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ABSTRACT 
In this paper restriction of Pre A*-algebra function has been derived. Shannon expansion of Pre A*-algebra function 
is explained with an example. Theorems related to the restriction have been proved. 
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1. INTRODUCTION  
 
In 1994, P. Koteswara Rao [1] first introduced the concept of A*-algebra ( ) ( )( ), , , ,   - ,0,1, 2A

π
∧ ∨ ∗ −  .  

 
In 2000, J.Venkateswara Rao[2] introduced the concept Pre A*-algebra  ( )( ), , ,  A ∧ ∨ −   analogous to C-algebra as a 
reduct of A*- algebra. In [4] ternary operation on Pre-A* algebra have been proved and studied the properties.  
J.Venkateswara Rao [5] analyze the properties of PreA*-function. He defined implicants of Pre A*-algebra function[6]. 
 
2. PRELIMINARIES  
 
Definition 2.1 [4]: An algebra ( , , , ( ) )A ∧ ∨ − where A is non-empty set with 1,∧ ,∨  are binary operations and ( ) −   
is a unary operation satisfying 
(a)   = ,     x x x A∀ ∈   
(b) ,      x x x x A∧ = ∀ ∈   
(c) ,      ,x y y x x y A∧ = ∧ ∀ ∈   
(d) ( )  y ,     ,x y x x y A∧ = ∨ ∀ ∈        
(e) ( ) ( ) ,     , ,x y z x y z x y z A∧ ∧ = ∧ ∧ ∀ ∈   
(f) ( ) ( ) ( ),     , ,x y z x y x z x y z A∧ ∨ = ∧ ∨ ∧ ∀ ∈   
(g) (  ),     ,x y x x y x y A∧ = ∧ ∨ ∀ ∈ .    
      is called a Pre A*-algebra 
 
Example 2.1[4]: 3 = {0, 1, 2} with operations , , ( )∧ ∨ − defined below is a Pre A*-algebra. 
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Lemma 2.2 [4]: Every Pre A*-algebra with 1 satisfies the following laws 
       (a)   ~1 xxx ∨=∨    (b)  ~0 xxx ∧=∧  
 
Lemma 2.3 [4]:  Every Pre A*-algebra with 1 satisfies the following laws. 
(a)  (  ) = (  ) x x x x x x x∧ ∨ ∨ ∧ =       
(b) (  ) y (x y) (x y)x x∨ ∧ = ∧ ∨ ∧      
(c) ( ) ( ) (  y z)x y z x z x∨ ∧ = ∧ ∨ ∧ ∧  
 
Definition 2.4 [4]: Let A  be a Pre A*-algebra. An element x A∈  is called central element of A  if  =1x x∨   and the 
set { /  =1x A x x∈ ∨  } of all central elements of A  is called the centre of A and it is denoted by ( )B A . 
 
Theorem 2.5 [4]: Let A  be a Pre A*-algebra with 1, then ( )B A is a Boolean algebra with the induced operations 

 ~(-) ,  , ∨∧  
 

Theorem 2.6 [4]: Let A  is a Pre A*-algebra with 1. Then A  has trivial centre if and only if  oA A= , for some Pre 
A*-algebra oA . 
 
Lemma 2.7 [4]: Let A  be a Pre A*-algebra with 1 , 
(a) If ( )y B A∈ then  y=  , Ax x x x x∧ ∧ ∧ ∀ ∈   
(b) If , (A)x y B∈  then ( ) ( )x x y x x y x∧ ∨ = ∨ ∧ =    
 
Lemma 2.8 [4]: Let A  be a Pre A*algebra with 1, 0 and let ,x y A∈  
(a) If  0,x y∨ =   then 0x y= =  (b) If  1,x y∨ =    then  1x x∨ =  
 
Theorem 2.9 [4]: Let A  be a Pre A*-algebra with 1 and  ,x y A∈ , if  0x y∧ = , 1,x y∨ =  then    y x=   
 
Definition 2.10[7]: A Pre A*-algebra function  is  said to be in   disjunctive   normal form in n variables   

1 2 3, , ,............ nx x x x   if it can be written as join of terms of the type 1 1 2 2( ) ( ) ......... ( )n nf x f x f x∧ ∧  where 
~( )         1    i i i if x x or x i to n= ∀ =  and no two terms are same. 1 1 2 2( ) ( ) ......... ( )n nf x f x f x∧ ∧  are called 

minterms or minimal polynomials. 
 
