
International Journal of Mathematical Archive-10(1), 2019, 72-77 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 10(1), Jan.-2019                                                                                                                  72 

 
IFSGB-CONNECTEDNESS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES 

 
ANGELIN TIDY.G*1 AND FRANCINA SHALINI.A2 

 

1Research Scholar,  Department of Mathematics, Nirmala College for Women, India. 
2Assistant Professor,  Department of Mathematics, Nirmala College for Women, India. 

 
(Received On: 25-11-18; Revised & Accepted On: 06-01-19) 

 
 

ABSTRACT 
In this paper we have introduced the intuitionistic fuzzy semi generalized b-connected space sand intuitionistic fuzzy 
semi generalized b-extremally disconnected space. We investigated some of their properties. Also we characterized the 
intuitionistic fuzzy semi generalized b- super connected space. 
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1. INTRODUCTION 
 
Zadeh [11] introduced the notion of fuzzy sets. Fuzzy topological space was introduced by Chang [4]. After that there 
have been a number of generalizations of this fundamental concept. Atanassov [3] introduced the notion of 
intuitionistic fuzzy sets. Using the notion of intuitionistic fuzzy sets, Coker [5] introduced the notion of intuitionistic 
fuzzy topological space. Connectedness in intuitionistic fuzzy special topological spaces was introduced by Oscag and 
Coker [7]. Angelin Tidy and Francina Shalini [1] introduced intuitionistic fuzzy sgb-closed sets. 
 
In this paper we have introduced intuitionistic fuzzy semi generalized b-connected space, intuitionistic fuzzy semi 
generalized b-super connected space, intuitionistic fuzzy semi generalized b-strongly connected space, intuitionistic 
fuzzy semi generalized b-extremally disconnected space and studied their properties and characterizations. 
 
2. PRELIMINARIES 
 
Definition 2.1: [3] Let X be a nonempty fixed set. An intuitionistic fuzzy set (briefly IFS) A is an object of the form    
A = {⟨x, 𝜇(x), 𝜈(x)⟩: x ∈ X}, where 𝜇 and 𝜈 are degrees of membership and non-membership of each x ∈ X, 
respectively, and 0 ≤ 𝜇(x) + 𝜈(x) ≤ 1 for each x ∈ X. A class of all the IFS’s in X is denoted as IFS(X). When there is 
no danger of confusion, an IFS A = {⟨x, 𝜇(x), 𝜈(x)⟩: x ∈ X} may be written as A = ⟨𝜇A, 𝜈A⟩. 
 
Definition 2.2: [3] Let X be a nonempty set and A =⟨𝜇A, νA⟩, B = ⟨𝜇B, 𝜈B⟩ IFSs in X. Then 

(1) A ⊆ B if 𝜇A(x) ≤ 𝜇B(x) and 𝜈A(x) ≥ 𝜈B(x), for all x ∈ X, 
(2) A = B if A ⊆ B and B ⊆ A, 
(3) A� = {⟨x, 𝜈A(x), 𝜇A(x)⟩ : x ∈ X}, 
(4) A ⋂ B = {⟨x,A ⋀ 𝜇B, 𝜈A ⋀ 𝜈B⟩ : x ∈ X } [15], 
(5) A ⋃ B = {⟨x,A(x) ⋁ 𝜇B(x), 𝜈A(x) ⋁ 𝜈B(x)⟩: x ∈ X }[15]. 

 
Definition 2.3: [3] IFS’s 0∼ and 1∼ are defined as 0�   = {⟨x, 0, 1⟩ : x ∈ X} and  1�= {⟨x, 1, 0⟩ : x ∈ X}, respectively. 
 
