
International Journal of Mathematical Archive-10(2), 2019, 35-41 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 10(2), Feb.-2019                                                                                                     35 

 
RAINBOW TOTAL CONNECTION NUMBER OF SOME WHEEL RELATED GRAPHS 

 
JONAH GAY V. PEDRAZA*1 AND MICHAEL P. BALDADO JR.2 

 
1College of Education, Samar State University, Catbalogan Samar, Philippines. 

2College of Art and Sciences, Negros Oriental State University, Dumaguete City, Philippines. 
 

(Received On: 30-12-18; Revised & Accepted On: 07-02-19) 
 
 

ABSTRACT 
A path P connecting two vertices u and v in a totally colored graph G is called a rainbow total-path between u and v if 
all elements in ( ) ( )V P E P∪ , except for u and v, are assigned distinct colors. A total-colored graph is rainbow total-
connected if it has a rainbow total-path between every two vertices. The rainbow total-connection number of a graph G 
is the minimum colors such that G is rainbow total-connected. In this paper, we gave the rainbow total-connection 
number of sunflower graph and lotus inside circle graph. 
 
Keywords: total-colored graph; rainbow total-connection number; sunflower graph; lotus inside circle. 
 
 
I. INTRODUCTION 
 
Chartrand et al. [2008] introduced the concept rainbow coloring. They determined rainbow connection number of the 
cycle, path, tree and wheel graphs. Since then many are studying the concept. Please see Li et al. [2013] and Sun et al. 
[2012]. Li et al. [2013] studied the rainbow connection numbers of line graphs in the light of particular properties of 
line graphs and gave two sharp upper bounds for rainbow connection number of a line graph. While, Sun et al. [2012] 
investigated the rainbow connection number of the line graph, middle graph and total graph of a connected triangle-free 
graph and obtained three (near) sharp upper bounds in terms of the number of vertex-disjoint cycles of the original 
graph. Continuing the study of rainbow coloring, Uchizawa et al. [2011] introduced and studied the rainbow total-
connection number of graphs. Later, Sun [2013, 2015] also studied rainbow total-connection number. They 
characterized the rainbow total-connection number of trees, and gave the rainbow total-connection number of cycles, 
path and wheels. In this paper, we gave the rainbow total-connection number of some wheel related graphs. In 
particular, we gave the rainbow total-connection number of sunflower graphs, lotus inside circle and helms. 
 
A graph G is an ordered pair ( ),V E  where V is a non-empty finite set and E is a family of two element subsets of V. 

The elements of V are called vertices and the elements of E are called edges. If { },u v is an edge, then we say that 

vertices u and v are adjacent, and that u and v are incident to { },u v .  We write edge { },u v  concisely as uv . The path 

( )1 2, , ,n nP v v v=   is the graph with vertices 1 2, , , nv v v and edges 1 2 2 3 1, , , n nv v v v v v− . The cycle [ ]1 2, , ,n nC v v v=   is 
the graph with distinct vertices 1 2, , , nv v v   and edges 1 2 2 3 1 1, , , ,n n nv v v v v v v v− . A complete graph nK is the graph with 

n vertices and any two vertices is connected by an edge. The complement of a graph G, denoted by G , is the graph 
with the same vertices as G and two vertices in G  are adjacent if they are not adjacent in G. 
 
A total coloring of a graph ( ),G V E=  is a function f from V E∪  to a set C whose elements are called colors. In this 

case, we say that ( )G f  is totally colored. A path P connecting two vertices u and v in a totally colored graph G is 
called a rainbow total-path between u and v if all the elements in [ ] { }( ) ( ) \ ,V P E P u v∪  are assigned distinct colors. 
The total-colored graph is rainbow total-connected if it has a rainbow total-path in between every two vertices. The 
rainbow total-connection number of a graph G is the minimum colors such that G is rainbow total-connected. 
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The following classes of graphs are found Ponraj et al. [2015]. The graph lotus inside circle, denoted by nLC , is the 

graph  of order 2 1n +  obtained by joining each vertex iu  of the star { }( ) { }( )1, 1 2, , , , ,n nK u u u u= ∅ + ∅  to vertices 

iw  and ( )1 modi nw +  of the cycle [ ]1 2, , ,n nC w w w=  . The helm nH  of order 2 1n +  is the graph obtained from 

