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ABSTRACT 

The concepts of atom in an Almost Lattice(AL) L and atomic AL are introduced and proved that every finite AL with 0 is 
atomic AL. The concepts of meet(join) irreducible elements and meet(join) prime elements are introduced in an AL L and 
proved that if L is an AL with 0 satisfying minimum(maximum) condition, then every one of its element in L can be 
represented as the join(meet) of a finite number of join(meet) irreducible elements. Also, a necessary and sufficient 
condition for an element in an AL, 𝐿1 × 𝐿2 of two ALs 𝐿1 and 𝐿2 to become join irreducible element is established and 
proved that every meet(join) prime element is meet(join) irreducible; but, the converse need not be true. The concepts of 
relatively complemented AL and sectionally complemented AL are introduced and proved that if L is finite and 
sectionally complemented, then every non zero element of L is a join of finitely many atoms. Further, the concepts of 
semicomplemented AL and weakly complemented AL are introduced and a necessary and sufficient condition for an AL L 
with 0 to become a weakly complemented AL is proved. Also, proved that every sectionally complemented AL is 
semicomplemented.  
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1. INTRODUCTION 
 
The axiomatization of Boole's two valued propositional calculus lead to the concept of Boolean algebra, which is a 
complemented and bounded distributive lattice. M.H. Stone has proved that any Boolean algebra made into a Boolean 
ring (a ring with unity in which every element is an idempotent) and vice versa. The class of distributive lattices has 
occupied in major part of the present lattice theory, since lattices were abstracted from Boolean algebras through the class 
of distributive lattices and the class of distributive lattices has many interesting properties which lattices, in general, do 
not have. For this reason, the concept of an Almost Distributive Lattice (ADL) was introduced by Swamy U.M. and Rao 
G.C. [4], as a common abstraction of existing lattice theoretic and ring theoretic generalizations of Boolean algebra. It 
was Garett Birkhoff's (1911 - 1996) work in the mid thirties that started the general development of the lattice theory. In 
a brilliant series of papers, he demonstrated the importance of the lattice theory and showed that it provides a unified 
frame work for unrelated developments in many mathematical disciplines. V. Glivenko, Karl Menger, John Van 
Neumann, Oystein Ore, George Gratzer, P. R. Halmos, E. T. Schmidt, G. Szasz, M. H. Stone, R. P. Dilworth and many 
others have developed enough of this field for making it attractive to the mathematicians and for its further progress. The 
traditional approach to lattice theory proceeds from partially ordered sets to general lattices, semimodular lattices, 
modular lattices and finally to distributive lattices. The concept of Almost Lattice (AL) was introduced by G. Nanaji Rao 
and Habtamu Tiruneh Alemu [1] as a common abstraction of almost all lattice theoretic generalizations of Boolean 
algebra like distributive lattices, almost distributive lattices and lattices. 
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In this paper, we introduced the concepts of atom, atomic Almost Lattice(AL) and proved that every finite AL with 0 is an 
atomic AL. It is proved that if an AL L satisfies minimum condition, then L is atomic and we introduced the concepts of 
meet irreducible element and join irreducible element in an AL L. Also, proved that every atom in an AL L is join 
irreducible element and observed that converse is not true by means of example. It is proved that if L is an AL with 0 
satisfying minimum(maximum) condition, then every one of its element can be represented as the join(meet) of a finite 
number of join(meet) irreducible elements and we derived a necessary and sufficient condition for an element in an AL 
𝐿1 × 𝐿2 where ALs 𝐿1 and 𝐿2 are two ALs to become join irreducible. We introduced the concepts of meet prime and 
join prime elements in an AL L which are generalizations of the concept of irreducible elements and proved that every 
meet(join) prime element in an AL L is meet(join) irreducible; converse need not be true.  Further, the concept of a sub 
AL of an AL L is introduced and proved that every interval in an AL L is a sub AL. We introduced the concepts of 
relatively complemented AL and sectionally complemented AL and proved that if an AL L is a Boolean algebra, then L is 
relatively complemented lattice and hence is a sectionally complemented lattice. Also, proved that if L is finite and 
sectionally complemented, then every non zero element of L is a join of finitely many atoms. Finally, we introduced the 
concept of semicomplemented and weakly complemented ALs and we derived a necessary and sufficient condition that 
an AL L with 0 to become weakly complemented AL. It is also proved that, every weakly complemented AL is 
semicomplemented and every sectionally complemented AL is weakly complemented and hence every sectionally 
complemented AL is semicomplemented, which follows that, every relatively complemented AL is semicomplemented. 

  
2. PRELIMINARIES 

 
In this section, we collect a few important definitions and results which are already known and which will be used more 
frequently in the paper.  
 
Definition 2.1 Let (𝑃,≤) be a poset and 𝑎 ∈ 𝑃. Then   

1.  𝑎 is called the least element of 𝑃 if 𝑎 ≤ 𝑥 for all 𝑥 ∈ 𝑃. 
2.  𝑎 is called the greatest element of 𝑃 if 𝑥 ≤ 𝑎 for all 𝑥 ∈ 𝑃. 

It can be easily observed that, if least (greatest) element exists in a poset, then it is unique.  
 
Definition 2.2: Let (𝑃,≤) be a poset and 𝑎 ∈ 𝑃. Then   

1. 𝑎 is called a minimal element, if 𝑥 ≤ 𝑎 implies 𝑥 = 𝑎 for all 𝑥 ∈ 𝑃.  
2. 𝑎 is called maximal element, if 𝑎 ≤ 𝑥 implies 𝑎 = 𝑥 for all 𝑥 ∈ 𝑃.  

It can be easily verified that least (greatest) element (if exists), then it is minimal (maximal) but, converse need not be 
true.  
 
