International Journal of Mathematical Archive-10(2), 2019, 32-34
 IMAAvailable online through www.ijma.info ISSN 2229-5046

MORE ON $\delta \mathrm{g} \beta$-IRRESOLUTE FUNCTIONS IN TOPOLOGICAL SPACES AND RELATED GROUPS
SANJAY TAHILIANI*
PGT/Lecturer, Maths, N. K. Bagrodia.P.S, Sector 9, Rohini, New Delhi-85, India.

(Received On: 10-12-18; Revised \& Accepted On: 01-02-19)

Abstract

A function $f ; X \rightarrow Y$ is said to be $\delta g \beta$-irresolute if the inverse image of every $\delta g \beta$-closed set in Y is $\delta g \beta$ closed set in X. Some properties of these functions were obtained and relations with group theory has been studied.

Key words: $g \beta$-irresolute, $\delta g \beta$-irresolute, homeomorphism group.
AMS Subject classification: 54C08.

1. INTRODUCTION

Throughout the present paper, X and Y denote topological spaces. Let A be a subset of X . We denote the interior and closure of A by $\operatorname{Int}(\mathrm{A})$ and $\mathrm{Cl}(\mathrm{A})$ respectively.

A subset A of a topological space X is said to be β-open [1] or semi-preopen [3] (if $\mathrm{A} \subseteq \mathrm{Cl}(\operatorname{Int}(\mathrm{Cl}(\mathrm{A}))$). The complement of β-open set is β-closed. The intersection of all β-closed sets containing A is called β-closure [2]) of A and is denoted by $\beta \mathrm{Cl}(\mathrm{A})$. Further A is said to be regular open if $\mathrm{A}=\operatorname{Int}(\mathrm{Cl}(\mathrm{A}))$ and it is said to be regular closed if $\mathrm{A}=\mathrm{Cl}(\operatorname{Int}(\mathrm{A}))$. It is said to be π-open[10] if it is finite union of regular open sets and δ-open [9] if for each $\mathrm{x} \in \mathrm{A}$, there exists a regular open set V such that $\mathrm{x} \in \mathrm{V} \subset \mathrm{A}$. Every π-open set is δ-open. Also δ-closure [9] of A , denoted by $\delta \mathrm{Cl}(\mathrm{A})$ is defined to be the set of all $x \in X$ such that $A \cap \operatorname{Int}(\mathrm{Cl}(\mathrm{U})) \neq \phi$ for every open neighbourhood U of x . If $\mathrm{A}=\delta \mathrm{Cl}(\mathrm{A})$, then A is called δ-closed. The complement of δ-closed set is δ-open. Also, A is said to be generalized semi-preclosed [6] (briefly.gsp-closed) or $g \beta$-closed (resp. $\pi g \beta$-closed [8], $\delta g \beta$-closed [5]) if $\beta \mathrm{Cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open (resp π-open, δ-open) in X.

2. PRELIMINARIES

Definition 2.1: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be $\pi g \beta$-irresolute [8] (resp. $\delta g \beta$-irresolute [5]) if the inverse image of every $\pi g \beta$-closed (resp. $\delta g \beta$-closed) set in Y is $\pi g \beta$-closed(resp. $\delta g \beta$-closed) set in X.

Remark 2.1: Every $\pi g \beta$-irresolute function is $\delta g \beta$-irresolute but not conversely as can be seen from the following example which is example 4.6 of [7]:

Example 2.1: Let (X, τ) be the Moore plane (also known as Niemytzki plane). Set $\mathrm{S}=\{(\mathrm{x}, \mathrm{y})$: x is irrational and $\mathrm{y}=0\}$. Let $A=\{(x, y): y<2\}-S$ and let $B=\left\{(x, y): x^{2}+(y-4)^{2}=1\right\}$. Let σ be the topology on the upper half plane generated by A and B. Now consider the identity function $f:(X, \tau) \rightarrow(X, \sigma)$. Note that in (X, τ), B is regular open and A is union of regular open sets, that is, A can be represented as the union of all open balls of radius 1 tangent to the x-axis at the rational along with corresponding rational. Note that every such set is regular open. Thus f is $\delta \mathrm{g} \beta$-irresolute. But A is regular open in (X, σ) and there is no way A can be represented as finite union of regular sets of (X, τ).Thus f is not $\pi g \beta$-irresolute function.