{ }( ) [ ]1 2, , , ,n nW u w w w= ∅ +   by attaching pendant edges i iv w  for every 1,2, ,i n=  . The sunflower graph nSF  of 

order 2 1n +  obtained by adding vertices iw  joined by edges to vertices iv  and ( )1 modi nv +  of the 

{ }( ) [ ]1 2, , , ,n nW v v v v= ∅ +   for every 1, 2, ,i n=  .  
 
Hereafter, please refer to Yellen et al. [2000] for concepts that are used but were not discussed in this paper. 
 
In this study, we determined the rainbow total-connection number of lotus inside circle and sunflower graphs. 
 
II. RESULTS 
 
This section presents the results of this study. 
 
A.  Total Rainbow Connection Number of Lotus Inside a Circle  
 
This subsection gives the total rainbow connection number of lotus inside a circle graph. Remark 1 states that the 
rainbow connection number of a graph G is greater than or equal twice its diameter. 

 
Remark 1: Let ( ),G V E=  be a graph with diameter d. Then ( ) 2 1rtc G d≥ − . 
 
To see this, let ,u v V∈  such that the distance in between u and v, ( ),d u v , is equal to d. Note that any rainbow path 

connecting u and v requires 2 1d −  colors. Hence, ( ) 2 1rtc G d= − . 
 
Theorem 2.2: Let [ ]1 2, , ,n nC w w w=   be a cycle of order n, and { }( ) { }( )1, 0 1 2, , , , ,n nK u u u u= ∅ + ∅  be a star of 

order 1n + . Let nLC  be the graph lotus inside circle obtained by joining each vertex iu  to vertices iw  and ( )1 modi nw + . 
Then 

( )
4 , if 3, 4
6 , if 5,6
7 , if 7 .

n

n
rtc LC n

n

=
= =
 ≥

 

 
Proof:  
For 3n = , define ( ) ( ) { }3 3 3: 1, 2,3, 4f V LC E LC∪ →  as follows: 
 

Table-1: Images of the elements of ( ) ( )3 3V LC E LC∪  

v ( )f v  e ( )f e  e ( )f e  

0u  1 0 1u u  4 2 3u w  4 

1u  3 0 2u u  4 3 3u w  4 

2u  3 3 1w w  2 3 1u w  2 

3u  3 0 3u u  2 1 2w w  2 

1w  1 1 1u w  2 2 3w w  2 

2w  1 1 2u w  4   

3w  1 2 2u w  2   
 
Then 3f  is a total rainbow 4-coloring of 3LC . Hence, ( )3 4rtc LC ≤ . Since the diameter of of 3LC  is equal to 2, by 

Remark 1, we must have, ( )3 4rtc LC = . For 4n = , define ( ) ( ) { }4 4 4: 1, 2,3, 4f V LC E LC∪ →  as follows: 
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Table-2: Images of the elements of ( ) ( )4 4V LC E LC∪  

v ( )f v  e ( )f e  e ( )f e  

0u  3 0 1u u  2 3 4u w  4 

1u  3 0 2u u  2 4 4u w  3 

2u  4 0 3u u  4 4 1u w  3 

3u  3 0 4u u  1 1 2w w  4 

4u  4 1 1u w  2 2 3w w  3 

1w  1 1 2u w  4 3 4w w  4 

2w  1 2 2u w  2 4 1w w  3 

3w  1 2 3u w  3   

4w  1 3 3u w  2   
Then 4f  is a total rainbow 4-coloring of 4LC . Hence, ( )3 4rtc LC ≤ . Since the diameter of of 4LC  is equal to 2, by 