Definition 2.3: Let (𝑃,≤) be a poset and 𝑆 ⊆ 𝑃. Then   

1. An element 𝑎 in P is called a lower bound of 𝑆 if 𝑎 ≤ 𝑥 for all 𝑥 ∈ 𝑆. 
2. An element 𝑎 in P is called an upper bound of 𝑆 if 𝑥 ≤ 𝑎 for all 𝑥 ∈ 𝑆. 
3. An element 𝑎 in P is called the greatest lower bound (glb or infimum) of S if 𝑎  is a lower bound of S and 

𝑏 ∈ 𝑃 such that 𝑏 is a lower bound of S, then 𝑏 ≤ 𝑎. 
4. An element 𝑎 in P is called the least upper bound (lub or suprimum) of S if 𝑎  is an upper bound of S and 

𝑏 ∈ 𝑃 such that 𝑏 is a upper bound of S, then 𝑎 ≤ 𝑏. 
 
Definition 2.4: (Zorn’s Lemma): If every chain of a partly ordered set (P,≤) has an upper bound in P, then P has a 
maximal element.  
 
Definition 2.5: Let (𝑃,≤) be a poset. If 𝑃 has least element 0 and greatest element 1, then 𝑃 is said to be a bounded 
poset.  
If (𝑃,≤) is a bounded poset with bounds 0, 1, then for any 𝑥 ∈ 𝑃, we have 0 ≤ 𝑥 ≤ 1.  
 
Definition 2.6: Let (𝑃,≤) be a poset. Then  

1. P is said to satisfy descending chain condition (dcc) if every descending chain inP is terminate. That is if 
. . . . <   𝑥𝑛 <  𝑥𝑛−1  < . . . <  𝑥2  <  𝑥1 <  𝑥0  is a descending chain in P, then there exists 𝑛 ∈ 𝑍+such that 
 𝑥𝑛 =  𝑥𝑛+1 =  𝑥𝑛+2 =……  

2. P is said to satisfy ascending condition (acc) if every ascending chain in Pisterminate. That is if   𝑥0 <  𝑥1  <
 …  <  𝑥𝑛−2  <  𝑥𝑛−1 <  𝑥𝑛 < ⋯ is an ascending chain in P, then there exists 𝑛 ∈ 𝑍+ such that  𝑥𝑛 =  𝑥𝑛+1 =
 𝑥𝑛+2 = ⋯ 

3. P is said to satisfy minimum(maximum) condition if every nonempty subset of P has a minimal(maximal) 
element.  

 
Theorem 2.7: Let (𝑃,≤) be a poset. Then we have the following.  

1. P satisfies ascending chain condition(acc) if and only if P satisfies a minimum condition. 
2. P satisfies descending chain condition(dcc) if and only if P satisfies a maximum condition. 
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Theorem 2.8: Let (𝑃,≤) be a poset. If P satisfying minimum(maximum) condition. Then for any 𝑥 ∈  𝑃 there exists a 
minimal(maximal) element m in P such that 𝑚 ≤  𝑥(𝑥 ≤  𝑚).  
 
Theorem 2.9: Every subchain of a partially ordered subset satisfying a minimum(maximum) condition has 
least(greatest) element. 
 
Definition 2.10: Let (𝑃,≤) be a poset. Then P is said to be lattice ordered set if for every pair 𝑥, 𝑦 ∈ 𝑃, 𝑙.𝑢. 𝑏{𝑥, 𝑦} 
and 𝑔. 𝑙.𝑏{𝑥,𝑦} exists. 
 
Definition 2.11: An algebra (𝐿,∨,∧) of type (2, 2) is called a lattice if it satisfies the following axioms. For any 
𝑥, 𝑦, 𝑧 ∈ 𝐿,   

1.  𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 and 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥. (Commutative Law) 
2.  (𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧) and (𝑥 ∧ 𝑦) ∧ 𝑧 = 𝑥 ∧ (𝑦 ∧ 𝑧). (Associative Law) 
3.  𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 and 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥. (Absorption Law) 

It can be easily seen that in any lattice (𝐿, ∨, ∧), 𝑥 ∨ 𝑥 = 𝑥 and 𝑥 ∧ 𝑥 = 𝑥. (Idempotent Law)  
 
Definition 2.12: An algebra (𝐿, ∨, ∧) of type (2, 2) is called an Almost Lattice if it satisfies the following axioms. For 
any 𝑎, 𝑏, 𝑐 ∈ 𝐿:   

A1.  (𝑎 ∧ 𝑏) ∧ 𝑐 = (𝑏 ∧ 𝑎) ∧ 𝑐 
A2.  (𝑎 ∨ 𝑏) ∧ 𝑐 = (𝑏 ∨ 𝑎) ∧ 𝑐 
A3.  (𝑎 ∧ 𝑏) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ 𝑐) 
A4.  (𝑎 ∨ 𝑏) ∨ 𝑐 = 𝑎 ∨ (𝑏 ∨ 𝑐) 
A5.  𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 
A6.  𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 
A7.  (𝑎 ∧ 𝑏) ∨ 𝑏 = 𝑏 

 
Lemma 2.13: Let L be an AL. Then for any 𝑎,𝑏 ∈ 𝐿 we have the following:   

1. 𝑎 ∨ 𝑎 = 𝑎 
2. 𝑎 ∧ 𝑎 = 𝑎  
3. 𝑎 ∧ 𝑏 = 𝑎 if and only if 𝑎 ∨ 𝑏 = 𝑏   

 
Definition 2.14: For any 𝑎,𝑏 ∈ 𝐿of an AL L, we say that 𝑎 is less than or equal to 𝑏 and write as 𝑎 ≤ 𝑏 if and only if 
𝑎 ∧ 𝑏 = 𝑎 or, equivalently 𝑎 ∨ 𝑏 = 𝑏.  
 
