DECOMPOSITION OF RECURRENT AND H-PROJECTIVE CURVATURE TENSOR FIELDS IN A KAEHLERIAN SPACE OF FIRST ORDER

TRISHNA DEVI ${ }^{\mathbf{1}}$, U. S. NEGI*2 ${ }^{*}$ AND MAHENDER SINGH POONIA ${ }^{\mathbf{3}}$
${ }^{1}$ Research Scholar, Department of Mathematics, Shri Jagdish Prasad Jhabarmal Tibrewala University, Vidyanagari, Jhunjhunu, Rajasthan-333001, India.
${ }^{2}$ Department of Mathematics, H.N.B. Garhwal University, SRT Campus Badshahi Thaul, Tehri Garhwal- 249 199, Uttarakhand, India.
${ }^{3}$ Associate Professor,
Department of Mathematics, Shri Jagdish Prasad Jhabarmal Tibrewala University, Vidyanagari, Jhunjhunu, Rajasthan-333001, India.

(Received On: 30-01-19; Revised \& Accepted On: 11-03-19)

Abstract

In this paper, we have studied decomposition of recurrent and H-Projective curvature tensor fields in a Kaehlerian space of first order by considering the decomposition of curvature tensor field in terms of a non- zero vector and tensor field. Also, several theorems have been derived.

Key Words: Kaehlerian space, Projective, Recurrent, Curvature tensor.
2010 MSC: 32C15, 46A13, 53B35, 53C55.

1. INTRODUCTION

A 2 n -dimensional Kaehlerian space $\mathbf{K}_{\mathbf{n}}^{\mathbf{c}}$ is a Riemannian space which admits a tensor field an almost complex structure $\mathbf{F}_{\mathbf{i}}{ }^{\mathbf{h}}$ satisfying the relation (Yano 1965).

$$
\begin{align*}
& \mathrm{F}_{\mathrm{j}}^{\mathrm{i}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}=-\mathrm{A}_{\mathrm{j}}^{\mathrm{h}}, \tag{1.1}\\
& \mathrm{~F}_{\mathrm{s}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{s}} \mathrm{~g}_{\mathrm{ts}}=\mathrm{g}_{\mathrm{ji}} \quad \text { and } \mathrm{F}_{\mathrm{i}}{ }^{\mathrm{h}, \mathrm{j}}=0 \tag{1.2}\\
& \mathrm{~F}_{\mathrm{ji}}=-\mathrm{F}_{\mathrm{ij}} \tag{1.3}\\
& \mathrm{~F}_{\mathrm{ji}}=\mathrm{F}_{\mathrm{j}}^{\mathrm{t}} \mathrm{~g}_{\mathrm{ti}} \tag{1.4}
\end{align*}
$$

And finally has the property that the skew-symmetric tensor $F_{\text {ih }}$ is a killing tensor, then

$$
\begin{align*}
& \mathrm{F}_{\mathrm{ih}, \mathrm{j}}+\mathrm{F}_{\mathrm{jhh}, \mathrm{i}}=0 \tag{1.5}\\
& \mathrm{~F}_{\mathrm{i}, \mathrm{j}}+\mathrm{F}_{\mathrm{j}, \mathrm{i}}=0 \tag{1.6}\\
& \mathrm{~F}_{\mathrm{i}}=-\mathrm{F}_{\mathrm{i}, \mathrm{j}}^{\mathrm{j}} \tag{1.7}
\end{align*}
$$

Where the comma (,) followed by an index denotes the operator of covariant differentiation with respect to the metric tensor $g_{j i}$ of the Riemannian space.

The Riemannian curvature tensor field is defined by

$$
\mathrm{R}_{\mathrm{ijk}}^{\mathrm{h}}=\partial_{\mathrm{I}}\left\{\begin{array}{l}
\mathrm{jk}
\end{array}\right\}-\partial_{\mathrm{j}}\left\{\begin{array}{l}
\mathrm{ik}
\end{array}\right\}+\left\{_{\mathrm{ia}}^{\mathrm{h}}\right\}\left\{\left\{_{\mathrm{jk}}^{\mathrm{a}}\right\}-\left\{\begin{array}{l}
\mathrm{ha}
\end{array}\right\}\left\{\begin{array}{l}
\mathrm{a} \mathrm{a} \tag{1.8}
\end{array}\right\}\right.
$$

Corresponding Author: U. S. Negi*2,
${ }^{2}$ Department of Mathematics, H.N.B. Garhwal University, SRT Campus Badshahi Thaul, Tehri Garhwal- 249 199, Uttarakhand, India.

