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ABSTRACT 
Let ),( EVG =  be a graph. A subset D of G is a p-dominating set of G if pDxNG ≥∩)(  for all DVx \∈ , 

where )(xNG  is the set of all vertices which are adjacent to x.  The p-domination number of G, denoted by )(Gpγ , is 

the minimum cardinality of p-dominating sets of G. The p-reinforcement number of G, denoted by )(Grp , is the 

minimum number of edges in CG  that has to be added to G in order to reduce the p-domination number of the 
resulting graphs. In this study, we gave a tight upperbound for the p-domination number of the join of graphs, the p-
domination number of a complete and any graph, the 2-domination number and 3-domination number of fans, and the 
2-reinforcement number and 3-reinforcement number of fans. 
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I. INTRODUCTION 
 
The concept p-domination in graphs was introduced by Fink et al. in [5]. Since then, many researchers studied the 
concept. Caro et al. [3], Blidia et al. [2], Lu et al. [8], Rautenbach et al. [13], and De La Viña et al. [4] gave bounds for 
the p-domination number of graphs. Lu and Xu [8] gave the p-domination number of complete multipartite graphs. 
Fujisawa et al. [6] gave the 2-domination number of the corona of some graphs. Thakkar et al. [14] and Mohan et al. 
[12] gave the 2-domination number of the Cartesian product of paths. Bakhshesh et al. [1] gave the 2-domination 
number of generalized Petersen graphs.  
 
A study on the p-reinforcement number of graphs is found in [9]. Lu [8, 9, 10, 11] and other researchers worked on this 
concept and published a couple articles. Lu et al. [9] gave the p-reinforcement number of some graphs such as paths, 
cycles and complete t-partite graphs, and established some upper bounds. Lu and Xu [10] characterized all trees 
attaining the said upper bound for 3≥p . Lu et al. [11] characterized trees with 2-reinforcement number equal to 3. In 
particular, they showed that 3)(2 =Tr  if and only if there is a 2-dominating set S of T such that T contains neither an 
S-vulnerable vertices nor an S-vulnerable paths.  
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A graph or a network G  is an ordered pair ),( EVG = , where V or )(GV  is a nonempty finite set whose elements 

are called vertices, and E  or )(GE  is a set of 2-element subsets of V called edges. The order of G , denoted by V , is 

the number of vertices of G. The size of G , denoted by E , is the number of edges of G . The degree of a vertex v  

of a graph G , denoted by )(deg vG , is the number of edges incident with v . The minimum degree )(Gδ  and the 

maximum degree )(G∆  of G  is given by }:)(min{deg)( VxxG G ∈=δ  and }:)(max{deg)( GxxG G ∈=∆ , 
respectively. A graph H  is called a subgraph of G  if )()( GVHV ⊆  and )()( GEHE ⊆ . 
 
The complement of a graph G, denoted by G , is a graph with the same vertex set as G and where two distinct vertices 
are adjacent if and only if they are not adjacent in G. The path ),...,,( 21 nn vvvP =  is the graph with distinct vertices 

nvvv ,...,, 21  and edges nn vvvvvv 13221 ,...,, − . A complete graph of order n , denoted by nK , is the graph in which 

every pair of distinct vertices are adjacent. The join of two graphs G  and H , denoted by HG + , is the graph with 
vertex  set  )()()( HVGVHGV ∪=+   and edge set )}(),(:{)()()( HVvGVuuvHEGEHGE ∈∈∪∪=+  . 

The fan nF  is the graph of order 1+n , obtained from nP  by adding a new vertex, say 0x , and joining 0x  by an edge 

to each of the n  vertices of nP , that is, nn PKF += 1 .  
 
Let ),( EVG =  be a graph and Vx∈ . The neighborhood of x is the set consisting of all vertices y  which are adjacent 
to x, that is, }:{)( ExyVyxN ∈∈= . The elements of )(xN  are called neighbors of x. Let VS ⊆ . The neighborhood 
of S in G  is the set )(:)({)( GEuvGVvSNG ∈∈=  for some )(} vNSv G

Sv∈
=∈  . The closed neighborhood of S in 

G is the set [ ] )(SNSSN GG ∪= .  
 
The Pigeonhole Principle implies that if there are n pigeons to enter into k pigeonholes with kn < , then there exists at 
least 1 pigeonhole that is empty. 
 