Theorem 2.15: Let L be an AL such that 𝑎, 𝑏, 𝑐 ∈ 𝐿. Then we have the following:   

1. The relation ≤ is a partial ordering on L and hence (𝐿,≤) is a poset.  
2. 𝑎 ≤ 𝑏 ⇒ 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎  
3. 𝑎 ≤ 𝑎 ∨ 𝑏  
4. 𝑎 ∧ 𝑏 ≤ 𝑏  
5. (𝑎 ∨ 𝑏) ∧ 𝑎 = 𝑎  
6. (𝑎 ∨ 𝑏) ∧ 𝑏 = 𝑏  
7. 𝑏 ∨ (𝑎 ∧ 𝑏) = 𝑏  
8. 𝑎 ∧ 𝑏 = 𝑏 ⇔ 𝑎 ∨ 𝑏 = 𝑎  
9. 𝑎 ≤ 𝑏 ⇒ 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎  
10. 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎 ⇒ 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎  
11. If 𝑎 ≤ 𝑐𝑎𝑛𝑑𝑏 ≤ 𝑐, 𝑡ℎ𝑒𝑛𝑎 ∧ 𝑏 ≤ 𝑐 and 𝑎 ∨ 𝑏 ≤ 𝑐  
12. (𝑎 ∨ 𝑏) ∨ 𝑏 = 𝑎 ∨ 𝑏 
13. (𝑎 ∨ 𝑏) ∨ 𝑎 = 𝑎 ∨ 𝑏  
14. 𝑎 ∨ (𝑎 ∨ 𝑏) = 𝑎 ∨ 𝑏  
15. 𝑎 ∧ (𝑎 ∧ 𝑏) = 𝑎 ∧ 𝑏  
16. (𝑎 ∧ 𝑏) ∧ 𝑏 = 𝑎 ∧ 𝑏  
17. 𝑏 ∧ (𝑎 ∧ 𝑏) = 𝑎 ∧ 𝑏 

 
Definition 2.16: An AL L is said to be directed above if for any 𝑎, 𝑏 ∈ 𝐿 there exists 𝑐 ∈ 𝐿 such that 𝑎, 𝑏 ≤ 𝑐.  
 
Lemma 2.17: Let L be an AL. Then the following are equivalent.   

1.  L is directed above. 
2.  ∧ is commutative. 
3.  ∨ is commutative. 
4.  L is a lattice. 
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Definition 2.18: Let L be an AL. Then an element 𝑎 ∈ 𝐿 is called maximal (minimal) if for any 𝑥 ∈ 𝐿, 𝑎 ≤ 𝑥 (𝑥 ≤ 𝑎) 
implies 𝑎 = 𝑥(𝑥 = 𝑎). 
 
Definition 2.19: An algebra (𝐿, ∨, ∧, 0) of type (2, 2, 0) is called an AL with 0 if it satisfies the the following axioms. 
For any 𝑎, 𝑏, 𝑐 ∈ 𝐿:   

A1.  (𝑎 ∧ 𝑏) ∧ 𝑐 = (𝑏 ∧ 𝑎) ∧ 𝑐 
A2.  (𝑎 ∨ 𝑏) ∧ 𝑐 = (𝑏 ∨ 𝑎) ∧ 𝑐 
A3.  (𝑎 ∧ 𝑏) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ 𝑐) 
A4.  (𝑎 ∨ 𝑏) ∨ 𝑐 = 𝑎 ∨ (𝑏 ∨ 𝑐) 
A5.  𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 
A6.  𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 
A7.  (𝑎 ∧ 𝑏) ∨ 𝑏 = 𝑏 
01.  0 ∧ 𝑎 = 0 

  
Lemma 2.20: Let 𝐿 be an 𝐴𝐿 with 0. Then for any 𝑎,𝑏 ∈ 𝐿, we have the following:   

1. 𝑎 ∧ 0 = 0.  
2. 𝑎 ∨ 0 = 𝑎.  
3. 0 ∨ 𝑎 = 𝑎  
4. 𝑎 ∧ 𝑏 = 0 ⟺ 𝑏 ∧ 𝑎 = 0 
5. 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 whenever 𝑎 ∧ 𝑏 = 0 

 
3. ATOMS AND IRREDUCIBLE ELEMENTS IN ALS  

 
In this section, we introduce the concepts of atom, atomic Almost Lattice(AL) and prove that every finite AL with 0 is an 
atomic AL. Also, prove that if an AL L satis fies minimum condition, then L is atomic. We introduce the concepts of meet 
irreducible element and join irreducible element in an AL L and prove that every atom in an AL L is join irreducible 
element and observe that converse is not true by means of example. Also, prove that if L is an AL with 0 satisfying 
minimum(maximum) condition, then every one of its element can be represented as the join(meet) of a finite number of 
join(meet) irreducibleelements. Moreover,we derive a necessary and sufficient condition for an element in an AL L1 × L2 
where L1 and L2 are two ALs to become join irreducible. Finally, we introduce the concepts of meet prime and join prime 
elements in an AL L which are generalizations of the concept of irreducible elements and prove that every meet(join) 
prime element in an AL L is meet(join) irreducible; converse need not be true. First, we begin with the following 
definition. 
 
Definition 3.1: Let L be an AL and 𝑎, 𝑏 ∈  𝐿 with 𝑎 ≤  𝑏. Then we say that 𝑎 is covered by b or, 𝑏 covers 𝑎, write as 
𝑎 ≺  𝑏 if for any 𝑐 ∈  𝐿, 𝑎 ≤  𝑐 ≤  𝑏, implies either 𝑎 =  𝑐 or 𝑐 =  𝑏.  
 
Definition 3.2: Let L be an AL with 0. Then an element 𝑎(≠ 0)  ∈  𝐿 is called an atom if 0 is covered by 𝑎.  
 
Example 3.3: Let 𝐿 =  {0, 𝑎,𝑏, 𝑐} and define binary operations ∨ and ∧ on L as follows: 
 
  
 
 
 
 
 
Then clearly (𝐿, ∨, ∧ ,0) is an AL with 0.  Also, we can observe that 𝑎 is an atom but 𝑏 and 𝑐 are not atoms. 
 