The Ricci tensor and scalar curvature are respectively given by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij}}=\mathrm{R}_{\mathrm{aij}}^{\mathrm{a}} \text { and } \mathrm{R}=\mathrm{g}^{\mathrm{ij}} \mathrm{R}_{\mathrm{ij}} \tag{1.9}
\end{equation*}
$$

It is well known that these tensors satisfy the following identities

$$
\begin{align*}
& R_{i j k}^{a}=R_{j k, I}-R_{i k, j} \tag{1.10}\\
& R_{, i}=2 R_{i, a}^{a} \tag{1.11}\\
& F_{i}^{a} R_{a j}=-R_{i a} F_{j}^{a} \tag{1.12}\\
& F_{i}^{a} R_{a}^{j}=R_{i}^{a} F_{a}^{a} \tag{1.13}
\end{align*}
$$

The holomorphically projective curvature tensor $\mathrm{P}_{\mathrm{ijk}}^{\mathrm{h}}$ is defined by (Sinha, 1973)

$$
\begin{equation*}
P_{i j k}^{h}=R_{i j k}^{h}+\frac{1}{(n+2)}\left(R_{i k} \delta_{j}^{h}-R_{j k} \delta_{i}^{h}+S_{i k} F_{j}^{h}-S_{j k} F_{i}^{h}+2 S_{i j} F_{k}^{h}\right) \tag{1.14}
\end{equation*}
$$

Where $\mathrm{S}_{\mathrm{ij}}=\mathrm{F}_{\mathrm{i}} \mathrm{R}_{\mathrm{aj}}$
The Bianchi identities are given by (Takano,1967).

$$
\begin{align*}
& R_{i j k}^{h}+R_{j k i}^{h}+R_{k i j}^{h}=0 \tag{1.15}\\
& R_{i j k, a}^{h}+R_{i k a, j}^{h}{ }^{h}+R_{i a j, k}^{h}=0, \tag{1.16}
\end{align*}
$$

The Commutative formulae for the curvature tensor fields are given as follows:

$$
\begin{align*}
& \mathrm{N}_{, j k}^{i}-N_{k j}^{i}=N^{a} R_{a j k}^{i} \tag{1.17}\\
& \mathrm{~N}_{\mathrm{i}, \mathrm{ml}}^{\mathrm{h}}-\mathrm{N}_{\mathrm{i}}^{\mathrm{h}}, 1 \mathrm{~m}=\mathrm{N}_{\mathrm{i}}^{\mathrm{a}} \mathrm{R}_{\mathrm{aml}}^{\mathrm{h}}-\mathrm{N}_{\mathrm{a}}^{\mathrm{h}} \mathrm{R}_{\mathrm{iml}}^{\mathrm{a}} \tag{1.18}
\end{align*}
$$

Definition (1.1): A Kaehlerian space is said to be recurrent, if we have (Singh 1971)

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ijk}, \mathrm{a}}^{\mathrm{h}}=\lambda_{\mathrm{a}} \mathrm{R}_{\mathrm{ijk}}^{\mathrm{h}}, \tag{1.19}
\end{equation*}
$$

for some non-zero recurrence vector λ_{a}, and is called semi-recurrent (or Ricci-recurrent), if it satisfies

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij}, \mathrm{a}}=\lambda_{\mathrm{a}} \mathrm{R}_{\mathrm{ij}} \tag{1.20}
\end{equation*}
$$

Multiplying the above equation by $g^{i j}$, we get

$$
\begin{equation*}
R, a=\lambda_{a} R . \tag{1.21}
\end{equation*}
$$

Remark (1.1): From (1.2) it follows that every Kaehlerian recurrent space is Kaehlerian Ricci-recurrent space but the converse is not necessarily true.