Definition 2.4: [5] An intuitionistic fuzzy topology (IFT for short) on a nonempty set X is a family of IFSs in X 
satisfying the following axioms: 
(1) 0�  , 1�  ∈ τ, 
(2) G1⋂ G2 ∈ τ for any G1, G2 ∈ τ, 
(3) ⋃Gi ∈ τ for any arbitrary family {Gi : i ∈ J} ⊆ τ. 
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In this case, the pair (X, τ) is called an intuitionistic fuzzy topological space (briefly, IFTS) and members of τ are called 
intuitionistic fuzzy open (briefly, IFO) sets. The complement A� of an IFO set A is called an intuitionistic fuzzy closed 
(IFC) set in X. Collection of all IFO (resp., IFC) sets in IFTS X is denoted as IFO(X) (resp., IFC(X)). 
 
Definition 2.5: [5] Let (X, τ) be an IFTS and A = ⟨𝜇A, 𝜈A⟩ an IFS in X. Then the fuzzy interior and fuzzy closure of A 
are denoted and defined as 
                 Cl A = ⋂ {K: K is an IFC set in X and A ⊆ K}, 
                 Int A = ⋃ {G: G is an IFO set in X and G ⊆ 𝐴}.                        
 
Proposition 2.6: [8] Let (X, τ) be an IFTS and A, B be intuitionistic fuzzy sets in X. Then the following properties 
hold: 

(i) cl(A�) = (ınt(A))����������� ,  
(ii) int(A�) = (cl(A))��������� , 
(iii) int(A) ⊆ A ⊆ cl(A). 

 
Definition 2.7: [1] An IFS A = {⟨x, μA(x), νA(x) ⟩ / x ∈ X} in an IFTS (X, τ) is said to be  

1) intuitionistic fuzzy b open set  (IFbOS) if A ⊆ int(cl(A)) ⋃ cl(int(A)), 
2) intuitionistic fuzzy b- closed set  (IFbCS) if cl(int(A)) ⋂ int(cl(A)) ⊆ A, 

 
Definition 2.8: [1] An IFS A is said to be an intuitionistic fuzzy semi generalized b-closed set (IFSGbCS) if          
bcl(A) ⊆ U whenever A ⊆ U and U is an IFSOS in (X,τ). 
 
An IFS A is said to be an intuitionistic fuzzy semi generalized b-open set (IFSGbOS) in (X, τ) if the complement Ac  is 
an IFSGbCS in (X, τ). 
 
Definition 2.9: [1] Let (X, τ) be an IFTS and A = ⟨ x, μA, νA⟩ be an IFS in (X, τ). Then the intuitionistic fuzzy b closure 
of A (bcl(A)) and intuitionistic fuzzy b interior of A (bint(A)) are defined as  
             bint(A) = ⋃ { G / G is an IFbOS in X and G ⊆ A},  
             bcl (A) = ⋂ { K / K is an IFbCS in X and A ⊆ K }. 
 
Definition 2.10:  Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, 𝜎). Then f is said to be an 

(1) intuitionistic fuzzy continuous (IF continuous) if f-1(B) is an  IFOS in (X,τ) for every IFOS B in (Y,𝜎), [6] 
(2) intuitionistic fuzzy semi generalized b-continuous (IFSGb continuous) if f-1(B) is an IFSGbOS in (X, τ) for 

every IFOS B in (Y,𝜎).[2]] 
 
Definition 2.11: Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, 𝜎). Then f is said to be an 

(1) intuitionistic fuzzy irresolute (IF irresolute) if f-1(B)  IFOS in (X, τ) for every IFOS B in (Y,𝜎) , [2] 
(2) intuitionistic fuzzy semi generalized b-irresolute( IFSGb irresolute) mapping if f-1(B) is an IFSGbCS B in     

(X, τ ) for every IFSGbCS B in (Y, 𝜎).[2] 
 
3. TYPES OF IFSGB-CONNECTEDNESS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES 
 
Definition 3.1:  An IFTS (X, τ) is IFSGb-disconnected if there exists intuitionistic fuzzy sgb-open sets A and B in X,  
A ≠ 0∼, B ≠ 0∼ such that A⋃B =1∼ and A⋂B=0∼. If X is not IFSGb-disconnected then it is said to be IFSGb-connected. 
 