In the following we introduce the concept of atomic Almost Lattice. 
  
Definition 3.4: An AL Lwith 0 is said to be atomic if for every non zero 𝑎 ∈ 𝐿, there exists an atom 𝑝 ∈ 𝐿 such that 
𝑝 ≤  𝑎.  
 
Example 3.5: Let 𝐿 =  {0, 𝑎,𝑏, 𝑐}. Define ∨ and ∧ on L as follows. 
 
  
 
  

 
 

 

∨ 0 a b c 
0 0 a b c 
a a a b c 
b b b b c 
c c c c c 

∧ 0 a b c 
0 0 0 0 0 
a 0 a a a 
b 0 a b b 
c 0 a b c 

∨ 0 a b c 
0 0 a b c 
a a a a a 
b b b b b 
c c a b c 

∧ 0 a b c 
0 0 0 0 0 
a 0 a b c 
b 0 a b c 
c 0 c c c 
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Then clearly (𝐿, ∨, ∧, 0) is an atomic AL.  
 
Now, we prove the following:  
 
Theorem 3.6: Let L be a finite AL with 0 and 𝑎(≠ 0)  ∈  𝐿. Then there exists an atom 𝑝 ∈ 𝐿 such that 𝑝 ≤  𝑎.  
 
Proof: Suppose L is finite AL and 𝑎 ∈ 𝐿 such that 𝑎 ≠  0. If 𝑎 is an atom, then there is nothing to prove. Suppose 𝑎 is 
not an atom, then there exists 𝑎1  ∈ 𝐿 such that 𝑎1  < 𝑎. If 𝑎1 is an atom, then the result is clear.  Otherwise continue 
the above process. Since L is finite, there exists 𝑎𝑛 ∈  𝐿 suchthat 𝑎𝑛 is an atom and 𝑎𝑛  <  𝑎.  
 
Corollary 3.7: Let L be an AL with 0 which satisfies the minimum condition. Then for every non zero element 𝑎 in L, 
there exists an atom 𝑝 in L such that 𝑝 ≤  𝑎.  
 
Corollary 3.8: Let L be an AL which satisfies a minimum condition. Then L is atomic. 
Now, we introduce the concept of meet irreducible and join irreducible elements in ALs.  
 
Definition 3.9: Let L be an AL. Then an element 𝑎 ∈  𝐿 is said to be meet irreducible if 𝑎 =  𝑎1  ∧ 𝑎2 =  𝑎2  ∧ 𝑎1 
implies 𝑎 =  𝑎1 or 𝑎 =  𝑎2. Otherwise 𝑎 is called meet reducible.  
 
Definition 3.10: Let L be an AL. Then an element 𝑎 ∈  𝐿 is said to be join irreducible if 𝑎 =  𝑎1  ∨ 𝑎2 =  𝑎2  ∨ 𝑎1 
implies 𝑎 =  𝑎1 or 𝑎 =  𝑎2. Otherwise a is called join reducible.  
 
Example 3.11: Every elements of an AL L defined in example 3.5 are meet as well as join irreducible.  
Now, we prove the following. 
 
Theorem 3.12: Let Lbe an AL with 0. Then every atom in L is join irreducible.  
 
Proof: Suppose 𝑎 is an atom and 𝑎 =  𝑏 ∨ 𝑐 =  𝑐 ∨ 𝑏 for some 𝑏, 𝑐 ∈  𝐿. Suppose 𝑎 ≠ 𝑏. Since 0 ≤ 𝑏 ≤ 𝑏 ∨ 𝑐 =
𝑎 and 𝑎 ≠ 𝑏, 𝑏 =  0. Hence 𝑎 = 𝑏 ∨ 𝑐 = 0 ∨ 𝑐 =  𝑐. Similarly, if 𝑎 ≠ 𝑐, we can prove that 𝑎 =  𝑏. Therefore 𝑎 is 
join irreducible. 
 
But, the converse of the above theorem is not true. For, in example 3.3, 𝑏 is join irreducible but not an atom. It can be 
easily verified that if L is an AL with 0, then 0 is join irreducible. 
 
Theorem 3.13: Let L be an AL. If L is a chain, then every element in L is join as well as meet irreducible.  
 
Proof: Suppose L is a chain. Let 𝑎 ∈  𝐿 such that 𝑎 =  𝑎1  ∨ 𝑎2 =  𝑎2  ∨ 𝑎1 for some 𝑎1, 𝑎2  ∈ 𝐿. Now, since L is a 
chain, 𝑎1  ≤  𝑎2 𝑜𝑟 𝑎2  ≤  𝑎1. It follows that, either 𝑎 =  𝑎1 or 𝑎 =  𝑎2. Therefore 𝑎 is join irreducible. Similarly we 
can prove that every element in L is meet irreducible. 
 
But, converse of the above theorem is not true. For, If L is a discrete AL, then clearly every element in L is meet as well 
as join irreducible. But, L is not a chain. 
 
Theorem 3.14: Let L be an AL with 0 satisfying the minimum(maximum) condition. Then every one of an element in L 
can be represented as the join(meet) of a finite number of join(meet) irreducible elements. 
 
