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ABSTRACT

The Speckman method is a commonly used for estimating the partially linear model (PLM). This method used the
kernel approach to estimate nonparametric part in PLM. In this paper, we suggest using the spline approach instead of
the kernel approach. Then we present a comparative study of the two estimations based on two smoothing (kernel and
spline) approaches. A simulation study has been conducted to evaluate the performance of these estimations. The
results of our study confirmed that the spline smoothing approach was the best.

Keywords: Kernel smoothing; Mote Carlo simulation, Nonparametric regression; Spline smoothing; Semi-parametric
regression.

1. INTRODUCTION

The Partially linear model (PLM) is one of the most commonly used semi-parametric regression models, which offers
an appealing alternative in that it allows both parametric and nonparametric specifications in the regression function. In
this model, the covariates are separated into parametric components and nonparametric components, the parametric part
of the model can be interpreted as a linear model, while the nonparametric part frees the model from stringent structural
assumptions. A PLM is defined by:

yi=xf+g(z)+u; i=12,..,n Q)
where y; denotes the response variable, u; is the random error term, and x;, z; are p X 1 and 1 x 1 of regressors,
respectively. The finite dimensional parameter g is the parametric part of the model, the unknown function g(.) is the
non-parametric part of the model, and the random errors (ug, ..., u,) are independent and identically distributed and are
independent of x;, and z; such that E (u;|x;,z;) = 0 and E(u?|x;, z;) = a. This model has gained great popularity
since it was first introduced by Engle et al. (1986) and has been widely applied in economics, social, and biological
sciences.

The literature has several approaches to non-parametric component in the model. But the main two approaches are:
(i) the spline smoothing approach, (ii) Kernel smoothing approach. The first approach used by, for example, Engle
et al. (1986), Heckman (1986), Rice (1986), Speckman (1988), Chen and Shiau (1991), and Abonazel and Gad (2018).
But the second approach used by Robinson (1988), Hamilton and Truong (1997), and Aydin (2014). Other approaches
are used by Ahn and Powell (1993), Yatchew (1997, 2000, 2003), Wang et al. (2011), Meyer (2003), Chang and Qu
(2004), and Fadili and Bullmore (2005). A review of these approaches can be found in Hardle et al. (2000) and
Abonazel (2018a).

Speckman (1988) proposed a general estimation method for this model based on the partial residuals technique to
estimate parametric and nonparametric components in PLM. However, he considered the kernel approach to estimate
nonparametric component. Since, according to Speckman method, one can use any smoothing approach for non-
parametric component. Therefore, in this paper, we will suggest using the spline approach instead of the kernel
approach in Speckman method.
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The rest of the paper is organized as follows. In the next section, we introduce the Speckman estimation method based
on the kernel and spline smoothing approaches. While in Section 3, the Monte Carlo simulation study is conducted to
compare the performance of the two estimators. The concluding remarks are included in Section 4.

2. SPECKMAN ESTIMATION

Speckman (1988) suggested an estimation method to derive the PLM, in the case of identity link function and normally
distributed error terms. Speckman method coincides with no updating steps are needed for the estimation of both g and
g- In this section, we will present two estimators for PLM using Speckman estimation method based on kernel and
spline smoothing approaches.
Beginning, we can rewrite the PLM in (1) in matrix form as:

y=XB+gZ)+u,

wherey = (4, o, Vo) Z = (24, e, Z) s U = (Uyq, ..., Up),and X' = [X1 -+ Xp]. Taking the conditional expectation
with respect to Z and differencing the two equations leads to (Hardle et al, 2004):
y=Xp+1, &)

where § =y — E(Y|Z), X = X — E(X|Z), and % = u — E(u|Z). Using the modified regression in (2), the vector of
the parametric parameters (8) can be estimated separately. The modified variables X and 7 are calculated using the fact
that the conditional expectation E(Y|Z) can be estimated through a non-parametric regression on the explanatory
variable Z. We can summarize Speckman estimation method in the following algorithm:

Step-1: Given a smoother matrix S;, depending on smoothing parameter A construct X = (I — S;)X and

¥ = — Sp)y, respectively.
Step-2: For parametric component: the vector of the regression coefficients 8 can be estimated by: f = (7()?)
Step-3: For non-parametric component: §(2) = S;(y — XB) = Syy".