Example 3.2: Let X ={a, b} , τ = {0∼, 1∼, G} where G = {⟨x, (0.2, 0.3), (0.5, 0.4) ⟩; x∈X}, A = {⟨x, (0.1, 0.2),          
(0.6, 0.5) ⟩; x∈X}, B = {⟨x, (0.2, 0.2), (0.5, 0.5) ⟩; x∈X}, A and B are intuitionistic fuzzy sgb-open sets in X, A ≠ 0 ∼ ,  
B ≠ 0∼  and A⋃B = A ≠ 1∼, A⋂B = B ≠ 0∼. Hence X is IFSGb-connected. 
 
Example 3.3: Let X ={a, b}, τ = {0∼, 1∼, G} where G = {⟨x, (0.2, 0.3), (0.5, 0.4) ⟩; x∈X}, A = {⟨x, (0, 1), (1, 0)⟩; 
x∈X}, B = {⟨x, (1, 0), (0, 1)⟩; x∈X}, A and B are intuitionistic fuzzy sgb-open sets in X, A ≠ 0∼, B ≠ 0∼ and A⋃B = 1∼,  
A⋂B = 0∼. Hence X is IFSGb-disconnected. 
 
Definition 3.4: An  IFTS (X, τ) is IFSGbC5-disconnected if there exists IFS A in X, which is both IFSGbOS and 
IFSGbCS such that A ≠ 0∼, and A ≠ 1∼. If X is not IFSGbC5- disconnected then it is said to be IFSGbC5-connected. 
 
Example 3.5: Let X ={a, b} , τ = {0∼, 1∼, G} where G ={⟨x, (0.2, 0.4), (0.7, 0.5)⟩; x∈X}, A ={⟨x, (0.6, 0.7),(0.3, 0.2)⟩; 
x∈X} , A is an IFSGbOS in X, But A is not IFSGbCS since cl(int(A))⋂int(cl(A))⊈A, and 1∼≠A≠0∼. Thus X is 
IFSGbC5-connected. 
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Example 3.6: Let X ={a, b}, τ = {0∼, 1∼, G} where G={⟨x, (0.2, 0.3), (0.5, 0.4) ⟩; x∈X}, A={⟨x, (0.1, 0.2), (0.6, 0.5)⟩; 
x∈X}, A is an IFSGbOS in X, And  A is also IFSGbCS  since cl(int(A))⋂int(cl(A)) =0 ⊆ A. Hence there exists an IFS 
A in X such that 1∼≠A≠0∼ which is both IFSGbOS and IFSGbCS in X. Thus X is IFSGbC5-disconnected. 
 
Proposition 3.7: IFSGbC5- connectedness implies IFSGb- connectedness. 
 
Proof: Suppose that there exists nonempty intuitionistic fuzzy SGb-open sets A and B such that A⋃B=1∼ and A⋂B=0∼ 
(IFSGb-disconnected) then μA ˅ μB = 1 , νA ˄ νB =0 and μA ˅ μB = 0, νA ˄ νB =1. In other words B� = A. Hence A is 
IFSGb-clopen which implies X is IFSGbC5-disconnected. 
 
But the converse need not be true as shown by the following example. 
 
Example 3.8: Let X ={a, b}, τ = {0∼, 1∼, G} where G = {⟨x, (0.2, 0.3), (0.5, 0.4)⟩; x∈X}, A = {⟨x, (0.2, 0.3),           
(0.6, 0.5)⟩; x∈X}, B = {⟨x, (0.1, 0.2), (0.5, 0.4)⟩; x∈X} A is an IFSGbOS in X, And B is an IFSGbOS in X since               
B ⊆ int(cl(A))⋃cl(int(A)). 1∼ ≠ A⋃B = {⟨x, (0.2, 0.3), (0.5, 0.4) ⟩; x∈X}, 0∼ ≠A⋂B = {⟨x, (0.1, 0.2), (0.6, 0.5)⟩; x∈X}. 
Hence X is IFSGb-connected. Since IFS A is both IFSGbOS and IFSGbCS in X, X is IFSGbC5 –connected. 
 