Proof: Suppose L be an AL with 0 satisfying the minimum condition. Suppose H is the set of all elements in L which can 
not be represented as join of finite number of join irreducible elements. Now, we shall prove that H is empty. Clearly, H 
contains no join irreducible elements, since if 𝑎 is such an element then 𝑎 =  𝑎 ∨ 𝑎 or 𝑎 =  𝑎 ∨ 0 =  0 ∨ 𝑎 are easily 
found representations of the required form that contradicts our assumption for H. Suppose 𝐻 ≠  ∅. Since L satisfies  
minimum condition, H hasa minimal element say m. Clearly m is not join irreducible element. Then we can choose 
𝑚1, 𝑚2  ∈  𝐿 such that; 
𝑚 =  𝑚1  ∨ 𝑚2  =  𝑚2 ∨ 𝑚1, (𝑚1,  𝑚2  <  𝑚) 
 
Since m is a minimal element of H, the elements 𝑚1,𝑚2 ∉ 𝐻. Hence 𝑚1,𝑚2 can be represented as 𝑚1  =  𝑞1  ∨  𝑞2  ∨
 … .∨  𝑞𝑠  and 𝑚2  =  𝑟1  ∨  𝑟2  ∨ . . . .∨  𝑟𝑡  where all the 𝑞𝑗  and 𝑟𝑘  are join irreducible. Therefore 𝑚 = ⋁ 𝑞𝑗𝑠

𝑗=1   ∨
 ⋁ 𝑟𝑘𝑡

𝑘=1  , which is a join of finite number of join irreducible elements , a contradiction to 𝑚 ∈  𝐻 . Thus 𝐻 =  ∅. 
Similarly, we can prove that if L is an AL with 0 satisfies the maximum condition, then every one of elements of L can be 
represented as the meet of a finite number of meet irreducible elements. 
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It can be easily verified that if 𝐿1 and 𝐿2 are two ALs, then 𝐿1  × 𝐿2 is again an AL under point wise operations and is 
called direct product of 𝐿1 and 𝐿2. In the following, we give a necessary and sufficient condition for an element in 
𝐿1  ×  𝐿2 to become join irreducible.  
 
Theorem 3.15: Let 𝐿1 and 𝐿2 be two ALs and 𝐿 =  𝐿1  ×  𝐿2. Then an element 𝑝 = (𝑝1, 𝑝2)  ∈ 𝐿 is join irreducible 
in L if and only if 𝑝1  =  0 and 𝑝2 is join irreducible in 𝐿2 or 𝑝2  =  0 and 𝑝1 is join irreducible in 𝐿1.  
 
Proof: Let 𝑝 = (𝑝1, 𝑝2)  ∈ 𝐿. Then we have 𝑝 = (𝑝1, 𝑝2)  =  (𝑝1, 0) ∨ (0, 𝑝2)  =  (0, 𝑝2)  ∨  (𝑝1, 0). Suppose 𝑝 is 
join irreducible in L. Then either (𝑝1, 𝑝2)  =  (𝑝1, 0)or (𝑝1, 𝑝2)  =  =  (0, 𝑝2) and hence 𝑝1 = 0 or 𝑝2 = 0. Now, we 
shall prove that if 𝑝1 = 0, then 𝑝2 is join irreducible in 𝐿2. Suppose 𝑝1 = 0 and 𝑝2  =  𝑎2  ∨ 𝑏2 =  𝑏2  ∨ 𝑎2, for some 
𝑎2, 𝑏2  ∈  𝐿2 . Now, 𝑝 = (𝑝1, 𝑝2)  = (0, 𝑝2)  = (0 ∨ 0, 𝑎2  ∨ 𝑏2)  = (0, 𝑎2) ∨ (0, 𝑏2)  = (0, 𝑏2) ∨ (0,
𝑎2). Therefore (𝑝1, 𝑝2) =  (0, 𝑎2) 𝑜𝑟 (𝑝1, 𝑝2) =  (0, 𝑏2). It follows that 𝑝2  =  𝑎2 or 𝑝2  =  𝑏2. Therefore 𝑝2 is join 
irreducible in 𝐿2. Similarly we can prove that if 𝑝2  =  0, then 𝑝1 is join irreducible in 𝐿1. Conversely, assume the 
condition. Suppose (𝑝1, 𝑝2) = (𝑎1, 𝑎2) ∨ (𝑏1, 𝑏2)  = (𝑏1, 𝑏2) ∨ (𝑎1, 𝑎2)  where 𝑎1, 𝑏1  ∈  𝐿1 and 𝑎2, 𝑏2  ∈  𝐿2 . 
This implies (𝑎1  ∨ 𝑏1, 𝑎2  ∨ 𝑏2)  =  (𝑏1  ∨ 𝑎1, 𝑏2  ∨ 𝑎2). Then 𝑝1 = 𝑎1  ∨ 𝑏1 =  𝑏1  ∨ 𝑎1 and 𝑝2  =  𝑎2  ∨ 𝑏2  =  𝑏2  ∨
𝑎2 . Now, if 𝑝1  =  0  and 𝑝2  is join irreducible in 𝐿2 , then 𝑎1 = 0 = 𝑏1and 𝑝2  =  𝑎2  or 𝑝2  =  𝑏2 . Therefore 
(𝑝1, 𝑝2) =  (0, 𝑎2)  or  (𝑝1, 𝑝2) =  (0, 𝑏2). Therefore 𝑝 = (𝑝1, 𝑝2) is join irreducible in L. Similarly, we can prove 
that if 𝑝2  =  0 and 𝑝1 is join irreducible in 𝐿1, then 𝑝 = (𝑝1, 𝑝2) is join irreducible in L.  
 
In the following we introduce concepts of meet prime and join prime elements in an AL L which are generalization of the 
concept of irreducible elements.  
 
Definition 3.16: An element a of an AL L is called meet prime if 𝑎1  ∧ 𝑎2  =  𝑎2  ∧ 𝑎1  ≤  𝑎 implies either 𝑎1  ≤  𝑎 or 
𝑎2  ≤  𝑎. 
 
Definition 3.17: An element 𝑎  of an AL L is called join prime if 𝑎 ≤ 𝑎1  ∨ 𝑎2  =  𝑎2  ∨ 𝑎1  implies either             
𝑎 ≤ 𝑎1 or  𝑎 ≤  𝑎2. 
 
