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ABSTRACT 
A function f; X→Y  is  said  to  be  δgβ-irresolute  if  the  inverse  image  of  every δgβ- closed  set  in  Y  is  δgβ-
closed  set  in  X. Some  properties  of  these  functions  were obtained  and  relations  with  group  theory  has  been  
studied. 
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1. INTRODUCTION 
 
Throughout the present paper, X and Y denote topological spaces. Let A be a subset of X. We  denote  the  interior  and  
closure  of A  by  Int(A)  and  Cl(A) respectively. 
 
A subset A of a topological space X is said to be β-open [1] or semi-preopen [3]   (if A⊆Cl(Int(Cl(A))). The 
complement of β-open set is β-closed. The intersection of all β-closed sets containing A is called β-closure [2]) of A 
and is denoted by βCl(A). Further A is said to be regular open if A=Int(Cl(A)) and it is said to be regular closed if 
A=Cl(Int(A)). It is said to be π-open[10] if it is finite union of regular open sets and δ-open [9] if for each x∈A, there 
exists a regular open set  V such that x∈ V ⊂A. Every π-open set is δ-open. Also δ-closure [9] of A, denoted by δCl(A) 
is defined to be the set of all x∈X such that A∩Int(Cl(U))≠φ for every open neighbourhood U of  x. If A=δCl(A), then 
A is called δ-closed. The complement of δ-closed set is δ-open. Also, A is said to be generalized semi-preclosed [6] 
(briefly.gsp-closed) or gβ-closed (resp.πgβ-closed [8], δgβ-closed [5]) if βCl(A) ⊆U, whenever A⊆U and U is open 
(resp π-open, δ-open) in X. 
 
2. PRELIMINARIES 
 
Definition 2.1: A function f: X→Y is said to be πgβ-irresolute [8] (resp. δgβ-irresolute [5]) if the inverse image of 
every πgβ-closed (resp.δgβ-closed) set in Y is πgβ-closed(resp. δgβ-closed) set in X. 
 
Remark 2.1: Every πgβ-irresolute function is δgβ-irresolute but not conversely as can be seen from the following 
example which is example 4.6 of [7]: 
 
Example 2.1: Let (X,τ) be the Moore plane (also known as Niemytzki plane). Set S={(x, y): x is irrational and y=0}. 
Let A={ (x, y) : y<2} - S and let B = { (x, y) : x2+(y-4)2=1}. Let σ be the topology on the upper half plane generated by 
A and B. Now consider the identity function f: (X,τ)→(X,σ).Note that in (X,τ), B is regular open and A is union of 
regular open sets, that is, A can be represented as the union of all open balls  of  radius  1 tangent  to  the  x-axis  at  the  
rational  along  with corresponding rational. Note that every such set is regular open. Thus f is δgβ-irresolute. But A is 
regular open in (X,σ) and there is no way A can be represented as finite union of regular sets of (X,τ).Thus f is not   
πgβ-irresolute function. 
 
Theorem 2.1: Every homeomorphism is δgβ -irresolute 
 
Proof: It is obvious from the fact that every homeomorphism is πgβ-irresolute function ([8], Theorem 2.3 (iv)) and 
Remark 2.1. 
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Definition 2.2: A function f: (X,τ)→(Y,σ) is called δgβc-homeomorphism if f is a δgβ-irresolute and f-1 is δgβ-
irresolute. 
For a topological space (X,𝜏), we introduce the following: 
h(X;𝜏)= {f | f: (X,𝜏) →(X,𝜏) is a homeomorphism}, δgβch(X;𝜏)= {f | f: (X,𝜏) →(X,𝜏) is a δgβc-homeomorphism}. 
 
Theorem 2.2:  For a topological space (X,τ ), h(X;τ) ⊆ δgβch(X;τ ).  
 
Proof: Let f∈ h(X;τ ).Then by Theorem 2.1 and Definition 2.2, it is shown that f and f-1 are δgβc-homeomorphism, that 
is, f∈ δgβch(X;τ). 
 
Theorem 2.3: The collection δgβch(X;τ) forms a group under the composition of functions. 
 
Proof: A binary operation nX :δgβch(X;τ) × δgβch(X;τ) →δgβch(X;τ) is  well defined by nX(a,b) = boa, where boa: 
X→X is a composite function of the functions a and b such that (boa)(x) = b(a(x)) for every point x∈X. Indeed by ([5], 
Theorem 4.12 (iii)), it is shown that for every δgβc-homeomorphisms a and b, the composition boa is also  δgβc-
homeomorphism. Namely, for every pair (a,b)∈ δgβch(X;τ), nX(a,b) = boa∈ δgβch(X;τ).Then it is claimed that the 
binary operation nX :  δgβch((X;τ) ×  δ gβch(X;τ) →  δ gβch(X;τ) satisfies the axiom of group, namely, putting               
a.b= nX(a,b), the following properties hold in δgβch(X;τ): 

(1) ((a.b).c)=(a.(b.c)) holds for every a, b, c ∈ δgβch((X;τ). 
(2) for all   a ∈ δgβch((X;τ)  ,there exists an element  e∈ δgβch(X;τ)  such that a.e=a=e.a hold in δgβch(X;τ).      
(3) for   each element   a∈ δgβch(X;τ), there exists an element a1∈ δgβch(X;τ) such that a. a1=e= a1.a hold in 

δgβch(X,τ). 
Indeed, the proof of (1) is obvious, the proof of (2) is obtained by taking e= 1X, where 1X is the identity function on X 
and using the fact that identity function is always δgβc-irresolue. Proof of (3) is obtained by taking a1=a-1 for each 
a∈ δgβch(X;τ) and Definition 2.2, where a-1 is inverse of a. Therefore by definition of groups, the pair (δgβch(X;τ), nX) 
forms a group under the compositions of functions. 
 