Y%y

2.1 Kernel Smoothing Approach

In case of a Nadaraya—Watson kernel regression (Hardle et al, 2004), we consider the smoother matrix S with elements:
Sy = Ko (/220K (2); 1= 1,mem. @

where K, (.) denotes a Kernel function and h is the bandwidth value. In this paper, biweight function is used as a

Kernel function. Using (3), the modified variables X and j are: X =x — Y= Sijxi, and ¥, = y; — XL S5 vis

forj = 1, ..., n. While the non-parametric component of the PLM is thus estimated by:

G@E) =38 S i—xp); j=1,..,n

2.2 Spline Smoothing Approach

In case of smoothing spline approach, the smoothing estimate g, of the fitted values for y* = y — Xf is projected by:
Ga = [Ga(k1), ., Ga(kn)]" = 11 - ) = 59",

where g, is a natural cubic spline with knots at k4, ..., k, for a fixed A > 0, and S; is a well-known positive-definite

smoother matrix which depends on 4 and the knot points.

To gain better perspective on smoothing spline, estimation of the parameters of interest in PLM can be performed by
minimizing the following sum of squares equation:

$5(9.8) = Zal(vi = xiB) =9 @] + 2 [ 1g" () dz, (4)
where f is the estimated parametric component that is given from step 2 in the algorithm above. To solve Equation (4),
an iterative algorithm is required. In this case, the resulting estimator is called partial spline estimator; see Abonazel
and Gad (2018).

3. MONTE CARLO SIMULATION STUDY

This section aims to investigate the performance of the presented estimators in section 2 above through a Monte Carlo
simulation study. In fact, we make a comparison study between the Kernel and spline smoothing approaches when they
are used in Speckman estimation method of PLM. R software is used to perform this study. For information about how
to create Monte Carlo simulation studies using R, see Abonazel (2018b).

In our simulation study, Monte Carlo experiments were carried out based on Equation (1). The simulated model is
generated as follows:
1. The number of parametric coefficients are p =2, 8; with 8,=1; fora = 1, ..., p.
2. Four functions have been used for the nonparametric component in the model:
g1 = 1.5 sin(nz); g, = 1.5 sin(nz?); g; = 3 sin(nz®), g, = z + z* + z*
3. The explanatory variables x, (for a = 1,..,p) are generated from uniform from zero to 1. While the variable z
is generated from uniform from -1 to 1.
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4. The errors are generated from normal distribution with mean zero and standard deviation ¢ = 0.5, 1.
The different sample sizes have been used as: N =100, 150, 200, 300, and 500.
6. All Monte Carlo experiments involved 1000 replications and all the results of all separate experiments are
obtained by precisely the same series of random numbers.
The goodness of fit of § and 8 can be quantified by computing the average and the median of mean squared
error values (MSES) for g and /3 at each iteration run [ = 1, ...,1000. The MSEs of § and 3 are calculated as:

~ ~ 5 5 2
MSE(§) = % L1lg(z) — g(z)1%; MSE(B) = % a=1[Pa = Bal’
where §(z;) and j, are the estimated values of g(z;) and S, respectively.

o

The results of simulation are recorded in Tables 1-8. These tables present the average of MSE (AMSE) and the median

of MSE (MMSE) for § and f using error terms with different standard deviations, different sample sizes, different
shapes of the nonparametric component, and different number of explanatory variables.

From Tables 1-8, we can summarize these effects for the kernel and spline estimators in the following points:

e Asn increases, the AMSEs and MMSEs decrease.

e Asg increases, the AMSEs and MMSEs increase.

e Asp increases, the AMSEs and MMSESs increase.
In general, we can conclude that the AMSEs and MMSEs of spline estimator are smaller than the AMSEs and MMSEs
of kernel estimator, for all simulation situations. But we note that, for the parametric component, the AMSEs and
MMSEs of the kernel and spline estimators are relatively close.

