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ABSTRACT 
In Chemical Graph Theory, the connectivity indices are applied to measure the chemical characteristics of chemical 
compounds. In this paper, we propose the product connectivity KV, sum connectivity KV indices of a molecular graph. 
Also, we compute these connectivity KV indices for certain dendrimers of chemical importance like tetrathiafulvalene 
dendrimers and POPAM dendrimers. 
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1. INTRODUCTION 
 
A topological index for a graph is used to determine some property of the graph of molecular by a single number. Many 
topological indices have been considered in Mathematical Chemistry. 

 
Throughout this paper, we consider only finite, connected, undirected graphs without multiple edges and loops. The 
degree of a vertex v, denoted by dG(v), is the number of edges incident to a vertex v. Let ( ) ( )

( )
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u N v

M v d u
∈

= ∏       

where N(v) is the set of all adjacent vertices of v. We refer [1] for undefined terminologies and notations from graph 
theory. 
 
Recently, Kulli introduced the first and second KV indices, defined as [2]  

( ) ( ) ( )
( )

1 ,G G
uv E G

KV G M u M v
∈

=  +  ∑  ( ) ( ) ( )
( )

2 .G G
uv E G

KV G M u M v
∈

= ∑   

 
Very recently, some novel variants of KV indices were introduced and studied such as hyper KV indices [3], 
multiplicative KV indices [4], square KV index [3]. 
 
We propose some connectivity KV indices of a graph as follows: 
 
The product connectivity KV index of a graph G is defined as  
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The sum connectivity KV index of G is defined as  

( )
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+

∑                                                                                                       (2) 

 
In recent years, some new connectivity indices have been introduced and studied such as sum connectivity Gourava 
index [5], sum connectivity index [6], geometric-arithmetic reverse and sum connectivity reverse indices [7], sum 
connectivity Revan index [8]. Also some connectivity indices were studied, for example, in [9, 10, 11, 12, 13]. 
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In this paper, some connectivity KV indices for tetrathiafulvalene dendrimers and POPAM dendrimers are determined. 
For denrimers see [14]. 
 
2. TETRATHIAFULVALENE DENDRIMERS 
 
We consider the family of tetrathiapulvalene dendrimers. This family of dendrimers is denoted by TD2[n], where n is 
the steps of growth in this type of dendrimers. The graph of TD2[2] is presented in Figure 1. 

 
Figure-1; Graph of TD2[2] 

 
Let G = TD2[n]. By calculation, we have |V(G)|=31×2n+2 – 24, |E(G)|=32×2n+2 – 85. The edge partition of G based on 
the degree product of neighbors of end vertices of each edge is given in Table 1 

. 
MG(u), MG(v)\uv ∈ E(G) Number of edges 

(2,3) 2n+2 

(3,6) 2n+2 – 4 
(3,8) 2n+2 
(6,6) 7 × 2n+2 – 16 
(6,8) 11 ×  2n+2 – 24 
(6,9) 2n+2 – 4 

(6, 12) 3 × 2n+2 – 8 
(9,12) 8 × 2n+2 – 24 

(12, 12) 2×2n+2 – 5 
 

Table-1: Edge partition of TD2[n] 
 
In the following theorem, we compute the product connectivity KV index of TD2[n]. 
 
Theorem 1: The product connectivity KV index of tetrathiafulvalene dendrimers is given by 

[ ]( )2PKV TD n = 211 5 49 4 2
36 6 6 2 12 3

n+ + + + 
 

8 10 4 37 .
123 2 3 3 6

 − + + + 
 

 

 
Proof: By using equation (1) and Table 1, we deduce 

PKV (TD2[n]) = 
( ) ( )( )

1
uv E G G GM u M v∈
∑  

( ) ( ) ( )2 2 2 21 1 1 12 2 4 2 7 2 16
2 3 3 6 3 8 6 6

n n n n+ + + +       = + − + + × −       × × × ×       
 

        ( ) ( ) ( )2 2 21 1 111 2 24 2 4 3 2 8
6 8 6 9 6 12

n n n+ + +     + × − + − + × −     × × ×     
 

        ( ) ( )2 21 18 2 24 2 2 5
9 12 12 12

n n+ +   + × − + × −  × ×  
 

211 5 49 4 2
36 6 6 2 12 3

n+ = + + + 
 

8 10 4 37 .
123 2 3 3 6

 − + + + 
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In the following theorem, we compute the sum connectivity KV index of TD2[n]. 
 
Theorem 2: The sum connectivity KV index of tetrathiafulvalene dendrimers is given by 

[ ]( ) 2
2

1 1 1 7 11 1 1 8 1 2
35 11 12 14 15 2 21 6

nSKV TD n + = + + + + + + + + 
 

 

                   
4 8 24 8 24 5 .
3 3 14 18 21 24

 − + + + + + 
 

 

 
Proof: By using equation (2) and Table 1, we deduce  

SKV (TD2[n]) =
( )

1
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        ( ) ( ) ( )2 2 21 1 111 2 24 2 4 3 2 8
6 8 6 9 6 12

n n n+ + +     + × − + − + × −     × × ×     
 

        ( ) ( )2 21 18 2 24 2 2 5
9 12 12 12

n n+ +   + × − + × −  + +  
 

21 1 1 7 11 1 1 8 1 2
35 11 12 14 15 2 21 6

n+ = + + + + + + + + 
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3. POPAM DENDRIMERS 
 
We consider the family of POPAM dendrimers which is symbolized by POD2[n]. The graph of POD2[2] is depicted in 
Figure 2. 

 
 

Figure-2: Graph of POD2[2] 
 
Let G = POD2[n]. By calculation, we obtain |V(G)|=2n+5 – 10 and |E(G)|=2n+5 – 11. The edge partition of POD2[n] based 
on the degree product of neighbors of end vertices of each edge in given in Table 2. 

 
MG(u), MG(v) \ uv ∈ E(G) (2,2) (2, 4) (4, 4) (4, 6) (6, 8) 

Number of edges 2n+2 2n+2 1 3 × 2n+2 – 6 3 × 2n+2 – 6 
 

Table-2: Edge partition of POD2[n] 
 
In the following theorem, we compute the product connectivity KV index of POD2[n]. 
 
Theorem 3: The product connectivity KV index of POPAM dendrimers is given by  

[ ]( ) 2
2

1 1 3 3 1 6 32 .
2 42 2 2 6 4 3 6 2 3

nPKV POD n +   = + + + − − −   
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Proof: By using equation (1) and Table 2, we derive  

PKV (POD2[n]) = 
( )

1
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21 1 3 3 1 6 32 .
2 42 2 2 6 4 3 6 2 3

n+   = + + + − + −   
   

 

 
In the following theorem, we compute the sum connectivity KV index of POD2[n]. 
 
Theorem 4: The sum connectivity KV Index of POPAM denderimers is given by  

[ ]( )2SKV POD n = 21 1 3 3 2
2 6 10 14

n+ + + + 
 

1 6 6 .
8 10 14

 − − − 
 

 

 
Proof: From equation (2) and Table 2, we derive  

SKV (POD2[n]) = 
( )

1
( ) ( )uv E G G GM u M v∈ +

∑   

               21 2
2 2
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21 2

2 4
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1
4 4

 + + 
( )21 3 2 6
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( )21 3 2 6
6 8
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                                            21 1 3 3 1 6 62 .
2 6 10 14 8 10 14

n+   = + + + + − −   
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