Remark 1, we must have, ( )4 4rtc LC = . For 5n = , define ( ) ( ) { }5 5 5: 1, 2,3, 4,5,6f V LC E LC∪ →  as follows: 
 

Table-3: Images of the elements of ( ) ( )5 5V LC E LC∪  

v ( )f v  e ( )f e  e ( )f e  

0u  6 0 1u u  1 4 4u w  1 

1u  5 0 2u u  1 4 5u w  3 

2u  5 0 3u u  2 5 5u w  1 

3u  6 0 4u u  2 5 1u w  2 

4u  5 0 5u u  3 1 2w w  2 

5u  5 1 1u w  3 2 3w w  1 

1w  6 1 2u w  2 3 4w w  3 

2w  6 2 2u w  3 4 5w w  2 

3w  6 2 3u w  2 5 1w w  1 

4w  4 3 3u w  3   

5w  4 3 4u w  3   
Then 5f  is a total rainbow 6-coloring of 5LC . Hence, ( )5 6rtc LC ≤ . Since the diameter of of 5LC  is equal to 3, by 

Remark 1, we must have, ( )5 6rtc LC = . For 6n = , define ( ) ( ) { }6 6 6: 1, 2,3, 4,5,6f V LC E LC∪ →  as follows: 
 

Table-4: Images of the elements of ( ) ( )6 6V LC E LC∪  

v ( )f v  e ( )f e  e ( )f e  

0u  4 0 1u u  2 4 5u w  1 

1u  4 0 2u u  2 5 5u w  3 

2u  6 0 3u u  3 5 6u w  3 

3u  5 0 4u u  3 6 6u w  2 

4u  4 0 5u u  1 6 1u w  2 

5u  6 0 6u u  1 1 2w w  1 

6u  5 1 1u w  1 2 3w w  3 

1w  5 1 2u w  1 3 4w w  2 

2w  4 2 2u w  3 4 5w w  1 

3w  6 2 3u w  3 5 6w w  3 

4w  5 3 3u w  2 6 1w w  2 

5w  4 3 4u w  2   

6w  6 4 4u w  1   
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Then 6f  is a total rainbow 6-coloring of 6LC . Hence, ( )6 6rtc LC ≤ . Since the diameter of of 6LC  is equal to 3, by 

Remark 1, we must have, ( )6 6rtc LC = . For 7n = , define ( ) ( ) { }7 7 7: 1, 2, ,8f V LC E LC∪ →   as follows: 
 

Table-5: Images of the elements of ( ) ( )7 7V LC E LC∪  

v ( )f v  e ( )f e  e ( )f e  

0u  5 0 1u u  1 5 5u w  4 

1u  8 0 2u u  2 5 6u w  4 

2u  7 0 3u u  1 6 6u w  3 

3u  8 0 4u u  2 6 7u w  3 

4u  7 0 5u u  1 7 7u w  4 

5u  8 0 6u u  2 7 1u w  4 

6u  7 0 7u u  3 1 2w w  1 

7u  8 1 1u w  4 2 3w w  1 

1w  8 1 2u w  4 3 4w w  1 

2w  8 2 2u w  3 4 5w w  1 

3w  7 2 3u w  3 5 6w w  1 

4w  8 3 3u w  4 6 7w w  1 

5w  7 3 4u w  4 7 1w w  1 

6w  8 4 4u w  3   

7w  7 4 5u w  3   
Then 7f  is a total rainbow 7-coloring of 7LC . It can be shown that a total rainbow coloring of 7LC  can not have a 
fewer than 7 colors. Hence, ( )7 7rtc LC = .  
 