Graphically, we illustrate the degree of goodness of fit of the kernel and spline estimators for nonparametric functions
(91, --,94) via different simulated PLMs. These models are generated based on different factors (n, p, and ). The fitted
curves of the estimators based on four nonparametric functions are shown in Figures 1-4, respectively. From Figure 1,
we find that the fitted curve based on spline estimator is closer to the true curve than kernel estimator. The same results
can be concluded from other figures. This means that spline estimator performs better regardless of the form of
nonparametric function
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Figure-1: Fitted values for the estimators of g, whenn = 200, p = 12,ando = .5
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Figure-2: Fitted values for the estimators of g, whenn = 150, p =5,ando =1
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Figure-3: Fitted values for the estimators of g; whenn = 100, p = 2,ando = .5

o |
— Truecarve —— Kernel Spline

o

- _] \

o |

-
T T T T T
-1.0 -0.5 0.0 0.5 1.0

z

Figure-4: Fitted values for the estimators of g, whenn = 100, p = 3,ando = .5
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Table-1: Average and median of MSEs of the estimators when p = 2 and using g,

Parametric Component Nonparametric Component

Sample AMSE MMSE AMSE MMSE

kernel Spline kernel Spline kernel Spline kernel Spline
Sigma =.5
100 0.0340 0.0311 0.0234 0.0208 0.1152 0.0345 0.1086 0.0250
150 0.0236 0.0213 0.0168 0.0161 0.0906 0.0229 0.0866 0.0172
200 0.0169 0.0159 0.0122 0.0109 0.0761 0.0177 0.0726 0.0131
300 0.0112 0.0105 0.0074 0.0071 0.0603 0.0113 0.0586 0.0087
500 0.0064 0.0062 0.0042 0.0041 0.0445 0.0071 0.0433 0.0054
Sigma=1
100 0.1330 0.1327 0.0908 0.0905 0.1812 0.1282 0.1468 0.0900
150 0.0848 0.0845 0.0619 0.0614 0.1360 0.0850 0.1164 0.0627
200 0.0661 0.0650 0.0460 0.0456 0.1126 0.0654 0.0976 0.0498
300 0.0398 0.0395 0.0277 0.0272 0.0834 0.0427 0.0748 0.0328
500 0.0247 0.0243 0.0167 0.0164 0.0583 0.0261 0.0533 0.0192

Table-2: Average and median of MSEs of the estimators when p = 2 and using g,

Parametric Component Nonparametric Component

sample AMSE MMSE AMSE MMSE

kernel Spline kernel Spline kernel Spline kernel Spline
Sigma=.5
100 0.0389 0.0321 0.0263 0.0219 0.1240 0.0420 0.1161 0.0328
150 0.0259 0.0215 0.0181 0.0164 0.1041 0.0284 0.1006 0.0233
200 0.0192 0.0161 0.0129 0.0112 0.0923 0.0219 0.0883 0.0177
300 0.0120 0.0106 0.0086 0.0071 0.0775 0.0142 0.0763 0.0116
500 0.0072 0.0063 0.0048 0.0042 0.0637 0.0089 0.0624 0.0073
Sigma=1
100 0.1377 0.1346 0.0957 0.0944 0.1907 0.1488 0.1533 0.1105
150 0.0905 0.0857 0.0649 0.0614 0.1489 0.0988 0.1279 0.0768
200 0.0674 0.0656 0.0465 0.0457 0.1281 0.0765 0.1110 0.0611
300 0.0412 0.0397 0.0289 0.0273 0.1009 0.0503 0.0923 0.0410
500 0.0251 0.0244 0.0168 0.0163 0.0783 0.0317 0.0728 0.0257
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Table-3: Average and median of MSEs of the estimators when p = 2 and using g5