Example 3.18: In an AL L of example 3.5, it is observed that 𝑎 and 𝑏 are meet prime and 𝑐 is join prime.  
It can be easily seen that, in a distributive lattice L an element is meet irreducibleifandonlyifitismeetprime. But,in 
thefollowing we prove every meet prime element is meet irreducible.  
 
Theorem 3.19: Every meet prime element in an AL L is meet irreducible.  
 
Proof: Suppose 𝑎 ∈  𝐿 is meet prime element. Let 𝑎 =  𝑎1  ∧  𝑎2  =  𝑎2  ∧  𝑎1 for some 𝑎1, 𝑎2  ∈ 𝐿. Then we have 
𝑎 ≤  𝑎1, 𝑎2. On the other hand, we have 𝑎1  ∧  𝑎2 = 𝑎2 ∧ 𝑎1 ≤  𝑎. It follows that, either 𝑎1  ≤  𝑎 𝑜𝑟 𝑎2  ≤  𝑎. Hence 
either 𝑎 =  𝑎1  or 𝑎 =  𝑎2. Therefore 𝑎 is meet irreducible. 
 
The converse of the above theorem is not true in general. For, suppose 𝐿1 and 𝐿2 are two discrete ALs with zero and 
each with at least three elements. Then clearly, 𝐿 = 𝐿1  ×  𝐿2  is an AL under point wise operations. Choose 0 ≠  𝑝1  ∈
 𝐿1  and 0 ≠  𝑝2  ∈  𝐿2 . Put 𝑝 =  (𝑝1,𝑝2) . Now, let (𝑞1, 𝑞2), (𝑟1 , 𝑟2)  ∈ 𝐿  such that 𝑝 =  (𝑞1, 𝑞2) ∧  (𝑟1 , 𝑟2)  =
 (𝑟1, 𝑟2)  ∧  (𝑞1, 𝑞2). Then (𝑝1,𝑝2)  =  (𝑞1 ∧ 𝑟1 , 𝑞2 ∧ 𝑟2)  =  (𝑟1 ∧ 𝑞1, 𝑟2 ∧ 𝑞2) and hence 𝑝1 = 𝑞1 ∧ 𝑟1 =  𝑟1 ∧ 𝑞1  and 
𝑝2  =  𝑞2 ∧ 𝑟2 =  𝑟2 ∧ 𝑞2. Since 𝑝1 ≠  0 and 𝑝2 ≠ 0, it follows that, 𝑞1, 𝑟1 , 𝑞2, 𝑟2 are non zero. Therefore 𝑟1 = 𝑞1 ∧
𝑟1 =  𝑟1 ∧ 𝑞1 = 𝑞1  and 𝑟2  =  𝑞2 ∧ 𝑟2 =  𝑟2 ∧ 𝑞2 = 𝑞2 . Therefore (𝑞1, 𝑞2) =  (𝑟1 , 𝑟2) . Hence 𝑝 = (𝑝1,𝑝2)  =
(𝑞1, 𝑞2) = (𝑟1 , 𝑟2) . Therefore 𝑝  is meet irreducible. However, 𝑝  is not meet prime. For, choose 𝑞𝑖  ∈  𝐿𝑖  −
{0, 𝑝𝑖}  ∀𝑖 =  1,2 . Then (0,𝑞2) ∧ (𝑞1, 0)  =  (𝑞1, 0) ∧ (0,𝑞2)  =  (0,0)  ≤  (𝑝1,𝑝2)  =  𝑝 . But (0,𝑞2) ≰ 𝑝  and 
(𝑞1, 0) ≰ 𝑝. 
It can be easily seen that every join prime element in an AL L is join irreducible. But, converse is not true. For, Consider 
the following example. 
 
Example 3.20: Let 𝐿 =  {0, 𝑎,𝑏, 𝑐, 1} and define binary operations on 𝐿 as follows: 
 
  
 
  
 
 
 
 
 
Then clearly (𝐿, ∨, ∧, 0) is an AL with 0. In this AL the element 𝑎 is join irreducible. But, it is not join prime, since 
𝑎 ≤  𝑏 ∨ 𝑐 =  𝑐 ∨ 𝑏; but, 𝑎 ≰ 𝑏 and 𝑎 ≰ 𝑐. 

∨ 0 a b c 1 
0 0 a b c 1 
a a a 1 1 1 
b b 1 b 1 1 
c c 1 1 c 1 
1 1 1 1 1 1 

∧ 0 a b c 1 
0 0 0 0 0 0 
a 0 a 0 0 a 
b 0 0 b 0 b 
c 0 0 0 c c 
1 0 a b c 1 
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4. RELATIVELY COMPLEMENTED ALS  
 
n this section, we introduce the concept of a sub AL of an AL L and prove that every interval in an AL L is a sub AL. Also, 
we introduce the concepts of relatively complemented AL and sectionally complemented AL and prove that if an AL L is 
a Boolean algebra, then L is relatively complemented lattice and hence is a sectionally complemented lattice. Also, prove 
that if L is finite and sectionally complemented, then every non zero element of L is a join of finitely many atoms. We 
introduce the concept of semicomplemented and weakly complemented ALs and we derive a necessary and sufficient 
condition that an AL L with 0 to become weakly complemented AL. We prove that every weakly complemented AL is 
semicomplemented and every sectionally complemented AL is weakly complemented and hence every sectionally 
complemented AL is semicomplemented, which follows that, every relatively complemented AL is semicomplemented. 
Now, we begin with the following definitions. 
 
Definition 4.1: Let L be an AL and a,b ∈ L with a ≤ b. Then [a,b] = {x ∈ L/a ≤ x ≤ b}is called an interval in L.  
 
Definition 4.2: Let L be an AL. A nonempty subset S of L is called a sub AL of L if S is closed under the 
operations∨and∧in L. Now, we have the following lemma, whose proof is straightforward.  
 