Theorem 2.4: The homeomorphism group h(X;τ) is a subgroup of the group 𝛿gβch(X;τ). 
 
Proof: It is obvious that 1X: (X,τ) → (X, τ) is a homeomorphism and so h(X;τ)≠ ∅.It follows by Theorem 2.2 that 
h(X;τ)  ⊆ δgβch(X;τ). Let a,b∈h(X;τ).Then we have nX (a,b-1)= b-1oa∈h(X;τ), where nX: δgβch(X;τ)×δgβch(X;τ) 
→δgβch(X;τ) is a binary operation.(Theorem 2.3).Therefore, the group h(X;τ) is a subgroup of δgβch(X;τ). 
 
Theorem 2.5:  If (X, τ) and (Y, σ) are homeomorphic, then  δgβch(X,τ)  ≅ δgβch(Y, σ). 
 
Proof: It follows from the assumption that there exist a homeomorphism say f: (X, τ) → (Y, σ).We define a function 
f*: δgβch(X,τ)  → δgβc(Y, σ) by f*(a)=foaof-1 for every a∈ δgβch(X,𝜏).By Theorem 2.2, the bijections foaof-1 and 
(foao f -1)-1 are  δgβ-irresolute and so is f* is well defined. The induced function f* is a homomorphism. Indeed   
f*(nX(a, b)) = fobof-1ofoaof-1= (f*(b))o(f*(a))= nX(f*(b), f*(a)) hold. Obviously f* is bijective. Thus f* is isomorphism. 
 
Definition 2.3: A function f: X→Y is said to be contra πgβ-irresolute [4] (resp.contra-δgβ-irresolute) if the inverse 
image of every πgβ-open (resp.δgβ-open) set in Y is πgβ -closed(resp. δgβ-closed) set in X. 
 
Definition 2.4: For a topological space (X,τ), we define the following collection of functions: 
con-δgβch(X; τ)= {f | f: (X,τ) →(X,τ) is a contra-δgβ-irresolute bijection and f -1 is contra-δgβ-irresolute}. 
 
Remark 2.2: If f and g are contra-δgβ-irresolute, then so is fog.  
 
Remark 2.3: If f is δgβ-irresolute and g is contra-δgβ-irresolute, then gof is contra-δgβ-irresolute. 
 
Theorem 2.6:  The union of two collections, δgβch(X; τ)∪con-δgβch(X; τ) forms a group under the composite 
 of functions. 
 
Proof: Let BX = δgβch(X; τ)∪ con-δgβch(X; τ) . A binary operation WX: BX × BX → BX is well defined by           
WX(a,b) =boa where, boa:X→X is a composite function of functions a and b. Indeed let (a, b) ∈ BX; if a∈ δgβch(X; τ)  
and b∈ con-δgβch(X; τ), then boa:(X, τ) →  (X, τ) is a contra δ-β-irresolute bijection and (boa)-1 is also contra δ-β-
irresolute and so WX(a,b) =boa∈ δgβch(X; τ)⊆ BX (Remark 2.3). If a, b∈ con-δgβch(X; τ), then boa: (X, τ) →  (X, τ) is 
a con-δgβ irresolute bijection and so a∈con-δgβch(X; τ)⊆ BX (By Remark 2.2). If a,b∈ δgβch(X; τ), then boa: (X, τ) →
(X, τ) is a δgβ irresolute bijection and so a∈ δgβch(X; τ)⊆ BX (By Remark 2.3). By similar arguments of Theorem 2.3, 
it is claimed that binary operation WX: BX × BX → BX satisfies the axiom of group, for the identity element e of           
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BX, e = 1X: (X, τ) →  (X, τ)(the identity function).Thus, the pair (BX, WX) forms a group under the composite of 
functions, i.e, δgβch(X; τ)∪con-δgβch(X; τ) is a group. 
 
Theorem 2.7: The group δgβch(X; τ)  is a subgroup of δgβch(X;τ)∪con-δgβch(X;τ)). 
 
Proof: The group δgβch(X; τ) is non empty from Remark 2.2.Using the binary operation in Theorem 2.6, it is shown 
that WX (a, b-1)= b-1oa ∈δgβch(X; τ) for any a,b∈δgβch(X; τ)and so δgβch(X; τ) is a subgroup of δgβch(X; τ)∪ con-
δgβch(X; τ). 
 
Theorem 2.8: If (X,  τ ) and (Y, σ) are homeomorphic, then there exists isomorphisms: 𝛿gβch(X; τ)∪ con-
δgβch(X; τ).≅δgβch(Y;σ)∪con-δgβch(Y;σ). 
 
Proof: Let f:(X,  τ )  → (Y, σ ) be a homeomorphism. We put BX = δgβch(X; τ)∪ con- δgβch(X; τ) (resp.                            
BY = δgβch(Y;σ).∪con-δgβch(Y;σ). For a topological space (X,  τ) (resp.  (Y,σ)). First we have a well defined 
function     f*: BX→ BY by f* (a)=foaof -1 for every a∈ BX. Indeed by Theorem 2.2, f and f -1 are δgβ- irresolute ,the 
bijections foaof -1 and (foaof -1)-1 are δgβ-irresolute or contra δgβ-irresolute and so f* is well defined. The induced 
function f* is a homomorphism. Indeed, f*(WX(a,b))=fobo f -1ofoao f -1=(f* (b))o(f* (a))= WY(f* (a), f* (a))) hold.    
WX: BX × BX → BX and WY: BY × BY → BY are binary operations defined in Theorem 2.5, obviously f* is bijective. 
Thus we have the isomorphism .Also since identity function is δgβ-irresolute, f*(1X) = 1Y holds. 
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