Parametric Component

Nonparametric Component

Sample AMSE MMSE AMSE MMSE
kernel Spline kernel Spline kernel Spline kernel Spline
Sigma=.5
100 0.0643 0.0340 0.0436 0.0232 0.3730 0.0545 0.3639 0.0454
150 0.0421 0.0221 0.0289 0.0166 0.3354 0.0361 0.3316 0.0311
200 0.0305 0.0165 0.0200 0.0113 0.3092 0.0284 0.3059 0.0247
300 0.0190 0.0109 0.0129 0.0073 0.2794 0.0186 0.2774 0.0163
500 0.0103 0.0064 0.0072 0.0042 0.2434 0.0119 0.2426 0.0104
Sigma=1
100 0.1730 0.1423 0.1236 0.0981 0.4452 0.1860 0.4143 0.1476
150 0.1040 0.0877 0.0711 0.0609 0.3798 0.1231 0.3641 0.1039
200 0.0796 0.0672 0.0533 0.0473 0.3480 0.0971 0.3341 0.0821
300 0.0469 0.0403 0.0333 0.0280 0.2993 0.0648 0.2930 0.0560
500 0.0290 0.0247 0.0197 0.0173 0.2582 0.0410 0.2556 0.0349

Table-4: Average and median of MSEs of the estimators when p = 2 and using g,

Parametric Component

Nonparametric Component

Sample AMSE MMSE AMSE MMSE
kernel Spline kernel Spline kernel Spline kernel Spline
Sigma=.5
100 0.0334 0.0307 0.0229 0.0208 0.0840 0.0339 0.0771 0.0245
150 0.0225 0.0211 0.0165 0.0163 0.0659 0.0231 0.0613 0.0175
200 0.0165 0.0158 0.0112 0.0108 0.0560 0.0180 0.0531 0.0137
300 0.0110 0.0105 0.0074 0.0070 0.0450 0.0117 0.0424 0.0091
500 0.0064 0.0062 0.0043 0.0042 0.0336 0.0074 0.0325 0.0057
Sigma=1
100 0.1344 0.1310 0.0936 0.0894 0.1535 0.1215 0.1184 0.0843
150 0.0842 0.0834 0.0599 0.0595 0.1104 0.0816 0.0901 0.0599
200 0.0659 0.0648 0.0447 0.0456 0.0909 0.0629 0.0753 0.0463
300 0.0398 0.0394 0.0272 0.0265 0.0676 0.0418 0.0581 0.0319
500 0.0244 0.0243 0.0166 0.0167 0.0475 0.0260 0.0415 0.0188
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Table-5: Average and median of MSEs of the estimators when p = 8 and using g,

Parametric Component

Nonparametric Component

sample AMSE MMSE AMSE MMSE
kernel Spline kernel Spline kernel Spline kernel Spline
Sigma =.5
100 0.0388 0.0346 0.0352 0.0316 0.1792 0.0907 0.1426 0.0543
150 0.0240 0.0219 0.0219 0.0197 0.1262 0.0552 0.1040 0.0336
200 0.0170 0.0158 0.0154 0.0146 0.1018 0.0423 0.0866 0.0240
300 0.0111 0.0105 0.0103 0.0097 0.0801 0.0308 0.0687 0.0180
500 0.0063 0.0062 0.0057 0.0055 0.0538 0.0167 0.0487 0.0102
Sigma=1
100 0.1443 0.1431 0.1298 0.1283 0.4120 0.3732 0.2392 0.1890
150 0.0879 0.0870 0.0794 0.0796 0.2727 0.2235 0.1808 0.1294
200 0.0637 0.0633 0.0588 0.0582 0.2022 0.1583 0.1373 0.0876
300 0.0415 0.0413 0.0384 0.0377 0.1490 0.1084 0.1024 0.0624
500 0.0249 0.0248 0.0228 0.0225 0.0961 0.0632 0.0706 0.0363