Theorem 2.1: Every homeomorphism is $\delta g \beta$-irresolute
Proof: It is obvious from the fact that every homeomorphism is $\pi g \beta$-irresolute function ([8], Theorem 2.3 (iv)) and Remark 2.1.

Definition 2.2: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called $\delta g \beta \mathrm{c}$-homeomorphism if f is a $\delta g \beta$-irresolute and f^{-1} is $\delta g \beta$ irresolute.
For a topological space (X, τ), we introduce the following:
$\mathrm{h}(\mathrm{X} ; \tau)=\{\mathrm{f} \mid \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{X}, \tau)$ is a homeomorphism $\}, \delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau)=\{\mathrm{f} \mid \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{X}, \tau)$ is a $\delta \mathrm{g} \beta \mathrm{c}$-homeomorphism $\}$.
Theorem 2.2: For a topological space $(\mathrm{X}, \tau), \mathrm{h}(\mathrm{X} ; \tau) \subseteq \delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau)$.
Proof: Let $f \in h(X ; \tau)$.Then by Theorem 2.1 and Definition 2.2, it is shown that f and f^{-1} are $\delta g \beta c$-homeomorphism, that is, $f \in \delta g \beta \operatorname{ch}(X ; \tau)$.

Theorem 2.3: The collection $\delta g \beta c h(X ; \tau)$ forms a group under the composition of functions.
Proof: A binary operation $n_{X}: \delta g \beta \operatorname{ch}(X ; \tau) \times \delta g \beta \operatorname{ch}(X ; \tau) \rightarrow \delta g \beta \operatorname{ch}(X ; \tau)$ is well defined by $n_{X}(a, b)=$ boa, where boa: $X \rightarrow X$ is a composite function of the functions a and b such that (boa) $(x)=b(a(x))$ for every point $x \in X$. Indeed by ([5], Theorem 4.12 (iii)), it is shown that for every $\delta g \beta c$-homeomorphisms a and b, the composition boa is also $\delta g \beta c$ homeomorphism. Namely, for every pair $(\mathrm{a}, \mathrm{b}) \in \delta g \beta \operatorname{ch}(\mathrm{X} ; \tau), \mathrm{n}_{\mathrm{X}}(\mathrm{a}, \mathrm{b})=\operatorname{boa} \in \delta g \beta \operatorname{ch}(\mathrm{X} ; \tau)$.Then it is claimed that the binary operation $\mathrm{n}_{\mathrm{X}}: \delta \mathrm{g} \beta \mathrm{ch}((\mathrm{X} ; \tau) \times \delta \mathrm{g} \beta \operatorname{ch}(\mathrm{X} ; \tau) \rightarrow \delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau)$ satisfies the axiom of group, namely, putting a. $b=n_{X}(a, b)$, the following properties hold in $\delta g \beta c h(X ; \tau)$:
(1) ((a.b).c)=(a.(b.c)) holds for every a, b, c $\in \delta g \beta c h((X ; \tau)$.
(2) for all $\mathrm{a} \in \delta g \beta \operatorname{ch}((\mathrm{X} ; \tau)$, there exists an element $\mathrm{e} \in \delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau)$ such that a.e=a=e.a hold in $\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau)$.
(3) for each element $a \in \delta g \beta \operatorname{ch}(X ; \tau)$, there exists an element $a_{1} \in \delta g \beta c h(X ; \tau)$ such that $a . a_{1}=e=a_{1}$.a hold in $\delta g \beta \operatorname{ch}(X, \tau)$.
Indeed, the proof of (1) is obvious, the proof of (2) is obtained by taking $\mathrm{e}=1_{\mathrm{X}}$, where 1_{X} is the identity function on X and using the fact that identity function is always $\delta g \beta c$-irresolue. Proof of (3) is obtained by taking $a_{1}=a^{-1}$ for each $\mathrm{a} \in \delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau)$ and Definition 2.2, where a^{-1} is inverse of a. Therefore by definition of groups, the pair $\left(\delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau), \mathrm{n}_{\mathrm{X}}\right)$ forms a group under the compositions of functions.