Let ),( EVG =  be a graph and p a positive integer. A subset D of G is a p-dominating set of G if pDxNG ≥∩)(  

for all DVx \∈ , where )(xNG  is the set of all vertices which are adjacent to x.  The p-domination number of G, 
denoted by )(Gpγ , is the minimum cardinality of p-dominating sets of G. The p-reinforcement number of G, denoted 

by )(Grp , is the minimum number of edges in CG  that has to be added to G in order to reduce the p-domination 
number of the resulting graph. 
 
II. RESULTS 
 
A. p-Domination Number of the Join of Graphs 
 
In this section, we gave a sharp upperbound of the p-domination number of the join of graphs. We also gave the p-
domination number of the join of a complete graph of order pn ≥  and any graph.  
 
Theorem 2.1: Let G and H be any graphs and p be a positive integer. If pGV ≥)(  and pHV ≥)( , then 

pHGp 2)( ≤+γ . 
 
Proof: Let G  and H  be any graphs with pGV ≥)(  and pHV ≥)( . Let )(,...,, 21 GVuuu p ∈  and 

)(,...,, 21 HVvvv p ∈ . Consider puuuD ,...,,{ 21= , },...,, 21 pvvv . Let DHGVw \)( +∈ , say DHVw \)(∈ . 

Then pDwN ≥∩)( . This shows that D is a p-dominating set in HG + . Hence, pHGp 2)( ≤+γ .         
 
The next Corollary shows that the bound in Theorem 2.1 is sharp. 
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Corollary 2.2: Let mP  and nP be paths of order m  and n , respectively. If 9, ≥nm , then 4)(2 =+ nm PPγ . 
 
Proof: By Theorem 2.1, 4)(2 ≤+ nm PPγ . Suppose 4)(2 <+ nm PPγ , say without loss of generality 

3)(2 =+ nm PPγ . Let D  be a 2-dominating set of nm PP +  with 3=D  and consider the following cases: 
 
Case-1: 3)( =∩ DPV n  
 
Let ),...,3,2,1( nPn =  and consider the partition   









≡−−−−
≡−−−
≡−−

=
)3(mod2 if,}},1{},2,3,4{},...,6,5,4{},3,2,1{{
)3(mod1 if,}}{},1,2,3{},...,6,5,4{},3,2,1{{
)3(mod0 if,}},1,2{},...,6,5,4{},3,2,1{{

nnnnnn
nnnnn
nnnn

α  

of )( nPV . Since 9)( ≥nPV ,  3≥α . By the Pigeonhole principle, there exists α∈= ++ },,{ )(mod2)(mod1 ninii uuuA  

such that 1=∩ DA . Let )(mod1 niuv +∈ . Then 1)( =∩ DvN .  This is a contradiction. 
 
Case-2: 2)( =∩ DPV n  
 
Let ),...,3,2,1( nPn =  and consider the partition   









≡−−−−
≡−−−
≡−−

=
)3(mod2 if,}},1{},2,3,4{},...,6,5,4{},3,2,1{{
)3(mod1 if,}}{},1,2,3{},...,6,5,4{},3,2,1{{
)3(mod0 if,}},1,2{},...,6,5,4{},3,2,1{{

nnnnnn
nnnnn
nnnn

α  

of )( nPV . Since 9)( ≥nPV ,  3≥α . By the Pigeonhole principle, there exists α∈= ++ },,{ )(mod2)(mod1 ninii uuuA  

such that 0=∩ DA . Let )(mod1 niuv +∈ . Then 1)( =∩ DvN .  This is a contradiction. 
 
Therefore, 4)(2 =+ nm PPγ .   
 
The next Theorem gave the p-domination number of the join of a complete graph of order pn ≥  and any graph. 
 
Theorem 2.3: Let G  be a graph of order m  and nK  be a complete graph of order n. If np ≤ , then 

pGK np =+ )(γ . 
 
Proof: Let G be a graph of order m and ))(},,...,,({ 21 nnn KEuuuK =  be a complete graph of order n. Let 

},...,,{ 21 puuuD = . Then clearly D  is a p-dominating set in GKn + . Thus, pGK np ≤+ )(γ . Since 

)( GKp np +≤ γ , we must have pGK np =+ )(γ .   
 