Thus a minterm in n variables is a product of n literals in which each variable is represented by the variable itself or its 
complement. 
 
Definition 2.11[7]: If a DNF contains all the possible minterms then it is complete DNF. 
 
Definition 2.12[7]: A Pre A*-algebra function is said to be in   conjunctive   normal form in n variables    

1 2 3, , ,............ nx x x x   if it can be written as meet of terms of the type 1 1 2 2( ) ( ) ......... ( )n nf x f x f x∨ ∨  where 
~( )         1    i i i if x x or x i to n= ∀ =  and no two terms are same. 1 1 2 2( ) ( ) ......... ( )n nf x f x f x∨ ∨  are called 

maxterms or maximal polynomials 
 
3. RESTRICTION OF PRE A*-ALGEBRA FUNCTION 
 
If X1 is any subset of X, the restriction of function  is the function 

1Xf  from X1  to Y. 

If 
1Xf  is the restriction of ,f  then f  is the extension of 

1Xf .Informally, a restriction of a function f is the result of 

trimming its domain. 
 
Definition 3.1:  Let f be a Pre A*-function on An and let {1,2,........ }k n∈ . We denote by 2 1, ,

k k
f fα α= = and 0kxf =  

respectively, the Pre A*-function defined as follows:  
for every 1

1 2 1 1( , .... , ... ) n
k k n Aα α α α α −
− + ∈  

1 2 1 12 ( , ... , ... ) (2)
k k k nxf fα α α α α− += =
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1 2 1 1 1 2 1 11( , .... , ... ) ( , .... ,1, ... )
k k k n k k nxf fα α α α α α α α α α− + − += =  

1 2 1 1 1 2 1 10 ( , .... , ... ) ( , .... ,0, .. )
k k k n k k nxf fα α α α α α α α α α− + − += =  

2k
fα = is the restriction of f to (2)f  

1k
fα =  is the restriction of f to 1 2 1 1( , .... ,1, ... )   in whichk k nf α α α α α− +  1kα =  

0k
fα =  is the restriction of f to 1 2 1 1( , .... ,0, ... )  in whichk k nf α α α α α− + 0kα =  

 
Even though 2 1, ,

k k
f fα α= = and 0k

fα =  are by definition, functions of  (n-1) variables, it is considered  as functions on 

An rather then An-1 for every  1 2( , ....... ) n
n Aα α α ∈ ,we simply let  

1 2 1 12 ( , ... , ... ) (2)
k k k nxf fα α α α α− += =  

1 2 1 1 1 2 1 11( , ... , ... ) ( , ... ,1, ... )
k k k n k k nxf fα α α α α α α α α α− + − += =

 
1 2 1 1 1 2 1 10 ( , .... , ... ) ( , .... ,0, .. )

k k k n k k nxf fα α α α α α α α α α− + − += =
 

 
Theorem 3.2:  Let f be a Pre A*-algebra function on An . Let ψ be a representation of f  and let {1,2,........ }k n∈
Then the expression obtained by substituting the constant 0 or 1 or 2 for every occurrence of  kx in ψ represents 0kxf =  

or 1kxf =  or 2kxf = . 

 
Proof:  This is an immediate consequence of above definition. 
 
Example 3.3:  Consider Pre A*-function  

( ) ( ) ( )f α β α γ β γ= ∧ ∨ ∧ ∨ ∧   
 

We derive the following expressions for 2 1, ,
k k

f fα α= = and 0k
fα =  

( ) ( ) ( )f α β α γ β γ= ∧ ∨ ∧ ∨ ∧  
2 (2 ) (2 ) ( )fα β γ β γ= = ∧ ∨ ∧ ∨ ∧ 2 2 ( ) 2β γ= ∨ ∨ ∧ =  

1 (1 ) (1 ) ( )fα β γ β γ= = ∧ ∨ ∧ ∨ ∧ ( ) ( )β γ β γ β γ= ∨ ∨ ∧ = ∨  

0 (0 ) (0 ) ( )fα β γ β γ= = ∧ ∨ ∧ ∨ ∧ 0 0 ( ) ( )β γ β γ= ∨ ∨ ∧ = ∧  

 
Theorem 3.4: Let f be a Pre A*-function on An and let {1,2,... }k n∈ .  