Proposition 3.9: Let f: (X, τ) → (Y, 𝜎) be a IFSGb-irresolute surjection, (X, τ) is an IFSGb-connected, then (Y, 𝜎) is 
IFSGb-connected. 
 
Proof: Assume that (Y, 𝜎) is not IFSGb-connected then there exists nonempty intuitionistic fuzzy SGb-open sets A and 
B in (Y, 𝜎) such that A⋃B =1∼ and A⋂B = 0∼. Since f is IFSGb-irresolute mapping, C = f-1(A) ≠ 0∼, D = f-1(B) ≠ 0∼ 
which are intuitionistic fuzzy SGb-open sets in X. And f-1(A)⋃f-1(B) = f-1(1∼) = 1∼ which implies C⋂D = 1∼. f-1(A)⋂    
f-1(B) = f-1(0∼) = 0∼ which implies C⋂D = 0∼.Thus X is IFSGb-disconnected, which is a contradiction to our 
hypothesis. Hence Y is IFSGb-connected. 
 
Proposition 3.10: (X, τ) is IFSGbC5-connected iff there exists no nonempty intuitionistic fuzzy SGb-open sets A and B 
in X such that A = B�. 
 
Proof: Suppose that A and B are intuitionistic fuzzy SGb-open sets in X such that A ≠ 0∼ ≠ B and A = B� . Since A = B�, 
B� is an IFSGbOS and B is an IFSGbCS. And A ≠ 0∼ implies B ≠ 1∼. But this is a contradiction to the fact that X is 
IFSGbC5-connected. 
 
Conversely, let A be both IFSGbOS and IFSGbCS in X such that 0∼ ≠ A ≠ 1∼. Now take B = A�. B is an IFSGbOS and 
A ≠ 1∼ which implies B = A� ≠ 0∼ which is a contradiction. 
 
Definition 3.11: An IFTS (X, τ) is IFSGb-strongly connected if there exists no nonempty IFSGbCS A and B in X such 
that μA + μB ⊆ 1, νA + νB ⊇ 1. 
 
In otherwords, an IFTS (X, τ) is IFSGb-strongly connected if there exists no nonempty IFSGbCS A and B in X such 
that A ⋂ B = 0∼. 
 
Proposition 3.12: An IFTS (X, τ) is IFSGb-strongly connected if there exists no IFSGbOS A and B in X, A ≠1∼ ≠ B 
such that μA + μB ⊇ 1, νA + νB ⊆ 1. 
 
Example 3.13: Let X ={a, b}, τ={0∼, 1∼, G} where G = {⟨x, (0.4, 0.4), (0.5, 0.4)⟩; x∈X}, A = {⟨x, (0.3, 0.4), (0.6, 0.5)⟩; 
x∈X}, B={⟨x, (0.2, 0.2), (0.8, 0.7)⟩; x∈X}  A is an IFSGbOS in X, And B is an IFSGbOS in X since                             
B⊆ int(cl(A))⋃cl(int(A)). μA + μB ⊆ 1, νA + νB ⊇ 1. Hence X is IFSGb-strongly connected. 
 
Proposition 3.14: Let f: (X, τ) → (Y, 𝜎) be a IFSGb-irresolute surjection. If X is an IFSGb-strongly connected, then so 
is Y. 
 
Proof: Suppose that Y is not IFSGb-strongly connected then there exists IFSGbCS C and D in Y such that C ≠ 0 ∼,        
D ≠ 0 ∼, C⋂D = 0 ∼. Since f is IFSGb-irresolute, f-1(C), f-1(D) are IFSGbCSs in X and f-1(C)⋂f-1(D) = 0∼, f-1(C) ≠ 0∼,    
f-1(D) ≠ 0∼. ( If f-1(C) = 0∼ then f(f-1(C)) = C which implies f(0∼) = C. So C = 0∼ a contradiction) Hence X is IFSGb-
strongly disconnected, a contradiction. Thus (Y, 𝜎) is IFSGb-strongly connected. 