2. DECOMPOSITION OF RECURRENT CURVATURE TENSOR FIELDS IN A KAEHLERIAN SPACE OF FIRST ORDER.

We Consider the decomposition of recurrent curvature tensor field $\mathrm{R}_{i j k}^{h}$ in the following form:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij} k}^{\mathrm{h}}=\mathrm{X}^{\mathrm{h}} \mathrm{Y}_{\mathrm{ij}, \mathrm{k}} \tag{2.1}
\end{equation*}
$$

Where two vectors $\mathrm{X}^{\text {'h }}$ and a tensor field $\mathrm{Y}_{\mathrm{i}, \mathrm{k}}$ such that

$$
\begin{equation*}
\lambda_{\mathrm{h}} \mathrm{X}^{\mathrm{\prime h}}=1 \tag{2.2}
\end{equation*}
$$

Theorem 2.1: Under the decomposition (2.1), the Bianchi identity for $\mathrm{R}_{\mathrm{ijk}}^{\mathrm{h}}$ take the forms

$$
\begin{align*}
& Y_{\mathrm{ij}, \mathrm{k}}+\mathrm{Y}_{\mathrm{jk,i}}+\mathrm{Y}_{\mathrm{k}, \mathrm{j}}=0 \tag{2.3}\\
& \lambda_{\mathrm{a}} \mathrm{Y}_{\mathrm{ij}, \mathrm{k}}+\lambda_{\mathrm{j}} \mathrm{Y}_{\mathrm{ik}, \mathrm{a}}+\lambda_{\mathrm{k}} \mathrm{Y}_{\mathrm{i}, \mathrm{a}, \mathrm{j}}=0 \tag{2.4}
\end{align*}
$$

and
Proof: From (1.15) and (2.1), we have

$$
\begin{equation*}
X^{\mathrm{h}} Y_{\mathrm{ij}, \mathrm{k}}+X^{\prime \mathrm{h}} Y_{\mathrm{j}, \mathrm{I},}+X^{\mathrm{h}} Y_{\mathrm{k}, \mathrm{j}}=0 \tag{2.5}
\end{equation*}
$$

Multiplying (2.5) by λ_{h} and using (2.2), we obtain the required result (2.3)
Again, using (1.16), (1.19) and (2.1) we have

$$
\begin{equation*}
\mathrm{X}^{\mathrm{hh}}\left(\lambda_{\mathrm{a}} \mathrm{Y}_{\mathrm{ij}, \mathrm{k}}+\lambda_{\mathrm{j}} \mathrm{Y}_{\mathrm{ik}, \mathrm{a}}+\lambda_{\mathrm{k}} \mathrm{Y}_{\mathrm{ia}, \mathrm{j}}\right)=0 \tag{2.6}
\end{equation*}
$$

Multiplying (2.6) by λ_{h} and using (2.2), we get the required result (2.4).

Theorem 2.2: Under the decomposition (2.1), the tensor fields $R_{i j k}^{h}$, $R_{i j}$ and $Y_{i \mathrm{ij}, \mathrm{k}}$ satisfy relation

$$
\begin{equation*}
\lambda_{\mathrm{a}} \mathrm{R}_{\mathrm{ijk}}^{\mathrm{a}}=\lambda_{\mathrm{i}} \mathrm{R}_{\mathrm{jk}}-\lambda_{\mathrm{j}} \mathrm{R}_{\mathrm{ik}}=\mathrm{Y}_{\mathrm{i}, \mathrm{k}} \tag{2.7}
\end{equation*}
$$

Proof: With the help of (1.10), (1.19) and (1.20), we have

$$
\begin{equation*}
\lambda_{\mathrm{a}} \mathrm{R}_{\mathrm{ijk}}^{\mathrm{a}}=\lambda_{\mathrm{i}} \mathrm{R}_{\mathrm{jk}}-\lambda_{\mathrm{j}} \mathrm{R}_{\mathrm{ik}} \tag{2.8}
\end{equation*}
$$