Theorem 2.4: The homeomorphism group $h(X ; \tau)$ is a subgroup of the group $\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau)$.
Proof: It is obvious that $1_{X}:(X, \tau) \rightarrow(X, \tau)$ is a homeomorphism and so $h(X ; \tau) \neq \emptyset$.It follows by Theorem 2.2 that $\mathrm{h}(\mathrm{X} ; \tau) \subseteq \delta \mathrm{g} \beta \operatorname{ch}(\mathrm{X} ; \tau)$. Let $\mathrm{a}, \mathrm{b} \in \mathrm{h}(\mathrm{X} ; \tau)$.Then we have $\mathrm{n}_{\mathrm{X}}\left(\mathrm{a}, \mathrm{b}^{-1}\right)=\mathrm{b}^{-1} \mathrm{oa} \in \mathrm{h}(\mathrm{X} ; \tau)$, where $\mathrm{n}_{\mathrm{X}}: \delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau) \times \delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau)$ $\rightarrow \delta g \beta \operatorname{ch}(X ; \tau)$ is a binary operation.(Theorem 2.3).Therefore, the group $h(X ; \tau)$ is a subgroup of $\delta g \beta \operatorname{ch}(X ; \tau)$.

Theorem 2.5: If (X, τ) and (Y, σ) are homeomorphic, then $\delta g \beta \operatorname{ch}(\mathrm{X}, \tau) \cong \delta g \beta \operatorname{ch}(\mathrm{Y}, \sigma)$.
Proof: It follows from the assumption that there exist a homeomorphism say f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$.We define a function $\mathrm{f}^{*}: \delta g \beta \operatorname{ch}(\mathrm{X}, \tau) \rightarrow \delta g \beta c(\mathrm{Y}, \sigma)$ by $\mathrm{f}^{*}(\mathrm{a})=$ foaof ${ }^{-1}$ for every $\mathrm{a} \in \delta g \beta \operatorname{ch}(\mathrm{X}, \tau)$.By Theorem 2.2, the bijections foaof ${ }^{-1}$ and (foao $\left.\mathrm{f}^{-1}\right)^{-1}$ are $\delta g \beta$-irresolute and so is f^{*} is well defined. The induced function f^{*} is a homomorphism. Indeed $f^{*}\left(n_{X}(a, b)\right)=$ fobof $^{-1}$ ofoaof ${ }^{-1}=\left(f^{*}(b)\right) o\left(f^{*}(a)\right)=n_{X}\left(f^{*}(b), f^{*}(a)\right)$ hold. Obviously f^{*} is bijective. Thus f^{*} is isomorphism.

Definition 2.3: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be contra $\pi \mathrm{g} \beta$-irresolute [4] (resp.contra- $\delta \mathrm{g} \beta$-irresolute) if the inverse image of every $\pi \mathrm{g} \beta$-open (resp. $\delta \mathrm{g} \beta$-open) set in Y is $\pi \mathrm{g} \beta$-closed(resp. $\delta \mathrm{g} \beta$-closed) set in X .

Definition 2.4: For a topological space (X, τ), we define the following collection of functions:
$\operatorname{con}-\delta g \beta \operatorname{ch}(X ; \tau)=\left\{\mathrm{f} \mid \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{X}, \tau)\right.$ is a contra- $\delta g \beta$-irresolute bijection and f^{-1} is contra- $\delta \mathrm{g} \beta$-irresolute $\}$.
Remark 2.2: If f and g are contra- $\delta g \beta$-irresolute, then so is fog.
Remark 2.3: If f is $\delta \mathrm{g} \beta$-irresolute and g is contra- $\delta \mathrm{g} \beta$-irresolute, then gof is contra- $\delta \mathrm{g} \beta$-irresolute.
Theorem 2.6: The union of two collections, $\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau) \cup \operatorname{con}-\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau)$ forms a group under the composite of functions.