 
IFSGb-strongly connected does not imply IFSGbC5-connected, and IFSGbC5-connected does not imply IFSGb-
strongly connected. For this purpose we see the following examples. 
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Example 3.15: Let X ={a, b}, τ = {0∼, 1∼, G} where G = {⟨x, (0.2, 0.3), (0.5, 0.4) ⟩; x∈X}, A = {⟨x, (0.1, 0.2), (0.6, 0.5) 
⟩; x∈X} , B = {⟨x, (0.4, 0.5), (0.4, 0.5) ⟩; x∈X}  A is an IFSGbOS in X, And B is an IFSGbOS in X since                          
B ⊆ int(cl(A))⋃cl(int(A)) . μA + μB ⊆ 1, νA + νB ⊇ 1. Hence X is IFSGb-strongly connected. But X is not IFSGbC5-
connected, since A is both IFSGbOS and IFSGbCS in X. 
 
Example 3.16: Let X ={a, b}, τ = {0∼, 1∼, G} where G = {⟨x, (0.2, 0.4), (0.7, 0.5)⟩; x∈X}, A={⟨x, (0.6, 0.7), (0.3, 0.2)⟩; 
x∈X}, B = {⟨x, (0.8, 0.9), (0.2, 0.1) ⟩; x∈X},  X is IFSGbC5-connected. But X is not IFSGb-strongly connected since A 
and B are intuitionistic fuzzy SGb-open sets in X such that μA + μB ⊇ 1, νA + νB ⊆ 1. 
 
Lemma 3.17: [10] (i) A ⋂ B = 0∼ ⇒ A ⊆ B�.  

  (ii) A ⊈ B� ⇒ A ⋂ B ≠ 0∼. 
 

Definition 3.18: A and B are non-zero intuitionistic fuzzy sets in (X, τ). Then A and B are said to be 
(i) IFSGb-weakly separated if SGb-cl(A) ⊆ B� and SGb-cl(B) ⊆ A� 
(ii) IFSGb-q-separated if (SGb-cl(A)) ⋂ B = 0∼ = A ⋂ (SGb-cl(B)). 

 
Definition 3.19: An IFTS (X, τ) is said to be IFSGbCS-disconnected if there exists IFSGb-weakly separated non-zero 
intuitionistic fuzzy sets A and B in (X, τ) such that A⋃B = 1∼ . 
 
Example 3.20: Let X ={a, b}, τ = {0∼, 1∼, G} where G = {⟨x, (0.4, 0.3), (0.5, 0.6) ⟩; x∈X}, A = {⟨x, (1,0), (0,1) ⟩; x∈X}, 
B = {⟨x, (0,1), (1,0) ⟩; x∈X}, A and B are intuitionistic fuzzy SGb-open sets in X,  SGb-cl(A) ⊆ B� and SGb-cl(B) ⊆ A�.  
Hence A and B are IFSGb-weakly separated and A⋃B=1∼. So X is IFSGbCS-disconnected. 
 
Definition 3.21: An IFTS (X, τ) is said to be IFSGbCM-disconnected if there exists IFSGb-q-separated non-zero IFS's 
A and B in (X, τ) such that A⋃B = 1∼. 
 
Example 3.22: Let X ={a, b}, τ={0∼, 1∼, G} where G = {⟨x, (0.5, 0.6), (0.4, 0.3) ⟩; x∈X}, A = {⟨x, (1,0), (0,1) ⟩; x∈X}, 
B = {⟨x, (0,1), (1,0)⟩; x∈X}, }, A and B are intuitionistic fuzzy SGb-open sets in X,  SGb-cl(A) ⋂ B = 0∼ and A⋂SGb-
cl(B) = 0∼. Which implies A and B are IFSGb-q-separated and A⋃B=1∼. So X is IFSGbCM-disconnected. 
 