Multiplying (2.1) by λ_{h} and using relation (2.2), we have

$$
\begin{equation*}
\lambda_{\mathrm{h}} \mathrm{R}_{\mathrm{ijk}}^{\mathrm{h}}=\mathrm{Y}_{\mathrm{i}, \mathrm{k}} \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9), we get the required relation (2.7).
Theorem 2.3: Under the decomposition (2.1), the quantities λ_{a} and $X^{\text {'h }}$ behave like the recurrent vectors. The recurrent form of these quantities are given by

$$
\text { and } \quad \begin{align*}
& \lambda_{\mathrm{a}, \mathrm{~m}}=\mu_{\mathrm{m}} \lambda_{\mathrm{a}} \tag{2.10}\\
& \mathrm{X}_{, \mathrm{m}}^{, \mathrm{h}}=-\mu_{\mathrm{m}} \mathrm{X}^{\mathrm{h}} \tag{2.11}
\end{align*}
$$

Proof: Differentiating (2.8) covariantly w.r.t. x^{m} and using (2.1) and (2.7), we have

$$
\begin{equation*}
\lambda_{\mathrm{a}, \mathrm{~m}} \mathrm{X}^{\prime \mathrm{a}} \mathrm{Y}_{\mathrm{ij}, \mathrm{k}}=\lambda_{\mathrm{i}, \mathrm{~m}} \mathrm{R}_{\mathrm{jk}}-\lambda_{\mathrm{j}, \mathrm{~m}} R_{\mathrm{ik}} \tag{2.12}
\end{equation*}
$$

Multiplying (2.13) by λ a and using (2.1) and (2.9), we have

$$
\begin{equation*}
\lambda_{\mathrm{a}, \mathrm{~m}}\left(\lambda_{\mathrm{i}} \mathrm{R}_{\mathrm{jk}}-\lambda_{\mathrm{j}} \mathrm{R}_{\mathrm{ik}}\right)=\lambda_{\mathrm{a}}\left(\lambda_{\mathrm{i}, \mathrm{~m}} \mathrm{R}_{\mathrm{jk}}-\lambda_{\mathrm{j}, \mathrm{~m}} \mathrm{R}_{\mathrm{ik}}\right) \tag{2.13}
\end{equation*}
$$

Now multiplying (2.13) by λ_{h}, we have

$$
\begin{equation*}
\lambda_{\mathrm{a}, \mathrm{~m}}\left(\lambda_{\mathrm{i}} \mathrm{R}_{\mathrm{jk}}-\lambda_{\mathrm{j}} \mathrm{R}_{\mathrm{ik}}\right) \lambda_{\mathrm{a}}=\lambda_{\mathrm{a}} \lambda_{\mathrm{h}}\left(\lambda_{\mathrm{i}, \mathrm{~m}} \mathrm{R}_{\mathrm{jk}}-\lambda_{\mathrm{j}, \mathrm{~m}} \mathrm{R}_{\mathrm{ik}}\right) \tag{2.14}
\end{equation*}
$$

Since the expression on the right hand side of the above equation is symmetric in a and h , therefore

$$
\begin{equation*}
\lambda_{\mathrm{a}, \mathrm{~m}} \lambda_{\mathrm{h}}=\lambda_{\mathrm{h}, \mathrm{~m}} \lambda_{\mathrm{a}} \tag{2.15}
\end{equation*}
$$

Provided $\lambda_{\mathrm{i}} \mathrm{R}_{\mathrm{jk}}-\lambda_{\mathrm{j}} \mathrm{R}_{\mathrm{ik}} \neq 0$
The vector field λ_{a} being a non-zero, we can choose a proportional vector field μ_{m} such that

$$
\begin{equation*}
\lambda_{\mathrm{a}, \mathrm{~m}}=\mu_{\mathrm{m}} \lambda_{\mathrm{a}} \tag{2.16}
\end{equation*}
$$

Further, differentiating (2.2) covariantly w.r.t. x^{m} and using (2.16), we have

$$
\mathrm{X}_{, \mathrm{m}}^{\mathrm{h}}=-\mu_{\mathrm{m}} \mathrm{X}^{\mathrm{h}}
$$