Lemma 4.3: Let L be an AL and let a,b ∈ L such that a ≤ b. Then we have the following:  

1. [𝑎,𝑏]  =  {𝑥 ∈  𝐿/𝑎 ≤  𝑥 ≤  𝑎} is a sub AL of L.  
2. (𝑎]  =  {𝑥 ∈  𝐿/𝑥 ≤  𝑎} is a sub AL of L.  
3. [𝑎)  =  {𝑥 ∈  𝐿/𝑎 ≤  𝑥} is a sub AL of L  

 
Now, we introduce the concepts of relatively and sectionally complemented ALs. 
Definition 4.4: An AL L is said to be relatively complemented if every interval [𝑎, 𝑏],𝑎 ≤  𝑏 in L is a complemented 
lattice.  
 
Definition 4.5: Let L be an AL with 0. Then L is said to be sectionally complemented if every intervals of the form 
[0,𝑎],𝑎 ∈ 𝐿 is complemented lattice.  
 
Next, we prove the following.  
Theorem 4.6: Let L be an AL. Then the following implications hold.  

1. If L is a Boolean algebra, then L is relatively complemented lattice. 
2. If L has 0 and L is relatively complemented AL, then L is sectionally complemented. 
3. If L is finite and sectionally complemented, then every non zero element of L is a join of finitely many atoms. 

 
Proof: (1)  Suppose L is a Boolean algebra and 𝑎,𝑏 ∈  𝐿 with 𝑎 ≤  𝑏. Let 𝑥 ∈  [𝑎, 𝑏]. Then 𝑥 ∈  𝐿. Since L is a 
Boolean algebra, 𝑥 has complement say 𝑥′ in L. Put 𝑦 =  (𝑥′ ∨ 𝑎) ∧ 𝑏. We shall prove that 𝑦 is the complement of 𝑥 
in [𝑎,𝑏] . Clearly 𝑦 ∈ [𝑎,𝑏].  Now, 𝑥 ∨  𝑦 =  𝑥 ∨  (𝑥′ ∨  𝑎)  ∧  𝑏 =  (𝑥 ∨  (𝑥′ ∨  𝑎)) ∧ (𝑥 ∨ 𝑏)  =  ((𝑥 ∨ 𝑥′) ∨ 𝑎) ∧
(𝑥 ∨ 𝑏) = (1 ∨ 𝑎) ∧ 𝑏 =  1 ∨ 𝑏 =  𝑏 . Again, 𝑥 ∧ 𝑦 =  𝑥 ∧ ((𝑥′ ∨ 𝑎) ∧ 𝑏)  =  (𝑥 ∧ (𝑥′ ∨ 𝑎)) ∧ 𝑏 =  ((𝑥 ∧ 𝑥′) ∨ (𝑥 ∧
𝑎)) ∧ 𝑏 =  (0 ∨ (𝑥 ∧ 𝑎)) ∧ 𝑏 =  (𝑥 ∧ 𝑎) ∧ 𝑏 =  𝑎 ∧ 𝑏 =  𝑎. Hence 𝑦 is the complement of 𝑥 in [𝑎, 𝑏]. Thus every 
interval in L is a complemented lattice. Therefore L is relatively complemented AL. Proof of (2) is clear.  
(3)  Suppose L is finite and sectionally complemented. Let 𝑎(≠  0)  ∈  𝐿 and let 𝑝1, 𝑝2, 𝑝3, . . . ,𝑝𝑛 be atoms which are 
less than or equal to 𝑎. Put, 𝑏 =  𝑝1  ∨ 𝑝2  ∨  𝑝3  ∨. . .∨ 𝑝𝑛 . Then 𝑏 ≤  𝑎 since each 𝑝𝑘  ≤  𝑎 ∀ 𝑘. Suppose 𝑏 <  𝑎. 
Then we have 𝑏 ∈  [0,𝑎]. Since L is sectionally complemented, it has a complement 𝑐 in [0,𝑎]. Therefore 𝑏 ∧ 𝑐 =  0 
and 𝑏 ∨ 𝑐 = 𝑎. If 𝑐 = 0, then 𝑎 = 𝑏 ∨ 𝑐 = 𝑏 ∨ 0 = 𝑏, a contradiction to 𝑏 <  𝑎. So that 𝑐 ≠ 0. Then by theorem3.6, 
there exists an atom 𝑝 ∈ 𝐿 such that 𝑝 ≤ 𝑐 . Then we get 𝑝 ≤ 𝑎 since 𝑐 ≤  𝑎 . It follows that, 𝑝 = 𝑝𝑖  for some 
𝑖, 1 ≤  𝑖 ≤  𝑛 and hence 𝑝 ≤  𝑏. Therefore 𝑝 ≤  𝑏 ∧ 𝑐 =  0. Hence 𝑝 = 0, which is a contradiction to p is an atom. 
Therefore 𝑎 = 𝑏 =  𝑝1  ∨ 𝑝2  ∨  𝑝3  ∨. . .∨ 𝑝𝑛 . Thus every non zero element of L is a join of finitely many atoms. 
 
Now, we introduce the concept of inner element and semicomplemented AL. 
 
Definition 4.7: Let L be an AL with 0. Then an element 𝑎 ∈ 𝐿 is said to be an inner element if 𝑎 ≠  0 and 𝑎 is not a 
maximal element.  
 
Definition 4.8: Let L be an AL with 0 and 𝜐 ∈  𝐿. If there exists 𝑥 ∈ 𝐿 such that 𝜐 ∧ 𝑥 =  0, then 𝑥 is called a 
semicomplement of 𝜐.  
In an AL L we can easily observed that 𝑥 is a semicomplement of 𝑦 if and only if 𝑦 is a semi complement of 𝑥 (since 
𝑥 ∧ 𝑦 =  0 ⟺  𝑦 ∧ 𝑥 =  0). Also, it is clear that the set of all semicomplements (if exists) of an element 𝜐 ∈  𝐿 is a 
poset with the induced partial ordering on L. In this case the maximal element of this poset is called maximal 
semicomplement of 𝜐. Also,we can easily seen that the set of all semicomplements of an element 𝜐 in L is an initial 
segment of L. Further, if L is an AL with 0, then 0 is the semicomplement of every element in L. Semicomplements other 
than 0 of any element in L are called proper semicomplements. 
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Definition 4.9: Let L be an AL with 0. Then L is said to be semicomplemented if every inner element in L has at least one 
proper semicomplement.  
 