Remark 3.23: An IFTS (X, τ) is be IFSGbCS-connected if and only if (X, τ) is IFSGbCM-connected. 
 
Definition 3.24: An intuitionistic fuzzy semi generalized b-open set A is called an intuitionistic fuzzy regular semi 
generalized b-open set if A = SGb-int(SGb-cl(A)). 
The complement of an intuitionistic fuzzy regular semi generalized b-open set is called an intuitionistic fuzzy regular 
semi generalized b-closed set. 
 
Definition 3.25: An  IFTS (X, τ) is said to be IFSGb-super disconnected if there exists an intuitionistic fuzzy semi 
generalized b-open set A in X such that 0∼ ≠ A ≠ 1∼. X is called IFSGb-super connected if X is not IFSGb-super 
disconnected. 
 
Example 3.26: Let X ={a, b} , τ = {0∼, 1∼, G} where G = {⟨x, (0.5, 0.4), (0.2, 0.3) ⟩; x∈X}, A = {⟨x, (1,0), (0,1) ⟩; x∈X}, 
B = {⟨x, (0,1), (1,0) ⟩; x∈X},}, A and B are intuitionistic fuzzy SGb-open sets in X,  SGb-int(SGb-cl(A)) =A. This 
implies A is an intuitionistic fuzzy semi generalized b-open set in X. Hence X is an IFSGb-super disconnected. 
 
Theorem 3.27: Let (X, τ) be an IFTS, then the following are equivalent. 

(i) (X, τ) is an IFSGb-super connected space. 
(ii) For every non-zero intuitionistic fuzzy regular semi generalized b-open set A, SGb-cl(A) = 1∼. 
(iii) For every intuitionistic fuzzy regular semi generalized b-closed set A with A ≠ 1∼, SGb-int(A) = 0∼. 
(iv) There exists no intuitionistic fuzzy regular semi generalized b-open sets A and B in (X, τ) such that  

A ≠ 0∼ ≠ B, A ⊆ Bc. 
(v) There exists no intuitionistic fuzzy regular semi generalized b-open sets A and B in (X, τ) such that  

A ≠ 0∼ ≠ B, B = (SGb-cl(A))c, A = (SGb-cl(B))c. 
(vi) There exists no intuitionistic fuzzy regular semi generalized b-closed sets A and B in (X, τ) such that  

A ≠ 1∼ ≠ B, B = (SGb-int(A))c, A = (SGb-int(B))c. 
                                                                                                                                                                  

Proof:   
(i) ⇒ (ii): Assume that there exists an intuitionistic fuzzy regular semi generalized b-open set A in (X, τ) such that         
A ≠ 0 ∼ and SGb-cl(A) ≠ 1 ∼. Now let B = SGb-int(SGb-cl(A))c. Then B is a proper intuitionistic fuzzy regular semi 
generalized b-open set in (X, τ). But this is a contradiction to the fact that (X, τ) is an IFSGb-super connected space. 
Therefore SGb-cl(A) = 1∼. 
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(ii) ⇒ (iii): Let A ≠ 1 ∼ be an intuitionistic fuzzy regular semi generalized b-closed set in (X, τ). If B = Ac, then B is an 
intuitionistic fuzzy regular semi generalized b-open set in (X, τ) with B ≠ 0 ∼. Hence SGb-cl(B) = 1∼. This implies 
(SGb-cl(B))c = 0∼. That is SGb-int(Bc) = 0∼. Hence SGb-int(A) = 0∼. 
 