Table-6: Average and median of MSEs of the estimators when p = 8 and using g,

Parametric Component

Nonparametric Component

sample AMSE MMSE AMSE MMSE
kernel Spline kernel Spline kernel Spline kernel Spline
Sigma=.5
100 0.0433 0.0359 0.0390 0.0327 0.1908 0.1051 0.1498 0.0667
150 0.0272 0.0223 0.0252 0.0204 0.1428 0.0628 0.1181 0.0419
200 0.0187 0.0160 0.0174 0.0147 0.1207 0.0487 0.1030 0.0312
300 0.0121 0.0106 0.0112 0.0098 0.0993 0.0350 0.0862 0.0224
500 0.0069 0.0062 0.0064 0.0056 0.0742 0.0190 0.0678 0.0125
Sigma=1
100 0.1478 0.1450 0.1346 0.1307 0.4342 0.4033 0.2648 0.2305
150 0.0910 0.0882 0.0826 0.0808 0.2943 0.2429 0.1898 0.1430
200 0.0662 0.0638 0.0609 0.0583 0.2215 0.1711 0.1491 0.1002
300 0.0428 0.0416 0.0390 0.0379 0.1688 0.1174 0.1200 0.0688
500 0.0257 0.0249 0.0235 0.0225 0.1169 0.0694 0.0885 0.0428
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Table-7: Average and median of MSEs of the estimators when p = 8 and using g5

Parametric Component Nonparametric Component

Sample AMSE MMSE AMSE MMSE

kernel Spline kernel Spline kernel Spline kernel Spline
Sigma=.5
100 0.0725 0.0372 0.0667 0.0340 0.4935 0.1198 0.4302 0.0844
150 0.0443 0.0231 0.0399 0.0210 0.4029 0.0749 0.3681 0.0525
200 0.0316 0.0166 0.0287 0.0154 0.3530 0.0572 0.3331 0.0410
300 0.0193 0.0108 0.0176 0.0098 0.3107 0.0401 0.2966 0.0288
500 0.0103 0.0063 0.0094 0.0056 0.2603 0.0226 0.2551 0.0165
Sigma=1
100 0.1732 0.1508 0.1569 0.1319 0.7154 0.4476 0.5255 0.2696
150 0.1090 0.0911 0.1011 0.0831 0.5447 0.2749 0.4337 0.1729
200 0.0762 0.0652 0.0693 0.0590 0.4631 0.1966 0.3858 0.1233
300 0.0485 0.0421 0.0442 0.0390 0.3783 0.1326 0.3307 0.0837
500 0.0290 0.0252 0.0263 0.0227 0.3018 0.0791 0.2777 0.0537

Table-8: Average and median of MSEs of the estimators when p = 8 and using g,

Parametric Component Nonparametric Component

Sample AMSE MMSE AMSE MMSE

kernel Spline kernel Spline kernel Spline kernel Spline
Sigma =.5
100 0.0375 0.0346 0.0342 0.0313 0.1424 0.0916 0.1057 0.0543
150 0.0232 0.0218 0.0209 0.0197 0.1015 0.0560 0.0799 0.0347
200 0.0169 0.0158 0.0155 0.0146 0.0813 0.0442 0.0656 0.0255
300 0.0111 0.0105 0.0102 0.0096 0.0651 0.0323 0.0530 0.0197
500 0.0064 0.0062 0.0058 0.0056 0.0436 0.0176 0.0377 0.0110
Sigma=1
100 0.1438 0.1419 0.1278 0.1266 0.3787 0.3651 0.2081 0.1874
150 0.0884 0.0865 0.0805 0.0789 0.2498 0.2181 0.1483 0.1195
200 0.0642 0.0631 0.0581 0.0574 0.1881 0.1578 0.1149 0.0861
300 0.0417 0.0412 0.0389 0.0378 0.1365 0.1080 0.0878 0.0608
500 0.0250 0.0248 0.0228 0.0226 0.0865 0.0636 0.0608 0.0369

4. CONCLUSION

In this paper, the performance of Speckman estimation of PLM based on kernel and spline smoothing approaches is
investigated in different shapes of the nonparametric component. The Monte Carlo simulation study is conducted to
evaluate and compare the performance of these estimators (kernel and spline estimators) under different situations
(such as; different shapes of the nonparametric component, different number of parametric variables, different sample
sizes, and different standard deviations of error term). The simulation results confirm that the uses of spline smoothing
approach in Speckman estimation of PLM better than the use of kernel smoothing approach, because it have smallest
MSE values.