For 8n ≥  and n is even, Then we define ( ) ( ) { }: 1, 2, ,7n n nf V LC E LC∪ →   as follows: 

( )

( )

( )

( )

( )

01 mod

0

1 mod

1 mod

1 mod

0

1 , if  or  with  odd

2 , if  with  even
3 , if  or , with  odd

4 , if  or , with  even

5 , if  or , with  odd

6 , if 
7 , if  or

i ii n

i

i i i i n

n i i i i n

i i n

i

x w w x u u i

x u u i
x u w x u w i

f x x u w x u w i

x w x u i

x u
x w

+

+

+

+

= =

=
= =

= = =

= =

=
= 1 , with  evenix u i+











 =

 

Let ( ), nw v V LC∈  and consider the following cases: 

Case-1: ( )deg 4w =  

If ( )deg 4w = , then iw w=  for some 1,2, ,i n=  . Consider the following subcases: 

Subcase-1: ( )deg 4v =   

If ( )deg 4v = , then jv w=  for some 1, 2, ,j n=   with j i≠ . Note that if i and j have the same parity, then 

( )0 1, , , ,i i j jw u u u w−  is a rainbow path connecting w and v, and if i and j have the different parity, then ( )0, , , ,i i j jw u u u w  
is a rainbow path connecting w and v. 
 
Subcase-2: ( )deg 3v =  

If ( )deg 3v = , then jv u=  for some 1,2, ,j n=  . If 1i j= − , then ( ),i ju w  is a rainbow path connecting w and v, 

and if i j= , then ( ),i ju w  is a rainbow path connecting w and v. If i and j have the same parity with 1,j j j≠ − , then 

( )1 0, , ,i i jw u u u−  is a rainbow path connecting w and v, and if i and j have the different parity with 1,j j j≠ − , then 

( )0, , ,i i jw u u u  is a rainbow path connecting w and v. 
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Subcase-3: ( )deg v n=   

If ( )deg v n= , then 0v u= . Note that ( )0, ,i iw u u  is a rainbow path connecting w and v. 
 
Case-2: ( )deg 3w =  

If ( )deg 3w = , then iw u=  for some 1,2, ,i n=  . Consider the following subcases: 
 
Subcase-1: ( )deg 3v =  

If ( )deg 3v = , then jv u=  for some 1,2, ,j n=  . If i and j have the same parity, then ( )0 1 1, , , ,i j j ju u u w u+ +  is a 

rainbow path connecting w and v, and if i and j have the different parity, then ( )0, ,i ju u u  is a rainbow path connecting 
w and v. 
 
Subcase-3:. ( )deg v n=   

If ( )deg v n= , then 0v u= . Note that ( )0,iu u  is a rainbow path connecting w and v. 

Hence, nf  is a total rainbow 7-coloring of nLC . Hence, ( ) 7nrtc LC ≤ . Since the diameter of of nLC  is equal to 4, 
by  
Remark 1, we must have, ( ) 7nrtc LC =  if 8n ≥  and n is even. 
 
For 9n ≥  and n is odd, Then we define ( ) ( ) { }: 1, 2, ,7n n nf V LC E LC∪ →   as follows: 

( )

( )

( )

( )

( )

01 mod

0

1 mod

1 mod

1 mod

0

1 , if  or  with  odd

2 , if  with  even
3 , if  or , with  odd

4 , if  or , with  even

5 , if  or , with  odd

6 , if 
7 , if  or

i ii n

i

i i i i n

n i i i i n

i i n

i

x w w x u u i

x u u i
x u w x u w i

f x x u w x u w i

x w x u i

x u
x w

+

+

+

+

= =

=
= =

= = =

= =

=
= 1 , with  evenix u i+











 =

 

It can also be shown that nf  is a total rainbow 7-coloring of nLC . Hence, ( ) 7nrtc LC ≤ . Since the diameter of of 

nLC  is equal to 4, by Remark 1, we must have, ( ) 7nrtc LC = if 9n ≥  and n is odd. 
 
B.  Total Rainbow Connection Number of Sunflower Graphs  

This subsection gives the total rainbow connection number of sunflower graph. Theorem 3 is due to Sun (2013). 
 
Theorem 3: If G is a connected graph, then  

1. ( ) 1rtc G =  if and only G is a complete graph; 

2. ( ) 2rtc G ≠ ; 

3. ( ) 2rtc G m n= +  if and only if G is a tree. 
 