Theorem 2.4: Under the decomposition (2.1), the vector $\mathrm{X}^{\text {'h }}$ and the tensor $\mathrm{Y}_{\mathrm{i}, \mathrm{k}}$ satisfy the relation

$$
\begin{equation*}
\left(\lambda_{\mathrm{m}}+\mu_{\mathrm{m}}\right) \mathrm{Y}_{\mathrm{i}, \mathrm{k}, \mathrm{k}}=\mathrm{Y}_{\mathrm{ij}, \mathrm{~km}} \tag{2.17}
\end{equation*}
$$

Proof: Differentiating (2.1) covariantly w.r.t. x^{m} and using (1.19), (2.1) and (2.11), we get the required result (2.17).

3. DECOMPOSITION OF H-PROJECTIVE CURVATURE TENSOR FIELDS IN A KAEHLERIAN SPACE OF FIRST ORDER.

Theorem 2.5: Under the decomposition (2.1), the curvature tensor and holomorphically projective curvature tensor are equal iff

$$
\left(\mathrm{Y}_{\mathrm{i}, \mathrm{~m}} \delta_{\mathrm{j}}^{\mathrm{h}}-\mathrm{Y}_{\mathrm{jk}, \mathrm{~m}} \delta_{\mathrm{i}}^{\mathrm{h}}\right)+\mathrm{Y}_{\mathrm{ik}, \mathrm{~m}}\left(\mathrm{~F}_{\mathrm{i}}^{\mathrm{I}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}-\mathrm{F}_{\mathrm{j}}^{\mathrm{I}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}\right)+2 \mathrm{~F}_{\mathrm{i}}^{\mathrm{I}} \mathrm{Y}_{\mathrm{ij}, \mathrm{~m}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{h}}=0
$$

Proof: The equation (1.14) may be written in the form

$$
\begin{equation*}
P_{i j k}^{h}=R_{i j k}^{h}+D_{i j k}^{h} \tag{2.19}
\end{equation*}
$$

Where

$$
\begin{equation*}
D_{i j k}^{h}=\frac{1}{(n+2)}\left(\mathrm{R}_{\mathrm{ik}} \delta_{\mathrm{j}}^{\mathrm{h}}-\mathrm{R}_{\mathrm{jk}} \delta_{\mathrm{i}}^{\mathrm{h}}-\mathrm{S}_{\mathrm{ik}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}-\mathrm{S}_{\mathrm{jk}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}+2 \mathrm{~S}_{\mathrm{ij}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{h}}\right) \tag{2.20}
\end{equation*}
$$

Contracting indices h and k in (2.1), we have

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij}}=\mathrm{X}^{\mathrm{k}} \mathrm{Y}_{\mathrm{ij}, \mathrm{k}} \tag{2.21}
\end{equation*}
$$

In view of (2.21), we have

$$
\begin{equation*}
\mathrm{S}_{\mathrm{ij}}=\mathrm{F}_{\mathrm{i}}^{1} \mathrm{X}^{\prime \mathrm{m}} \mathrm{Y}_{\mathrm{i}, \mathrm{~m}} \tag{2.22}
\end{equation*}
$$

Making use of (2.21) and (2.22) in (2.20), we obtain

$$
\begin{equation*}
D_{i j k}^{\mathrm{h}}=\frac{1}{(\mathrm{n}+2)}\left[X^{\mathrm{m}}\left(\mathrm{Y}_{\mathrm{ij}, \mathrm{~m}} \delta_{\mathrm{j}}^{\mathrm{h}}-\mathrm{Y}_{\mathrm{jk}, \mathrm{~m}} \delta_{\mathrm{i}}^{\mathrm{h}}\right)+\mathrm{X}^{\mathrm{m}} \mathrm{Y}_{\mathrm{Ik}, \mathrm{~m}}\left(\mathrm{~F}_{\mathrm{i}}^{\mathrm{I}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}-\mathrm{F}_{\mathrm{j}}^{\mathrm{I}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}\right)+2 \mathrm{~F}_{\mathrm{i}}^{\mathrm{l}} \mathrm{Y}_{\mathrm{i}, \mathrm{~m}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{h}}\right] \tag{2.23}
\end{equation*}
$$