© 2019, I/MA. All Rights Reserved 17



Mohamed R. Abonazel*l, Nahed Helmyz and Abeer R. Azazy3 /
The Performance of Speckman Estimation for Partially Linear Model using Kernel... / IMA- 10(6), June-2019.

REFERENCES

1. Abonazel, M. R. (2018a). Different estimation methods of partially linear regression models. Working paper.
Institute of statistical studies and research, Cairo University, Egypt.

2. Abonazel, M. R. (2018b). A practical guide for creating Monte Carlo simulation studies using R. International
Journal of Mathematics and Computational Science, 4(1), 18-33.

3. Abonazel, M. R., & Gad, A. A. (2018). Robust partial residuals estimation in semiparametric partially linear
model. Communications in Statistics-Simulation and Computation, 1-14. https://doi.org/10.1080/ 03610918.2018.
1494279.

4. Ahn, H., & Powell, J. L. (1993). Semiparametric estimation of censored selection models with a nonparametric
selection mechanism. Journal of Econometrics, 58(1-2), 3-29.

5. Aydin, D. (2014). Estimations of the Partially Linear Models with Smoothing Spline Based on Different Selection
Methods: A Comparative Study. Pakistan Journal of Statistics, 30(1), 35-56.

6. Chang, X. W., & Qu, L. (2004). Wavelet estimation of partially linear models. Computational statistics & data
analysis, 47(1), 31-48.

7. Chen, H., & Shiau, J. J. H. (1991). A two-stage spline smoothing method for partially linear models. Journal of
Statistical Planning and Inference, 27(2), 187-201.

8. Engle, R. F., C. W. J. Granger, J. Rice, and A. Weiss. (1986), Semiparametric estimates of the relation between
weather and electricity sales. Journal of the American Statistical Association, 81(394), 310-320.

9. Fadili, J. M., & Bullmore, E. (2005). Penalized partially linear models using sparse representations with an
application to fMRI time series. IEEE Transactions on signal processing, 53(9), 3436-3448.

10. Hamilton, S. A., & Truong, Y. K. (1997). Local linear estimation in partly linear models. Journal of Multivariate
Analysis, 60(1), 1-19.

11. Hérdle, W., Liang, H., & Gao, J. (2000). Partially linear models. Springer Science & Business Media.

12. Haérdle, W. K., Miller, M., Sperlich, S., & Werwatz, A. (2004). Nonparametric and semiparametric models.
Springer Science & Business Media.

13. Heckman, N.E. (1986). Spline smoothing in partially linear models. Journal of the royal statistical society, series
B, 48, 244-248.

14. Meyer, F. G. (2003). Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-
series. IEEE transactions on medical imaging, 22(3), 315-322.

15. Rice, J. (1986). Convergence rates for partially splined models. Statistics & probability letters, 4(4), 203-208.

16. Robinson, P. M. (1988), Root-N-consistent semiparametric regression. Econometrica, 56(4), 931-54.

17. Speckman, P. (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical Society: Series B
(Methodological), 50(3), 413-436.

18. Wang, L., Brown, L. D., & Cai, T. T. (2011). A difference based approach to the semiparametric partial linear
model. Electronic Journal of Statistics, 5, 619-641.

19. Yatchew, A. (1997). An elementary estimator of the partial linear model. Economics Letters, 57(2), 135-143.

20. Yatchew, A. (2000). Scale economies in electricity distribution: a semiparametric analysis. Journal of Applied
Econometrics, 15(2), 187-210.

21. Yatchew, A. (2003). Semiparametric regression for the applied econometrician. Cambridge University Press.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2019. This is an Open Access article distributed under the terms of the International Journal
of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.]

© 2019, I/MA. All Rights Reserved 18




