOe’Of(a®h)® f(a).

Agf(@) = A2f(a @ h) © ALf(a)

={f@a®@e’OnNOe’Of(a®e?Oh)® f(a ®h)}
Of@a®@e?Oh e’ fla®h) @ f(a)}
=f@a®e*OhOeOf(a®@e*Oh)®@e* O fla®h) O f(a).

Thus, n™" geometric forward difference is
ALf(a) =¢ Zi-o(© €)c © e O f(a @ e O h), with (O €)% = e.

Generalized Geometric Backward Difference Operator: Let
Vef(@) = f(@) © fla© h).
Vef(@) =Vsf(a) ©Vsf(a©h)
={f@of@on}o{faoh) O flae® O h)}
=f(@©e*Of(a®h) @ f(a®e? O h)}.

Vif(a) =Vif(a) © Vef(a@h)
={f(@)©e*Of(aOh) @ f(a@e*Oh)}
O{f(aOhBO e2Qf(a@e?Oh)® f(a®e* O h)}
=f(@OetQf(a@h)@e*OQf(a@e?Oh) O f(a®e*Oh).

Thus, n™" geometric backward difference is
AEf(@) =¢ Troo(@ ) O e O fFla@ ek O ).

Factorial Function: The product of n consecutive factors each at a constant geometric difference, h, the first factor
being x is called a factorial function of degree n and is denoted by x™® . Thus
XD =xOQOxOQeONOXO2ONOXxOeEONO..0xOe™Oh).

In particular, for h = e,
XM =x0(x0e)0x0eH)Ox0eNO..0xOe™™).

Geometric Newton-Gregory Forward Interpolation Formula
Let y = f(x) be a function which takes the values
fla),fla®h),fla®e?Oh),fla®e®>Oh),....,[fla®e™® h) for the n + 1 geometrically equidistant values
(which form a Geometric Progression in ordinary sense) a,a @ h,a @ e? O h,a@® e>* Oh,.....,a @ e™ O h of the
independent variable x and let P, (x) be a geometric polynomial in x of degree n defined as:
Px) =404, 0x0a) D4, 00000 x0a0hN®A;0x0a)Ox0adh)
OxB0a0e’!Oh®..04,0xO0a)O*xOadhO ..
Ox©a©e™ Oh). @)

We choose the coefficients A,, A4, 4,, ...., A, such that
P@=f(@Ph@®h)=fa®h),h@®e?Oh)=fa®e’Oh),...,p,(a®e”Oh) =fla®e™Oh).
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Putting x =a,a @ ha®e?OQOha®e>Oh,.....,a@e™Oh in (i) and then also putting the values of
P,(a),P,(a@® h),......., B,(a @ e™ © h), we get
fl@) =4, =4, =f(a).
Fa@®n = 4,04 0hm 4, =L CONOI@; 4/ @
fla®e*Oh)=A4,De? @hOA1@€ @thOAz
fla®e*Oh) ©e? @[f(a@h)@f(a)]@f(a)
=4, = o2 O hc
f(a@e Oh)©e? Of(a@h)@f(a)
2l;e%2 © h%

- AZf(@)
216OR3%G

A f (@)
3160h%6G

Similarly A; =

L
A, ==L ¢

nlgOR"G

Putting the values of Ay, A,,A4,, ...., A,, found above in (i), we get

PG = f(@) @ Gf()GQ(x@a)@zﬁag‘,‘l)%m(x@a)@(x@a@h)@
B/ (@

@(x@a)C)(x@a@h)C)(x@a@ezé)h)@---@—n, O e
G
Ox©aeNO.0Ex0a0e™ Oh.

Agf (@)
31, Q k36

OO

G

This is the Geometric Newton-Gregory forward interpolation formula. Putting %"ZG =uorx=a®hQ©u, formula
takes the form

R0 = 1@ 010 8@ 02126 0 30 0 - 21 E92EEO Do rw e .
@uQ w©e)O (u @ni)@ O] (u@e"‘l)G O M (). )
The result (ii) can be written as
Px)=P(@a®hQu) = Afla) D —GCOAf(a)D.... ®
9 6 O A f(a).

Whereu™d =4y Q u®e)O u®er)®..0 (u @ e” .

Geometric Newton-Gregory Backward Interpolation Formula

Let y = f(x) be a function which takes the values

fla®@e®Oh),fa@e™1Oh), fla®e™2Oh),fla@®e™3Oh),....f(a) for the n+1 geometrically

equidistant values a @ e" O ha®@ e O ha®@®e™2 O ha®e™ 3 OAh,....,a of the independent variable x

and let B, (x) be a geometric polynomial in x of degree n defined as:

P =4 @4, 0x0a0e"ON DA 0x0a0e"ONOxOa®e™ Oh) @ A;
OxBa0e"ONOxBOa0e™'ONOXx0a0e"*Ohd .04,
OxBa0e"ONOExBOa0e™ ' OhO .0 adh). (i)

where A,,A4,4,, ..., A, are constants which are to be determined so as to make

P@a®e"OnN=f@®e”"Oh),P@a®e*Oh)=fla®e™* Qh),..,Ba)=f(a)

Puttingx =a® e O h,a @ e™ 1 O h, ..... in (iii) and also putting B,(a D e O h) = f(a D e™ O h), ......, we get
Ag=f(a®De™ C) h)
Vef(a @ e"© h)

A, =
V2 h

. Gf(a@e on,
2 @ th

AL = VGf(a(-Beth)
3= 316OR36 '

A = Vef(a®e™ @h)
no nl; O h"e
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Substituting the values of Ag, 44, A4,, ... in (iii), we get

PX)=fa®@e"Oh @

This is the Geometric Newton-Gregory backward interpolation formula. Putting u =

Vefla®@e™ ©h) n Vifla®@e™ O h)
- GOXxOQa0e"Ohd 2100 hie G

v "Oh
Ox©aRe"ONOxOa0e™ O Gf;?%ehgg) )GQ(x@a@e"Qh)
G

Vi LYOY,)
Ox0ae"™ONOExQa0e"?ON® .. @ Gfi?%ehn? )6
‘G

OxBaBe"ONOExBOaB0e™ OO ..0xBOadh). (iv)

n
—xe(aeie on Gorx=a®e™(®

h® uQ© h, we get
P(x)==P,(a®@e"Oh®@u®h)

=f(a€r)e"®h)@uGVGf(a@e”Qh)@wGC)V%f(a@e"@h)
G

2
@u@(u@?‘@(u@e )GQng(a@eth)@
G
2 n—-1
@LOU@IOWONO OO iy ynry@er o b

nl;

Advantages of Geometric Interpolation Formulae over Ordinary Interpolation Formulae

All the ordinary interpolation formulae are based upon the fundamental assumption that the data is expressible or can
be expressed as a polynomial function with fair degree of accuracy. But geometric interpolation formulae have no such
restriction. Because geometric interpolation formulae are based on geometric polynomials which are not polynomials in
ordinary sense. So geometric interpolation formulae can be used to generate transcendental functions, mainly to
compute exponential and logarithmic functions. Also geometric forward and backward interpolation formulae are based
on the values of the argument that are geometrically equidistant but need not be equidistant like classical interpolation
formulae.
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