B. 2-Domination and 3-Domination Number of Fans 
 
In this section, we gave the 2-domination number and 3-domination number of fans. Lemma 2.4 is found in [16] and 
Lemma 2.5 is an observation in [14]. 
 
Lemma 2.4:  3/)( nPn =γ . 
 
Lemma 2.5:   12/)(2 += nPnγ . 
 
Observation 2.6: Let nP  be a path of order n. Then )()( 2 nn PP γγ < , that is, if S is a minimum dominating set then it 
cannot be a 2-dominating set. 
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Theorem 2.7: D is a minimum 2-dominating set in nF  ( 3≥n ) if and only if  }{' uDD ∪=  where 
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−−−

−−−−−−

−−

)3(mod2 if,}or  ,,,,,{
)3(mod1 if,}or  ,,,,,{or  }or   ,,,,,{
)3(mod0 if,},,,,{

'
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1365212552

1452

nuuuuuu
nuuuuuuuuuuuu
nuuuu

D

nnnn

nnnnnnnn

nn







 

 
Proof: Let D be a minimum 2-dominating set in ),,,()},({ 21 nn uuuuF +∅=  ( 3≥n ) and }{' uDD ∪≠  where 
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−−−
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)3(mod0 if,},,,,{
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nuuuu
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Then there exist a subgraph ),,(or   ),,( 1)(mod2)(mod1 nnninii uuuuuP −++=  of ),,,( 21 nuuu   such that 

∅=∩ DPV )( . If ),,( )(mod2)(mod1 ninii uuuP ++= , then we let )(mod1 niuv += . While, if ),,( 1 nn uuP −= , then we let 

nuv = .  Thus, 1)( =∩ DvN . This is a contradiction. 
 
Conversely, suppose that }{'* uDD ∪=  where 
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=

−−−

−−−−−−

−−

)3(mod2 if,}or  ,,,,,{
)3(mod1 if,}or  ,,,,,{or  }or   ,,,,,{
)3(mod0 if,},,,,{
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nuuuuuu
nuuuuuuuuuuuu
nuuuu
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and D* is not a minimum 2-dominating set in ),,,()},({ 21 nn uuuuF +∅=  ( 3≥n ). Clearly, D* is a 2-dominating 

set. Let D be a minimum 2-dominating set. Then *DD < . Consider the following cases: 
 
Case-1: Du∈   
If Du∈ , then }{\ uD  is not a dominating set of ),,,( 21 nuuu  . Hence, there exists },,,{ 21 nuuuv ∈  such that 

}{)( uvN = . Thus, 1)( =∩ DvN . This is a contradiction. 
 
Case-2: Du∉   
If Du∉ , then we note that D’ is a minimum dominating set of ),,,( 21 nuuu  .  Hence, by Observation 2.6 D’ 
cannot be a 2-dominating set of ),,,( 21 nuuu  , and so is D. Since Du∉ , D cannot be a 2-dominating set of nF . 
This is a contradiction.  
 
Corollary 2.8: Let nF  ( 3≥n ) be a fan of order 1+n . Then   13/)(2 += nFnγ . 
 
Observation 2.9: Let nP  be a path of order n. Then )()( 32 nn PP γγ < , that is, if S is a minimum 2-dominating set of 

nP  then it cannot be a 3-dominating set. 
 
Theorem 2.10: D is a minimum 3-dominating set in nF  ( 3≥n ) if and only if }{' uDD ∪=  where 





≡
≡

=
−

−−

).2(mod1 if,},,,,{
)2(mod0 if,},,,,,{

'
231

1331

nuuuu
nuuuuu

D
nn
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Proof: Let D be a minimum 3-dominating set in ),,,()},({ 21 nn uuuuF +∅=  ( 3≥n ) and suppose that 

}{' uDD ∪≠  where 





≡
≡

=
−

−−

).2(mod1 if,},,,,{
)2(mod0 if,},,,,,{

'
231

1331

nuuuu
nuuuuu

D
nn

nnn





 

Then there exist a subset }{or  }{or   },{ 1)(mod1 uuuuA nnii +=  of },,,{ 21 nuuu   such that ∅=∩ DA . Let 

nni uuuv or  or  1)(mod1+= . Then, 3)( <∩ DvN . This is a contradiction. 
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Conversely, suppose that }{'* uDD ∪=  where 





≡
≡

=
−

−−

).2(mod1 if,},,,,{
)2(mod0 if,},,,,,{

'
231

1331

nuuuu
nuuuuu

D
nn

nnn





 

and D* is not a minimum 3-dominating set in ),,,()},({ 21 nn uuuuF +∅=  ( 3≥n ). Clearly, D* is a 3-dominating 

set. Let D  be a minimum 3-dominating set. Then *DD < . Consider the following cases: 
 
Case-1: Du∈   
 
If Du∈ , then }{\ uD  is not a 2-dominating set of ),,,( 21 nuuu  . Hence, there exists },,,{ 21 nuuuv ∈  such 

that 2)( <vN . Thus, 3)( <∩ DvN . This is a contradiction. 
 