Now, we introduce the concept of weakly complemented AL and obtain a necessary and sufficientcondition for an AL 
with 0 to become weakly complemented AL. 
 
Definition 4.10: Let L be an AL with 0. Then L is said to be weakly complemented if for any 𝑎, 𝑏 ∈  𝐿, 𝑎 <  𝑏, 𝑎 has 
semicomplement which is not semicomplement of b. That is there exists 𝑥 ∈ 𝐿 such that 𝑎 ∧  𝑥 =  0; but, 𝑏 ∧ 𝑥 ≠ 0. 
 
Theorem 4.11: Let L be an AL with 0. Then L is weakly complemented if and only if for every pair of elements 𝑎, 𝑏 ∈ 𝐿 
with 𝑎 < 𝑏, there exists 𝑥 ∈ 𝐿 such that (𝑎 ∧ 𝑏) ∧ 𝑥 =  0 and (𝑎 ∨ 𝑏) ∧ 𝑥 ≠  0.  
 
Proof: Suppose L is a weaklycomplemented AL and 𝑎, 𝑏 ∈ 𝐿 suchthat 𝑎 < 𝑏. Then we have 𝑎 ∧  𝑏 ≤  𝑎 ∨  𝑏. 
Suppose 𝑎 ∧ 𝑏 = 𝑎 ∨ 𝑏. Then 𝑎 ∨ (𝑎 ∧  𝑏) = 𝑎 ∨ (𝑎 ∨ 𝑏). It follows that, 𝑎 =  𝑎 ∨  𝑏 =  𝑏 ∨  𝑎 and hence 
𝑏 ≤ 𝑎. Also, 𝑎 ∧ (𝑎 ∧ 𝑏) = 𝑎 ∧ (𝑎 ∨ 𝑏) which follows that, 𝑎 ∧ 𝑏 = 𝑎 and hence 𝑎 ≤ 𝑏. Hence 𝑎 =  𝑏, which 
is a contradiction to 𝑎 <  𝑏. Therefore 𝑎 ∧ 𝑏 <  𝑎 ∨ 𝑏. Now, since L is weakly complemented AL, there exists 
𝑥 ∈  𝐿 such that (𝑎 ∧ 𝑏) ∧ 𝑥 =  0 and (𝑎 ∨ 𝑏) ∧ 𝑥 ≠  0. Conversely, assume the condition. Let 𝑎, 𝑏 ∈ 𝐿 such 
that 𝑎 <  𝑏. Then by our assumption, there exists 𝑥 ∈  𝐿 such that (𝑎 ∧ 𝑏) ∧ 𝑥 =  0 and (𝑎 ∨ 𝑏) ∧ 𝑥 ≠ 0. 
We shall prove that 𝑎 ∧ 𝑥 =  0 and 𝑏 ∧ 𝑥 ≠  0. Consider, 𝑎 ∧ 𝑥 =  (𝑎 ∧ 𝑏) ∧ 𝑥 =  0 and 𝑏 ∧ 𝑥 =  (𝑎 ∨ 𝑏) ∧
𝑥 ≠  0. Therefore 𝑎 ∧ 𝑥 =  0 and 𝑏 ∧ 𝑥 ≠  0. Thus L is weakly complemented. 
 
Theorem 4.12: Every weakly complemented AL is semicomplemented.  
 
Proof: Suppose L is weakly complemented AL. Let 𝑎 ∈ 𝐿 be an inner element. Then 𝑎 ≠  0 and 𝑎 is not maximal. 
Hence there exists 𝑏 ∈ 𝐿 such that 𝑎 <  𝑏. Now, by our assumption there exists 𝑥 ∈  𝐿 such that 𝑎 ∧ 𝑥 = 0 but 
𝑏 ∧ 𝑥 ≠  0. Now, we shall prove that 𝑥 ≠  0.  
 
For, if 𝑥 = 0 , then 𝑏 ∧ 𝑥 = 𝑏 ∧ 0 = 0 , which is a contradiction. Hence 𝑥 ≠  0  and 𝑎 ∧ 𝑥 =  0 . Therefore L is 
semicomplemented AL. 
 
Theorem 4.13: Every sectionally complemented AL is weakly complemented.  
 
Proof: Suppose L is sectionally complemented AL. Let 𝑎,𝑏 ∈ 𝐿 suchthat 𝑎 <  𝑏. Then 𝑎 ∈  [0,𝑏]. Now, since L is 
sectionally complemented, we have [0, 𝑏] is complemented lattice. Hence there exists 𝑥 ∈  [0,𝑏] such that 𝑎 ∧ 𝑥 =  0 
and 𝑎 ∨ 𝑥 =  𝑏. Now, suppose 𝑏 ∧ 𝑥 =  0. Then we have 𝑥 =  (𝑎 ∨ 𝑥) ∧ 𝑥 =  𝑏 ∧ 𝑥 =  0. Therefore 𝑥 =  0. Now, 
𝑏 =  𝑎 ∨  𝑥 =  𝑎 ∨  0 =  𝑎 , a contradiction to 𝑎 <  𝑏. Therefore 𝑏 ∧ 𝑥 ≠  0. Thus L is weakly complemented.  
  
Corollary 4.14: Every relatively complemented AL with 0 is weakly complemented.  
 
Corollary 4.15: Every sectionally complemented AL is semicomplemented.  
 
Corollary 4.16: Every relatively complemented AL is semicomplemented. 
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