(iii) ⇒ (iv): Let A and B be two intuitionistic fuzzy regular semi generalized b-open sets in (X, τ) such that A ≠ 0 ∼ ≠ B, 
A ⊆ Bc. Since Bc is an intuitionistic fuzzy regular semi generalized b-closed set in (X, τ) and B ≠ 0 ∼ implies Bc ≠ 1∼, 
Bc = SGb-cl(SGb-int(Bc)) and we have SGb-int(Bc) = 0∼. But A ⊆  Bc. Therefore 0∼ ≠ A = SGb-int(SGb-cl(A)) ⊂ SGb-
int(SGb-cl(Bc)) = SGb-int(SGb-cl(SGb-cl(SGb-int(Bc)))) = SGb-int(SGb-cl(SGb-int(Bc))) = SGb-int(Bc) = 0∼. A 
contradiction arises. Therefore (iv) is true. 
 
(iv) ⇒ (i): Let 0∼ ≠ A ≠ 1∼ be an intuitionistic fuzzy regular semi generalized b-op en set in (X, τ). If we tak e                
B = (SGb-cl(A))c, then B is an intuitionistic fuzzy regular semi generalized b-open set, since SGb-int(SGb-cl(B)) = 
SGb-int(SGb-cl(SGb-cl(A))c) = SGb-int(SGb-int(SGb-cl(A)))c = SGb-int(Ac) = (SGb-cl(A))c = B. Also we get B ≠ 0 ∼, 
since otherwise, we have B = 0∼ and this implies (SGb-cl(A))c = 0∼. This is SGb-cl(A) = 1∼. Hence A = SGb-int(SGb-
cl(A)) = SGb-int(1∼) = 1∼. This is A = 1∼, which is a contradiction. Therefore B ≠ 0 ∼ and A ⊆ B c. But this is a 
contradiction to (iv). Therefore (X, τ) is an IFSGb- super connected space.  
 
(i) ⇒ (v): Let A and B be two intuitionistic fuzzy regular semi generalized b-open sets in (X, τ) such that A ≠ 0∼ ≠ B,   
B = (SGb-cl(A))c and A = (SGb-cl(B))c. Now we have SGb-int(SGb-cl(A)) = SGb-int(Bc) = (SGb-cl(B))c = A, A ≠ 0∼ 
and A ≠ 1∼, since if A = 1∼, then 1∼ = (SGb-cl(B))c ⇒ SGb-cl(B) = 0∼ ⇒ B = 0∼. But B ≠ 0∼. Therefore A ≠ 1∼) A is 
proper intuitionistic fuzzy regular semi generalized b-open set in (X, τ), which is a contradiction to (i). Hence (v) is 
true. 
 
(v) ⇒ (i): Let A be an intuitionistic fuzzy regular semi generalized b-open set in (X, τ) such that A = SGb-nit(SGb-
cl(A)) and 0∼ ≠ A ≠ 1∼. Now take B = (SGb-cl(A))c. In this case we get B ≠ 0 ∼ and B is intuitionistic fuzzy regular 
semi g eneralized  op en set in (X, τ), B = (SGb-cl(A))c and (SGb-cl(B))c = (SGb-cl(SGb-cl(A))c)c = SGb-int(SGb-
cl(A)c)c = SGb-int(SGb-cl(A)) = A. But this is a contradiction to (v). Therefore (X, τ) is an IFSGb-super connected 
space. 
 
(v) ⇒ (vi): Let A and B be two intuitionistic fuzzy regular semi generalized b-closed sets in (X, τ) such that A ≠ 1 ∼ ≠ 
B, B = (SGb-int(A))c and A = (SGb-int(B))c. Taking C = Ac and D = Bc, C and D become intuitionistic fuzzy regular 
semi generalized b-op en sets in  (X, τ) with  C ≠ 0 ∼ ≠ D, D = (SGb-cl(C))c and C = (SGb-cl(D))c, which is a 
contradiction to (v). Hence (vi) is true. 
 
(vi) ⇒ (v): can be easily proved by the similar way as in (v) ⇒ (vi). 
 
Proposition 3.28: Let f : (X, τ) → (Y, τ) be a IFSGb-irresolute surjection. If X is an IFSGb-super connected, then so is 
Y. 
 