Case-2: Du∉   
 
If Du∉ , then we note that D’ is a minimum 2-dominating set of ),,,( 21 nuuu  .  Hence, by Observation 2.9 D’ 
cannot be a 3-dominating set of  ),,,( 21 nuuu  , and so is D. Since Du∉ , D cannot be a 3-dominating set of nF . 
This is a contradiction.    
 
Corollary 2.11: Let nF  ( 3≥n ) be a fan of order 1+n . Then   12/)(3 += nFnγ . 
 
C. 2-Reinforcement and 3-Reinforcement Number of Fans 
 
In this section, we present the 2-reinforcement number and 3-reinforcement number of fans. Remark 2.12 is implied in 
an observation in [15]. 
 
Remark 2.12: Let nP  be a path of order n. Then 

( )








≡
≡
≡

=
).3(mod0 if,3
)3(mod2 if,2
)3(mod1 if,1

n
n
n

Pr n  

 
Observation 2.13: Let nP  be a path of order n. Then 

( )




≡
≡

=
).2(mod1 if,3
)2(mod0 if,1

2 n
n

Pr n  

 
Theorem 2.14: Let  nF  ( 4≥n ) be a fan of order 1+n . Then )()(2 nn PrFr = . 
 
Proof: Let ),...,,()},({ 21 nn uuuuF +∅=  be a fan graph of order 1+n . By Theorem 2.7, D is a minimum 2-
dominating set in nF  ( 3≥n ) if and only if  }{' uDD ∪=  where 
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−−

)3(mod2 if,}or  ,,,,,{
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'
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nuuuuuuuuuuuu
nuuuu

D
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nnnnnnnn
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If )3(mod1≡n , then }{\* nuDD =  is a 2-dominating set in nn uuF 2+ . If )3(mod2≡n , then }{\* nuDD =  is a 
2-dominating set in nnn uuuuF 212 ++ − . If )3(mod0≡n , then }{\* nuDD =  is a 2-dominating set in 

nnnn uuuuuuF 21222 +++ −− . Hence, by Remark 2.12 )()(2 nn PrFr ≤ . Suppose )()(2 nn PrFr <  for 

)3(mod2or  0≡n . Then }{\ uD  must be a 2-dominating set in '
nF  (where '

nF  is the graph obtained from nF  by 

adding edges), that is, }{\ uD  must be a 2-dominating set in '
nP  (where '

nP  is the graph obtained from nP  by adding 
edges) – which is not possible.   
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Theorem 2.15: Let  nF  ( 3≥n ) be a fan of order 1+n . Then )()( 23 nn PrFr = . 
 
Proof: Let ),...,,()},({ 21 nn uuuuF +∅=  be a fan graph of order 1+n . By Theorem 2.10, D is a minimum 3-
dominating set in nF  ( 3≥n ) if and only if }{' uDD ∪=  where 





≡
≡

=
−

−−

).2(mod1 if,},,,,{
)2(mod0 if,},,,,,{

'
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1331

nuuuu
nuuuuu

D
nn

nnn





 

 
If )2(mod0≡n , then }{\* nuDD =  is a 3-dominating set in nn uuF 1+ . If )2(mod1≡n , then }{\* nuDD =  is 
a 3-dominating set in nnnn uuuuuuF 3111 +++ − . Hence, by Observation 2.13 )()( 23 nn PrFr ≤ . Suppose 

)()( 23 nn PrFr <  for )3(mod1≡n . Then }{\ uD  must be a 3-dominating set in '
nF  (where '

nF  is the graph obtained 

from nF  by adding edges), that is, }{\ uD  must be a 3-dominating set in '
nP  (where '

nP  is the graph obtained from 

nP  by adding edges) – which is not possible.   
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