Theorem 4: Let { }( ) [ ]0 1 2, , , ,n nW u u u u= ∅ +   be a wheel of order 1n + and nSF  be the sunflower graph obtained by 

adding a vertex iw  joined by an edge to vertices iu  and ( )1 modi nu + . Then 

( )
3 , if 3
6 , if 4,5
7 , if 6 .

n

n
rtc SF n

n

=
= =
 ≥

 

 
Proof:  
For 3n = , define ( ) ( ) { }3 3 3: 1, 2,3f V SF E SF∪ →  as follows: 
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Table-1: Images of the elements of ( ) ( )3 3V SF E SF∪  

v ( )f v  e ( )f e  e ( )f e  

0u  3 0 1u u  2 3 2u w  2 

1u  3 0 2u u  2 3 3u w  1 

2u  3 3 1u u  2 1 3u w  2 

3u  3 0 3u u  2 1 2u u  2 

1w  3 1 1u w  1 2 3u u  2 

2w  3 2 1u w  2   

3w  3 2 2u w  1   
Then 3f  is a total rainbow 4-coloring of 3SF . Hence, ( )3 3rtc SF ≤ . By Theorem 2, we must have, ( )3 3rtc LC = . For 

4n = , define ( ) ( ) { }4 4 4: 1, 2,3f V SF E SF∪ →  as follows: 
 

Table-2: Images of the elements of ( ) ( )4 4V SF E SF∪  

v ( )f v  e ( )f e  e ( )f e  

0u  5 0 1u u  1 4 3u w  4 

1u  5 0 2u u  1 4 4u w  2 

2u  4 0 3u u  2 1 4u w  3 

3u  5 0 4u u  3 1 2u u  2 

4u  4 1 1u w  1 2 3u u  3 

1w  5 2 1u w  2 3 4u u  2 

2w  4 2 2u w  1 4 1u u  2 

3w  5 3 2u w  3   

4w  4 3 3u w  1   
Then 4f  is a total rainbow 5-coloring of 4SF . Hence, ( )4 5rtc SF ≤ . Since the diameter of of 4SF  is equal to 3, by 

Remark 1, we must have, ( )4 5rtc SF = .  
 
For 5n ≥  and n is even, Then we define ( ) ( ) { }: 1, 2, ,7n n nf V SF E SF∪ →   as follows: 

( )

( )

( )

( )

( )

01 mod

0

1 mod

1 mod

1 mod

0

1 , if  or  with  odd

2 , if  with  even
3 , if  or , with  odd

4 , if  or , with  even

5 , if  or , with  odd

6 , if 
7 , if  or

i ii n

i

i i i i n

n i i i i n

i i n

i

x w w x u u i

x u u i
x u w x u w i

f x x u w x u w i

x w x u i

x u
x w

+

+

+

+

= =

=
= =

= = =

= =

=
= 1 , with  evenix u i+











 =

 

For 9n ≥  and n is odd, Then we define ( ) ( ) { }: 1, 2, ,7n n nf V LC E LC∪ →   as follows: 

( )

( )

( )

( )

( )

01 mod

0

1 mod

1 mod

1 mod

0

1 , if  or  with  odd

2 , if  with  even
3 , if  or , with  odd

4 , if  or , with  even

5 , if  or , with  odd

6 , if 
7 , if  or

i ii n

i

i i i i n

n i i i i n

i i n

i

x w w x u u i

x u u i
x u w x u w i

f x x u w x u w i

x w x u i

x u
x w

+

+

+

+

= =

=
= =

= = =

= =

=
= 1 , with  evenix u i+











 =

 

It can be shown that nf  is a total rainbow 7-coloring of nSF  and a total rainbow coloring of 7SF  cannot have a fewer 
than 7 colors. Hence, we must have, ( ) 7nrtc SF =  if 5n ≥ . 
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IV. RECOMMENDATION  
 
We recommend the rainbow total connection number of other cycle related graphs mentioned in Ponraj et al. (2015) be 
determined also.  
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