Then 
2 2 1 0

~ ~
1 2( , ,...... )

k k k kn k k k kf f f f fα α α αα α α α α α α
= = = =

= ∨ ∨ ∨  for  all 1 2( , ,...... ) n
n Aα α α ∈ . 

 
Proof:  This is immediate by substitute of the values    2, 1,     0k k korα α α= = =  

21 2( , ,...2... ) 2
knf fαα α α
=

=  

1 2 1( , ,...1.. ) 1
knf fαα α α ==  

0

~
1 2( , ,...0.. ) 0

knf fαα α α
=

=  

2 2 0

~
1 2 1( , ,...... ) 2 2 1 0

k k k knf f f f fα α α αα α α
= = === ∨ ∨ ∨  

 
Example 3.5:  Consider the function ~ ~( ) ( ) ( ) ( )f α β α γ α β β γ= ∧ ∨ ∧ ∨ ∧ ∨ ∧  
The expansion of  1f β =  with respect to α  is ~ ~

1 1 1 0 1 2 1 2f f f fβ α β α β α β αα α α α= = = = = = = =∨ ∨ ∨  
~ ~( ) ( ) ( ) ( )f α β α γ α β β γ= ∧ ∨ ∧ ∨ ∧ ∨ ∧  
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~

1 1 (1 1) (1 ) (0 1) (1 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧  

             
~1 0γ γ= ∨ ∨ ∨ 1=  

~
1 0 (0 1) (0 ) (1 1) (1 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧

 

              
~ ~0 0 1 γ γ= ∨ ∨ ∨ =

 
~

1 2 (2 1) (2 ) (2 1) (1 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧  

               
~2 2 2 2γ= ∨ ∨ ∨ =  

 
The expansion of  1f β =  with respect to α  is  

~ ~
1 1 1 0 1 2 1 2f f f fβ α β α β α β αα α α α= = = = = = = =∨ ∨ ∨ = ~1(1) 0( ) 2(2) 2(2) 2γ∨ ∨ ∨ =  

 
The expansion of  0f β =  with respect to α  is  

~
0 1 (1 0 )(1 ) (0 0 )(0 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧  

              0 0 0γ γ= ∨ ∨ ∨ =  
~

0 0 (0 0) (0 ) (1 0) (0 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧  

               0 0 0 0 0= ∨ ∨ ∨ =  
~

0 2 (2 0) (2 ) (2 0) (0 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧  

               2 2 2 0 2= ∨ ∨ ∨ =  
 
The expansion of  0f β =  with respect to α  is  

~ ~
0 1 0 0 0 2 0 2 1( ) 1(0) 2(2) 2f f f fβ α β α β α β αα α α α γ= = = = = = = =∨ ∨ ∨ = ∨ ∨ =

 
 
The expansion of  2f β =  with respect to α  is  

~
2 1 (1 2 )(1 ) (0 2 )(2 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧  

               2 2 2 2γ= ∨ ∨ ∨ =  
~

2 0 (0 2 )(0 ) (1 2 )(2 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧  

               2 0 2 2 2= ∨ ∨ ∨ =  
~

2 2 (2 2) (2 ) (2 2) (2 )f β α γ γ= = = ∧ ∨ ∧ ∨ ∧ ∨ ∧  

               2 2 2 2 2= ∨ ∨ ∨ =  
~ ~

1 1 1 0 1 2 1 2 2f f f fβ α β α β α β αα α α α= = = = = = = =∨ ∨ ∨ =
 

 
Similarly we can write the expansion for 2β =  with respect to γ . 
 
Note 3.6:  The expansion ~ ~

1 1 1 0 1 2 1 2f f f fβ α β α β α β αα α α α= = = = = = = =∨ ∨ ∨
 

is called as Shannon expansion.  By applying this expansion to a function and its restriction becomes 0 or 1 or 2 or a 
literal. 
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