From equation (2.19), it is clear that

$$
P_{\mathrm{ijk}}^{\mathrm{h}}=\mathrm{R}_{\mathrm{ijk}} \frac{\mathrm{~h}}{\text { iff }} \mathrm{D}_{\mathrm{ijk}}^{\mathrm{h}}=0 \text {, which in view of (2.23) becomes }
$$

$$
\begin{equation*}
X_{m}\left\{\left(Y_{i j, m} \delta_{j}^{h}-Y_{j k, m} \delta_{i}^{h}\right)+X^{m} Y_{I k, m}\left(F_{i}^{\mathrm{I}} F_{j}^{\mathrm{h}}-\mathrm{F}_{\mathrm{j}}^{\mathrm{I}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}\right)\right\}+2 \mathrm{~F}_{\mathrm{i}}^{\mathrm{I}} \mathrm{Y}_{\mathrm{ij}, \mathrm{~m}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{h}}=0 \tag{2.24}
\end{equation*}
$$

Multiplying (2.24) by λ_{m} and using (2.2), we obtain the required result (2.18).
Theorem 2.6: Under the decomposition (2.1), the scalar curvature R, satisfy the relation

$$
\begin{equation*}
\lambda_{k} R=g^{i j} Y_{i j, k} \tag{2.25}
\end{equation*}
$$

Proof: Contracting indices h and k in (2.1), we get

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij}}=\mathrm{X}^{\mathrm{k}} \mathrm{Y}_{\mathrm{ij}, \mathrm{k}} \tag{2.26}
\end{equation*}
$$

Multiplying (2.26) by g^{ij} on both sides, we have

$$
\begin{equation*}
g^{i j} R_{i j}=g^{i j} X^{\prime k} Y_{i j, k} \quad \text { or } \quad R=g^{i j} X^{\prime k} Y_{i j, k} \tag{2.27}
\end{equation*}
$$

Now, multiplying (2.27) by λ_{k}, then using (2.2), we have

$$
\lambda_{\mathrm{K}} \mathrm{R}=\mathrm{g}^{\mathrm{ij}} \mathrm{Y}_{\mathrm{ij}, \mathrm{k}} \quad \text { or } \quad \mathrm{R}_{, \mathrm{K}}=\mathrm{g}^{\mathrm{ij}} \mathrm{Y}_{\mathrm{ij}, \mathrm{k}}
$$

Which completes the proof of the theorem.

REFERENCES

1. Walker A.G. (1950). On Ruse’s space of recurrent curvature. Proc. Lond. Math. Soc., 2(52), 36-64.
2. Yano K. (1965). Differential Geometry on Complex and Almost Complex Spaces. Pergamon press.
3. Takano K. (1967). Decomposition of curvature tensor in a recurrent space. Tensor (N.S.), 18(3), 343-347.
4. Sinha B.B. and Singh S.P. (1970). On decomposition of recurrernt curvature tensor fields in a Finsler space. Bull. Cal. Math. Soc., 62, 91-96.
5. Singh, S.S. (1971): On Kaehlerian spaces with recurrent Bochner curvature. Acc. Naz. Dei Lincei, Rend, Vol. 51, No. (3, 4), pp. 213-220.
6. Sinha, B.B. (1973): On H-curvature tensors in Kaehler manifold. Kyungpook Math. J., 13, No.2, pp. 185-189.
7. Negi, U.S. and Kailash Gairola (2012): Admitting a conformal transfor- mation group on Kaehlerian recurrent spaces, International Journal of Mathematical Archive-3(4), pp.1584-1589.
8. Negi,U.S.(2018): Geometrical interpretation of an analytic HP-transformations in almost Kaehlerian spaces, International Journal of Mathematical Archive- 9(1), pp.18-22.
[^0]
[^0]: Source of support: Nil, Conflict of interest: None Declared.
 [Copy right © 2019. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

