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ABSTRACT

In this paper, we have studied decomposition of recurrent and H-Projective curvature tensor fields in a Kaehlerian
space of first order by considering the decomposition of curvature tensor field in terms of a non- zero vector and
tensor field. Also, several theorems have been derived.
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1. INTRODUCTION

A 2n-dimensional Kaehlerian space K¢ is a Riemannian space which admits a tensor field an almost complex structure
F" satisfying the relation (Yano 1965).

Fjl Fih =- Ajh, (11)
FoF Os=Uji  and I:ih,j =0 (1.2)
Fji =- Fij (13)
Fji = th Oti (14)
And finally has the property that the skew-symmetric tensor F;, is a killing tensor, then
Fiﬂ,j + Fjﬂ,i =0 (1.5)
Fi i + FJ i 0 (16)
Fi=-F, 1.7

Where the comma (,) followed by an index denotes the operator of covariant differentiation with respect to the metric
tensor g; of the Riemannian space.

The Riemannian curvature tensor field is defined by

Ri=0 {53 00 + GHOH0HS (1.8)
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The Ricci tensor and scalar curvature are respectively given by

Rj=Rj and R= ¢’ Ry (1.9)
It is well known that these tensors satisfy the following identities

Ri].akz Rjk,l - Rik,j (110)

Ri=2R{, (1.11)

FfRy=- R Ff’ (1.12)

F'RI=RIF, (1.13)

The holomorphically projective curvature tensor Pi?k is defined by (Sinha, 1973)

h _ph 1 h h h h h
pijk = Rijk + D) (Riij - Rjk ) i + Si F]. - Sjk F'+2 Sij Fy ) (114)

Where Sij = Fia Raj

The Bianchi identities are given by (Takano,1967).

h h h_

Rijk+ Rjki+ Rkij_o (1.15)
h h h _

Rijk,a+ Rika,j+ Riaj,k_ 0 ’ (1.16)

The Commutative formulae for the curvature tensor fields are given as follows:

N,].‘k - Nk‘]: N? Ra;k (1.17)

NP - NPan=NE R - NG R (1.18)
Definition (1.1): A Kaehlerian space is said to be recurrent, if we have (Singh 1971)

Rhijk,a = 7\.3 Rhijk s (119)
for some non-zero recurrence vector A,, and is called semi-recurrent (or Ricci-recurrent), if it satisfies

Rija = Xa Rjj , (1.20)

Multiplying the above equation by g, we get
Ra=2R. (1.21)

Remark (1.1): From (1.2) it follows that every Kaehlerian recurrent space is Kaehlerian Ricci-recurrent space but the
converse is not necessarily true.

2. DECOMPOSITION OF RECURRENT CURVATURE TENSOR FIELDS IN A KAEHLERIAN SPACE OF
FIRST ORDER.

We Consider the decomposition of recurrent curvature tensor field Ri?k in the following form:

Ri?k = X" Y (2.1)
Where two vectors X" and a tensor field Yij« such that
mX"=1 (2.2)

Theorem 2.1: Under the decomposition (2.1), the Bianchi identity for Ri?k take the forms
Yijk+ Yikit Yiij=0 2.3)
and )baYij,k + )ijik,a + )kaia,j =0 (24)

Proof: From (1.15) and (2.1), we have
XY+ X" Y+ X" Yyi=0 (2.5)

Multiplying (2.5) by A and using (2.2), we obtain the required result (2.3)

Again, using (1.16), (1.19) and (2.1) we have
X" WaYisAYikatwYiaj) = 0 (2.6)

Multiplying (2.6) by A and using (2.2), we get the required result (2.4).
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Theorem 2.2: Under the decomposition (2.1), the tensor fields Ri?k, Rij and Yij satisfy relation

7\,3 Rijak = 7\4 Rjk - 7\,1' Rik = Yij,k (27)
Proof: With the help of (1.10), (1.19) and (1.20), we have

7\,3 Rijak = 7\4 Rjk- 7\,1' Rik (28)
Multiplying (2.1) by A and using relation (2.2), we have

A Ri?k = Yijk (2.9)
From (2.8) and (2.9), we get the required relation (2.7).

Theorem 2.3: Under the decomposition (2.1), the quantities A, and X behave like the recurrent vectors. The recurrent
form of these quantities are given by

Aam = Hmla (2.10)
and  XP=-py X" (2.11)

Proof: Differentiating (2.8) covariantly w.r.t. x™ and using (2.1) and (2.7), we have
Aam X Yijk= him Rik- Ajm Rik (2.12)

Multiplying (2.13) by Aa and using (2.1) and (2.9), we have
Aam (M Rik = A5 Ri) = Aa (Mim Rik = Ajm Ri) (2.13)

Now multiplying (2.13) by An, We have
Xam (M Rik = A5 Rik) A2 = Aa A (Aim Rk - Aj,m Riw) (2.14)

Since the expression on the right hand side of the above equation is symmetric in a and h, therefore
damM =tnmAa (2.15)

Provided N Rjk - 7\,1' Rik#0

The vector field A, being a non-zero, we can choose a proportional vector field p, such that
Aam= HmAa (2.16)

Further, differentiating (2.2) covariantly w.r.t. x™ and using (2.16), we have
X'Illll =~ Hm X,h

Theorem 2.4: Under the decomposition (2.1), the vector X™ and the tensor Yij« satisfy the relation
ot Hm) Yiik= Yijkm (2.17)

Proof: Differentiating (2.1) covariantly w.r.t. X" and using (1.19), (2.1) and (2.11), we get the required result (2.17).

3. DECOMPOSITION OF H-PROJECTIVE CURVATURE TENSOR FIELDS IN A KAEHLERIAN SPACE
OF FIRST ORDER.

Theorem 2.5: Under the decomposition (2.1), the curvature tensor and holomorphically projective curvature tensor are
equal iff
(Yicm & ‘]1 “Yiem 8™ + Yiem (F} Fljl- F} F) +2F YymFE=0 (2.18)

Proof: The equation (1.14) may be written in the form

h _ph h
Pi =R+ D (2.19)
Where
DY) = (niz) (Ric8 7 - Ry 8- S Fl - Sy F i + 28, F) (2.20)

Contracting indices h and k in (2.1), we have
Rij = X™* Yix (2.21)

In view of (2.21), we have
Si=F*X™Yim (2.22)
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Making use of (2.21) and (2.22) in (2.20), we obtain
D= gy X" (Vi ! = Yiem 81) + X" Y (F} Fi- L FD) + 2F} Yy ] (2.23)

ik = (n+2)

From equation (2.19), it is clear that
Py = Ro iff Dy = 0, which in view of (2.23) becomes
Xod(Yim 87 - Yiem 8) + X" Y (F{ FJ- FL FL M 2 F Yyl =0 (2.24)

Multiplying (2.24) by Am and using (2.2), we obtain the required result (2.18).

Theorem 2.6: Under the decomposition (2.1), the scalar curvature R, satisfy the relation
nR = g” Yij,k (225)

Proof: Contracting indices h and k in (2.1), we get
Rii= X*Yix (2.26)

Multiplying (2.26) by g” on both sides, we have
g” Rij = g” X kYij'k or R= g” X kYij'k (227)

Now, multiplying (2.27) by A, then using (2.2), we have
w«R= g” Yij,k or R'K = g” Yij,k

Which completes the proof of the theorem.
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