Proof:  Suppose that Y is IFSGb-super disconnected. Then there exists IFSGbOS's C and D in Y such that C ≠ 0 ∼ ≠ D, 
C ⊆ D�. Since f is IFSGb-irresolute, f-1(C) and f-1(D) are IFSGbOSs in X and C ⊆ D� implies f-1(C) ⊆ f -1( D�) = f-1(D). 
Hence f-1(C) ≠ 0∼ ≠ f-1(D�) which means that X is IFSGb-super disconnected which is a contradiction. 
 
Definition 3.29: An IFTS (X, τ) is said to be an intuitionistic fuzzy GO-connected (IFGO-connected) space if the only 
IFSs which are both intuitionistic fuzzy generalized open and intuitionistic fuzzy generalized closed are 0∼ and 1∼. 
 
Theorem 3.30: Every IFSGb-connected space is an IFGO-connected space but not conversely. 
 
Proof:  Let (X, τ) be an intuitionistic fuzzy semi generalized b-connected space. Suppose (X, τ) is not an intuitionistic 
fuzzy GO-connected space, then there exists a proper IFS A which both intuitionistic fuzzy g-open and intuitionistic 
fuzzy g-closed in (X, τ). That is A is both intuitionistic fuzzy SGb-open and intuitionistic fuzzy SGb-closed in (X, τ). 
This implies that (X, τ) is not an IFSGb-connected space. This is a contradiction. Therefore (X, τ) is an IFGO-
connected space. 
 
Definition 3.31:  Let (X, τ) be any IFTS. X is called IFSGb- extremally disconnected if the SGb-closure of every 
IFSGbOS in X is IFSGbOS. 
 
Theorem 3.32: For an IFTS (X, τ) the following are equivalent: 

(i) (X, τ) is an IFSGb-extremally disconnected space. 
(ii) For each IFSGbCS A, SGb-int(A) is an IFSGbCS. 
(iii) For each IFSGbOS A, SGb-cl(A) = SGb − cl(SGb − cl(A)���������������)���������������������������� 
(iv) For each IFSGb-open sets A and B with SGb-cl(A) = B�, SGb-cl(A) = SGb − cl(B)���������������. 
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Proof:   
(i) ⇒ (ii): Let A be any IFSGbCS. Then A�  is an IFSGbOS. So SGb-cl(A�) = SGb − int(A)����������������� is an IFSGbOS. Thus SGb-
int(A) is an IFSGbCS in (X, τ). 
 
(ii) ⇒ (iii): Let A be an IFSGbOS. Then SGb-cl(SGb − cl(A)����������������) = SGb-cl(SGb-int(A� )). SGb − cl(SGb − cl(A)����������������)������������������������������ = 
SGb − cl(SGb − int(A�  ))�������������������������������. Since A is an IFSGbOS, A�  is an IFSGbCS. So by (ii) SGb-int(A�) is an IFSGbCS.. That is 
SGb-cl(SGb-int(A�)) = SGb-int(A�). Hence SGb − cl(SGb − int(A�))������������������������������� = SGb − int(A�)����������������� = SGb-cl(A). 
 
(iii) ⇒ (iv): Let A and B be any two intuitionistic fuzzy SGb-open sets in (X, τ) such that SGb-cl(A) = B�. (iii) implies 
SGb-cl(A) = SGb − cl(SGb − cl(A)����������������)������������������������������ = SGb − cl( B ��������)����������������� = SGb − cl(B)����������������. 
 
(iv) ⇒ (i): Let A be any IFSGbOS in (X, τ). Put B = SGb − cl(A)����������������. Then SGb-cl(A) = B� . 
Hence by (iv) SGb-cl(A) = SGb − cl(B)����������������. Therefore SGb-cl(A) is IFSGbOS in (X, τ). That is (X, τ) is an IFSGb-
extremally disconnected space. 
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