Proof: Let $\mathrm{B}_{\mathrm{X}}=\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau) \cup \operatorname{con}-\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau)$. A binary operation $\mathrm{W}_{\mathrm{X}}: \mathrm{B}_{\mathrm{X}} \times \mathrm{B}_{\mathrm{X}} \rightarrow \mathrm{B}_{\mathrm{X}}$ is well defined by $W_{X}(a, b)=b o a$ where, boa: $X \rightarrow X$ is a composite function of functions a and b. Indeed let $(a, b) \in B_{X}$; if $a \in \delta g \beta \operatorname{ch}(X ; \tau)$ and $\mathrm{b} \in \operatorname{con}-\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau)$, then boa: $(\mathrm{X}, \tau) \rightarrow(\mathrm{X}, \tau)$ is a contra δ - β-irresolute bijection and (boa) ${ }^{-1}$ is also contra δ - β irresolute and so $W_{X}(a, b)=b o a \in \delta g \beta c h(X ; \tau) \subseteq B_{X}$ (Remark 2.3). If $a, b \in \operatorname{con}-\delta g \beta \operatorname{ch}(X ; \tau)$, then boa: $(X, \tau) \rightarrow(X, \tau)$ is a con- $\delta g \beta$ irresolute bijection and so $\mathrm{a} \in \operatorname{con}-\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau) \subseteq \mathrm{B}_{\mathrm{X}}$ (By Remark 2.2). If $\mathrm{a}, \mathrm{b} \in \delta \mathrm{g} \beta \operatorname{ch}(\mathrm{X} ; \tau)$, then boa: $(\mathrm{X}, \tau) \rightarrow$ (X, τ) is a $\delta g \beta$ irresolute bijection and so $\mathrm{a} \in \delta g \beta \operatorname{ch}(\mathrm{X} ; \tau) \subseteq \mathrm{B}_{\mathrm{X}}$ (By Remark 2.3). By similar arguments of Theorem 2.3, it is claimed that binary operation $W_{X}: B_{X} \times B_{X} \rightarrow B_{X}$ satisfies the axiom of group, for the identity element e of
$B_{X}, e=1_{X}:(X, \tau) \rightarrow(X, \tau)$ (the identity function).Thus, the pair $\left(B_{X}, W_{X}\right)$ forms a group under the composite of functions, i.e, $\delta g \beta \operatorname{ch}(X ; \tau) \cup \operatorname{con}-\delta g \beta \operatorname{ch}(X ; \tau)$ is a group.

Theorem 2.7: The group $\delta g \beta \operatorname{ch}(X ; \tau)$ is a subgroup of $\delta g \beta \operatorname{ch}(X ; \tau) \cup \operatorname{con}-\delta g \beta \operatorname{ch}(X ; \tau)$).
Proof: The group $\delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau)$ is non empty from Remark 2.2.Using the binary operation in Theorem 2.6, it is shown that $\mathrm{W}_{\mathrm{X}}\left(\mathrm{a}, \mathrm{b}^{-1}\right)=\mathrm{b}^{-1}$ oa $\in \delta g \beta \operatorname{ch}(\mathrm{X} ; \tau)$ for any $\mathrm{a}, \mathrm{b} \in \delta \mathrm{g} \beta \operatorname{ch}(\mathrm{X} ; \tau)$ and $\operatorname{so} \delta \mathrm{g} \beta \operatorname{ch}(\mathrm{X} ; \tau)$ is a subgroup of $\delta g \beta \operatorname{ch}(\mathrm{X} ; \tau) \cup$ con$\delta g \beta \operatorname{ch}(X ; \tau)$.

Theorem 2.8: If (X, τ) and (Y, σ) are homeomorphic, then there exists isomorphisms: $\delta \mathrm{g} \beta \operatorname{ch}(\mathrm{X} ; \tau) \cup$ con$\delta \mathrm{g} \beta \mathrm{ch}(\mathrm{X} ; \tau) . \cong \delta \mathrm{g} \beta \operatorname{ch}(\mathrm{Y} ; \sigma) \cup \operatorname{con}-\delta \mathrm{g} \beta \operatorname{ch}(\mathrm{Y} ; \sigma)$.

Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a homeomorphism. We put $\mathrm{B}_{\mathrm{X}}=\delta \mathrm{g} \beta \operatorname{ch}(\mathrm{X} ; \tau) \cup \operatorname{con}-\delta \mathrm{g} \beta \operatorname{ch}(\mathrm{X} ; \tau)$ (resp. $\mathrm{B}_{\mathrm{Y}}=\delta \mathrm{g} \beta \operatorname{ch}(\mathrm{Y} ; \sigma) . \cup \operatorname{con}-\delta \mathrm{g} \beta \operatorname{ch}(\mathrm{Y} ; \sigma)$. For a topological space (X, τ) (resp. (Y, σ)). First we have a well defined function $\quad f^{*}: B_{X} \rightarrow B_{Y}$ by $f^{*}(a)=$ foaof ${ }^{-1}$ for every $a \in B_{X}$. Indeed by Theorem $2.2, f$ and f^{-1} are $\delta g \beta$ - irresolute ,the bijections foaof ${ }^{-1}$ and (foaof $\left.{ }^{-1}\right)^{-1}$ are $\delta g \beta$-irresolute or contra $\delta g \beta$-irresolute and so f^{*} is well defined. The induced function f^{*} is a homomorphism. Indeed, $f^{*}\left(W_{X}(a, b)\right)=$ fobo f^{-1} ofoao $f^{-1}=\left(f^{*}(b)\right) o\left(f^{*}(a)\right)=W_{Y}\left(f^{*}\right.$ (a), f^{*} (a))) hold. $W_{X}: B_{X} \times B_{X} \rightarrow B_{X}$ and $W_{Y}: B_{Y} \times B_{Y} \rightarrow B_{Y}$ are binary operations defined in Theorem 2.5, obviously f^{*} is bijective. Thus we have the isomorphism .Also since identity function is $\delta g \beta$-irresolute, $\mathrm{f}^{*}\left(1_{\mathrm{X}}\right)=1_{\mathrm{Y}}$ holds.

REFERENCES

1. Abd El-Monsef M.E., El-Deeb S.N. and Mahmoud R.A., " β - open sets and β - continuous mappings", Bull.Fac. Sci. Assint Univ., 12 (1983), 77-90.
2. Abd El-Monsef M.E, Mahmoud R.A and Lashin E.R., " β - closure and β-interior", J.Fac. Ed. Ain Shams. Univ, 10 (1986), 235-245.
3. Andrijević D., "Semi-preopen sets", Mat.Vesnik., (1986), 24-32.
4. Arora S.C., Tahiliani S and Maki H., "On π generalized β - closed sets in topological spaces II", Scientiae Mathematicae Japonicae., 71 (1), (2010), 43-54
5. Benchalli S.S. and Patil P.G., Toranagatti J.B., Vighneshi S.R., "A New Class of Generalized Closed Sets in Topological Spaces", Global Journal of Pure and Applied Mathematics, 13 (2), (2017), 331-345.
6. Dontchev J., "On generalizing semi-preopen sets", Mem.Fac.Sci Kochi.Univ.Ser.A.Math.,16 (1995), 35-48..
7. Dontchev J and Noiri.T., "Quasi normal spaces and $\pi \mathrm{g}$-closed sets" ,Acta Math.Hungar. 89 (3) (2000),211-219.
8. Tahiliani S., "On $\pi g \beta$-closed sets in topological spaces", Note.di.Mathematica 30 (1), 1 (2010), 49-55.
9. Velicko N.V., "H-closed topological spaces", Trans.Amer.Math. Soc., 78 (2), (1968), 103-108.
10. Zaitsav V., "On Certain Classes of Topological Spaces and their Bicompactifications", Dokl.Acad.Nauk SSSR, 178, (1979), 778-779.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2019. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

